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Abstract

We study invasion fronts in a class of simple, two-species reaction-diffusion systems that
occur as models for recurrent precipitation and undercooled liquids. We exhibit several
different modes of front propagation: the invasion of an unstable homogeneous equilibrium
can create persistent periodic patterns, transient patterns, or simply a homogeneous state.
We give criteria that distinguish between these different modes of invasion, corroborate
our predictions with numerical simulations, and point to a rich variety of more subtle
phenomena and bifurcations.

Running head: Wavenumber selection in precipitation

Corresponding author: Arnd Scheel

Keywords: front propagation, pattern formation, phase-field system, Liesegang patterns,
pulled and pushed fronts

MSC 2010 Classification: 35B36, 37L15



1 Introduction

We study patterns that nucleate from a spatially homogeneous, unstable state in a large
system, when perturbations to the unstable state are spatially localized. The patterns that
emerge in this situation are typically created by fronts that invade the unstable state. Our
focus is on a seemingly simple, yet surprisingly rich example, that extends the well-understood
scalar Nagumo or Allen-Cahn equation by an additional neutral field.

Consider, for instance, the simple reaction-diffusion model of a closed system, C −⇀↽− E, with
reaction rate f(c, e),

ct = cxx − f(c, e)

et = κexx + f(c, e). (1.1)

Here, we think of an idealized unbounded reactor x ∈ R, diffusivity κ < 1 for the species e,
and diffusivity of species c scaled to 1. We are particularly interested in the case when the
nullclines of f possess threshold characteristic, such as in the prototypical example

f(c, e) = g(e) + γc, g(e) = e(1− e)(e− 1/2), γ ∈ R.

The substitution θ = c + κe readily yields a conservation law for the total mass c + e, with
flux θ, which is known in other contexts as the phase-field system,

θt + let = θxx

et = κexx + g(e) + γ(θ − κe). (1.2)

In that context, θ is a temperature field, e an order parameter, and l = 1 − κ the (positive)
latent heat; see for instance [13] for some background.

In the form (1.1), the system has also been used as a model for recurrent precipitation, inter-
polating between super-saturation models as in [21] and phenomenological models such as the
Cahn-Hilliard equation [7]. One seeks, for instance, to explain formation of Liesegang bands.
The bands form when a moving reaction front creates a reaction product that precipitates,
forming distinct bands; see [7, 17, 19, 21] for background, motivation and phenomena.

We will work with the system (1.1) with κ < 1 and f the simple cubic,

ct = cxx − e(1− e)(e− a)− γc
et = κexx + e(1− e)(e− a) + γc. (1.3)

Many of our results remain true at least qualitatively for more general forms of nonlinearities
f . The parameter a is convenient for a parameterization of equilibria, but a can be formally
eliminated by shifting c and e. Throughout, we mostly focus on the case γ > 0 with some
attention to the limits γ = 0 and γ =∞: for γ = 0, the e-equation decouples and the dynamics
are determined by the scalar Allen-Cahn equation; for γ →∞, one recovers the Cahn-Hilliard
equation in an appropriate scaling [5, 8].

The specific form f(c, e) = g(e) + γc, κ < 1, γ > 0, allows a (formal) free energy

W (c, e) =
∫

R

κ

2
e2x +G(e) +

γ

2

(
c2 +

κ

1− κ
(c+ e)2

)
dx, (1.4)
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with G′ = −g. Along smooth solutions, for Neumann or periodic boundary conditions, one
verifies that d

dtW (c(t), e(t)) ≤ 0. The system is in fact a gradient flow to this free energy, with
metric factor M =M∗ ≥ 0, so that(

ct
et

)
= −M∇L2W, M =

(
id− 1−κ

γ ∂xx −id
−id id

)
. (1.5)

With Neumann or periodic boundary conditions, or on the real line, the system (1.3) possesses
a curve of spatially homogeneous equilibria c∗ = −e∗(1 − e∗)(e∗ − a)/γ. To prepare the
statement of our main results, we examine stability of those spatially homogeneous states via
the linearized approximation,

ct = cxx − g′(e∗)e− γc
et = κexx + g′(e∗)e+ γc. (1.6)

fe

fc

fe= fc

fe= d fc

 d fe= fc

(iii)
(iv)

(i)

(ii)

Figure 1.1: The figure shows stability and instability regions of spatially homogeneous equilibria of (1.3)
depending on fe and fc. The insets show plots of λ±(k). Detailed stability information is given in Table
1.

Linear stability of equilibria can be determined explicitly after Fourier transformation,(
ct
et

)
=

(
−k2 − γ −g′

γ g′ − κk2

)(
c

e

)
, (1.7)

with two eigenvalues λ±(k). When x ∈ R, all wavenumbers k ∈ R are allowed. Depending on
fc = γ > 0 and fe = g′, one can readily determine stability properties of the family of matrices
in (1.7). Figure 1.1 shows four qualitatively different regions of stability, depending on the
quotient fc/fe, which of course is equivalent to the slope of the nullcline of f(c, e). Plotted
are those four regions in fc, fe > 0 and the corresponding eigenvalue curves λ±(k),

λ±(k) =
1
2

(tr±
√

tr2 − 4 det), tr = fe − fc − (1 + κ)k2, det = (κfc − fe)k2 + κk4, k ∈ R

Figure 1.3 shows the phase portraits for x-independent solutions of (1.3) with equilibria at
c = −e(1 − e)(e − a)/γ. In addition, PDE-stability information is shown, depending on e
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Figure 1.2: Phase portraits are shown for spatially homogeneous dynamics of (1.3) in case γ > 1/4,
left, and κ/4 < γ < 1/4, middle, and γ < κ/4, right. Equilibria are located on the cubic. The dotted
vertical lines separate regions of different PDE stability as described in Figure 1.1. Only the right-
hand picture shows equilibria which are homogeneous unstable of type II. Transitions from stable (i) to
spinodal unstable (ii) occur at tangencies with the slanted lines fe = κfc.

ODE-stability region ktemp kmax

(i) stable stable fc > κfc > fe 0 0

(ii) spinodal stable fc > fe > κfc ktemp > 0 kmax > 0

(iii) homogeneous unstable I unstable fe > fc > κfc ktemp > 0 kmax > 0

(iv) homogeneous unstable II unstable fe > κfe > fc 0 kmax > 0

Table 1.1: Stability regions in terms of the gradient (fc, fe) of the nonlinearity. The wavenumbers
ktemp are the wavenumbers with maximal temporal growth. The wavenumbers kmax are the maximal
wavenumbers with temporal growth.

and γ. . The four different stability regions are also described in Table 1.1. There, ktemp is
the wavenumber with maximal temporal growth λ+(ktemp) ≥ λ±(k) for all k, and kmax is the
maximal unstable wavenumber, λ±(k) ≤ 0 for |k| > kmax. One easily calculates the following
explicit expressions,

ktemp =

√
−κ(fc + fe) +

√
κ(1 + κ)2fcfe

κ(1− κ)
, kmax =

√
fc − κfe

κ
. (1.8)

Finally, ODE stability, which holds in regions (i) and (ii) refers to stability at k = 0, within
the class of x-independent solutions.

States with fe < 0 are stable. In the case γ < 0, complex eigenvalues can occur. The stability
in large bounded domains with L-periodic (or Neumann) boundary conditions is similar, with
dispersion curves being approximated by points where k ∈ k0Z, k0 = 2π/L. In particular,
the equilibrium e∗ = a, c∗ = 0 is stable when g′(a) = a(1 − a) < κγ, and unstable when
a(1 − a) > κγ. Varying a, we see that homogeneous unstable equilibria exist only when
γ > 1/4, in the region |a− 1/2| < γ − 1/4.

We are interested in pattern formation from unstable states, that is, from states in regions
(ii)–(iv). One can easily check that, possibly shifting c and e and scaling c, x, t, we may
assume that this unstable state is given by (c, e) = (0, a), with 0 < a < 1. Typically, localized
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perturbations evolve into a pair of fronts that propagate to +∞ and −∞, respectively, invading
the unstable state and leaving a new state behind.

Our main results characterize three different modes of invasion. These modes are most promi-
nently characterized by the pattern that is being created in the wake of the front. Depending
on the parameters a and γ, fronts can leave behind

(i) a bulk state, spatially constant;

(ii) a periodic pattern, invaded by a bulk state with the same speed;

(iii) a periodic pattern invaded by a bulk state at a slower speed.

The three possibilities are illustrated in space-time plots in Figure 1.3.
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Figure 1.3: Space-time plots of the solution to (1.3). From left to right, we see bulk states, transient
patterns, and persistent patterns behind fronts. Initial conditions are perturbations near x = 0 of the
unstable state c = 0, e = a. Plotted is the value of e, with brighter colors corresponding to larger e. The
parameters are γ = 0.001, a = 0.04, 0.4 in the left and middle picture, γ = 1.5, a = 0.22 in the right
picture.

We will refer to the three different modes of invasion as bulk fronts, transient pattern forming
fronts, and persistent pattern forming fronts, depending on whether they create a bulk state
(i), a transient periodic patterns (ii), or a persistent periodic patterns (iii). We emphasize
already here that the term persistent is to be understood relative to the transient patterns.
Persistent periodic patterns are unstable and persist only in an idealized situation. They
are typically annihilated by secondary invasion fronts. Depending on system parameters,
instabilities and secondary invasion fronts may however be very slow, so that patterns appear
to actually persist indefinitely in simulations; see Lemma 4.18 and the discussion in Section 5

We next collect some basic intuitive aspects of the invasion process. First, notice that traveling
fronts need to conserve mass. To be precise, define the mass of a pattern as the average

m(c, e) = −
∫

(c(x) + e(x)) dx,

whenever the average exists. The mass of the unstable homogeneous state (c, e) = (0, a)
therefore is m = a. Any pattern (c−, e−)(x), that results of the invasion process, spatially
periodic or spatially homogeneous, possesses the same average a = −

∫
(c−(x) + e−(x)) dx; see

Lemma 4.21.
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Depending on the unstable state a and the parameter γ, one can calculate a linear spreading
speed slin(a; γ), the largest of all speeds s in which perturbations of the unstable state do
not decay in a compact window of a frame moving with speed s. Associated with this linear
spreading speed are a selected temporal frequency ωlin, spatial wavenumber klin = ωlin/slin,
and spatial asymptotics O(xeνlinx), x→∞ with spatial mode νlin, Re νlin < 0; see Section 2.1
for precise definitions.

Roughly speaking, nonlinear fronts that agree with the linear prediction are referred to as
pulled fronts. Stable nonlinear fronts that are steeper and faster than the linear prediction
are referred to as pushed fronts. We refer to Section 3.1 for a more precise characterization of
pushed fronts and to Definition 4.9 for a characterization of pulled fronts. Both characteriza-
tions differ slightly from the ones in [35] but coincide in most simple examples.

The first result characterizes the existence of bulk fronts and relates them to the existence of
pushed fronts.

Theorem 1 (Bulk Fronts) Let a∗(κ) = min{κ/(2 − κ), 1/3}. For any a < a∗(κ), there is
γ∗ > 0 so that for all 0 ≤ γ < γ∗ there exists a linearly stable front that connects (c, e) = (0, a)
with a stable homogeneous equilibrium (c, e) = (a− 1, 1) + O(γ). This front is a pushed front.
For a > a∗(κ) and γ ≥ 0, sufficiently small, such pushed fronts do not exist.

We refer to Section 3 for precise statements and proofs.

In fact, for γ > 0, small, we have ωlin, klin > 0, so that the linear analysis predicts oscillatory
front propagation and the formation of patterns in the wake of the front. The above pushed
fronts can therefore be viewed as a nonlinear mechanism that eliminates patterns by means
of a faster and steeper nonlinear mode of propagation.

Our second result characterizes robustness of modulated fronts. Robustness refers to a prop-
erty of the linearization at such an invasion front. Roughly speaking, it states that the
linearization at such a front is typically onto. Failure of robustness refers to situations where
this linearization necessarily possesses a cokernel.

Theorem 2 (Transient versus persistent patterns) Fronts that invade an unstable state
and leave behind a persistent periodic pattern are robust if and only if that periodic pattern is
stable when considered with periodic boundary conditions of period 2π/klin, corresponding to
its minimal period. In particular, we can expect persistent pattern forming fronts only if stable
periodic patterns with mass a and selected wavenumber klin exist.

We refer to Section 4 for precise statements and proofs.

The possibility of persistent pattern forming fronts is somewhat surprising since the periodic
pattern created in the wake of the invasion process is unstable. In fact, in our system (1.3),
periodic patterns are always unstable when considered on unbounded domains, or with periodic
boundary conditions that are multiples of the period of the pattern [25]. In that respect, the
invasion process does not correspond to the intuition where the spatial competition between
a stable state and an unstable state leads to invasion and elimination of the unstable state.
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Corollary 4.15 contains a general statement on robustness of invasion fronts. It turns out that
invasion fronts can create unstable patterns as long as the instability in the wake is not a
harmonic of the frequency of the invasion process.

Remark 1.1 We emphasize that the fronts that we are interested in, here, are quite different
from the fronts in phase-field models that have been studied previously; see for instance [1,
6, 14, 15]. Interfaces (or fronts) studied in these works separate (or connect) two stable
homogeneous states, while we are interested in fronts where at least one of the asymptotic
states is unstable. Pushed and pulled fronts in the phase-field system have been studied in [9],
albeit under a somewhat different perspective. Pulled fronts play a significant role in a variant
of the system under consideration, here, studied in [16]. There, invasion of a metastable state
involves a transient, unstable intermediate state, from which a stable state forms through a
secondary front. Different from the study here, only pulled fronts have been observed; see also
[36].

Remark 1.2 Transient unstable patterns in the wake of invasion fronts have been observed
in [33, 34]. The λ−ω systems studied there describe invasion of an unstable state near a Hopf
bifurcation. The patterns selected by the leading edge are periodic but moving, u = u(kx−ωt),
ω 6= 0. Similar to our situation, those selected patterns are unstable for a wide range of
parameter values. The instability is quite different from the instability here, often creating
spatio-temporally chaotic states. The results in [33] give criteria for the creation and length
of the transient in the wake of an invasion front.

Outline: In Section 2, we characterize linear spreading speeds and selected wavenumbers. In
Section 3, we consider bulk fronts in the limit γ ∼ 0 of weak coupling. In Section 4, we study
robustness using counting arguments for Fredholm indices. Section 5 contains a discussion
of our results, some extensions, and numerical simulations that point to a number of other
interesting bifurcations.

Acknowledgments The authors gratefully acknowledge support by the National Science
Foundation under grant NSF-DMS-0806614.

2 Linear spreading speeds

The goal of this section is to determine linear spreading speeds, selected frequencies, and
spatial decay rates. We therefore start by giving some precise background on linear spreading
speeds in Section 2.1. We will describe the ideas in the context of a general reaction-diffusion
system since there does not appear to be a good reference for the view point taken here. In
particular, we derive a system of polynomial equations for the unknowns slin > 0, ωlin ≥ 0,
and νlin ∈ C. In Section 2.2, we then relate this general criterion for linear spreading speeds
and pointwise growth to the notion of absolute spectrum [27] in order to define more general
absolute spreading speeds. We then specify to our particular case, Section 2.3, and calculate
linear spreading speeds perturbatively in two limiting regimes, Sections 2.4 and 2.5. Finally,
in Section 2.6, we present numerical results that give spreading speeds as a function of a and
γ for selected values of κ.
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2.1 Double roots and pinching

Growth of perturbations of a spatially homogeneous equilibrium is governed by the linearized
equation at small amplitudes. When studying the spatial spreading of initially localized per-
turbations, one investigates the linearized equation in a moving frame of speed s. One then
determines whether in this fixed frame of reference, smooth and localized initial conditions
decay pointwise, that is, in any fixed finite-size window x ∈ [−L,L]. The supremum of all
speeds s for which we do not observe pointwise decay is then referred to as the linear spreading
speed.

To be precise, consider the reaction diffusion system

ut = Duxx + F (u) ∈ RN , (2.1)

with smooth kinetics F and positive diffusion matrix D +D∗ > 0. We assume that u(x) ≡ 0
is an equilibrium, F (0) = 0, with linearization in a comoving frame ξ = x− st given by

ut = Duξξ + suξ + F ′(0)u. (2.2)

The dispersion relation is obtained from the ansatz u(t, x) = u0eλt+νξ in (2.2),

ds(λ, ν) = d(λ− sν, ν), d(λ, ν) = det (Dν2 + F ′(0)− λ). (2.3)

We assume that 0 is unstable, that is, d(λ, ik) = 0 for some Reλ > 0, k ∈ R.

Pointwise instability in the comoving frame is induced by double roots (or branch points,
depending on which variable one is solving for), rather than simple roots with ν ∈ iR,

ds(λ∗, ν∗) = 0, ∂νds(λ∗, ν∗) = 0.

In fact, using the pointwise representation of the fundamental solution to (1.6), one can see
that pointwise growth is induced by double roots of the dispersion relation, which satisfy an
additional pinching condition: ν±(λ) → ±∞ as λ → +∞, where the functions ν±(λ) are
continuations of the two roots with ν±(λ∗) = ν∗ [4, 3]. Therefore, when decreasing s past the
linear spreading speed, such a branchpoint of the dispersion relation crosses the imaginary
axes. Summarizing, we define spreading speeds as follows.

Definition 2.1 (Linear spreading speeds) We define the linear spreading speed as the
largest value s for which there is a solution to

ds(iω, ν) = 0, ∂νds(iω, ν) = 0, ν±(λ)→ ±∞ for λ→∞. (2.4)

We will refer to the frequency of the neutral mode Imλ =: ωlin as the linear frequency of the
invasion process, to ν =: νlin as the spatial asymptotics, and to klin =: ωlin/slin as the linear
selected wavenumber.

Since ∂νds = −s∂λd + ∂νd, the second equation can be reformulated as s = dλ
dν =: −sg, with

generalized group velocity sg. On the other hand, one often finds that the associated growth
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in the steady frame, λ̃ = λ− sν is real, so that λ− sν = 0 and s = λ
ν = −sp, with generalized

phase velocity sp. The criterion (2.4) then simplifies to

sp = sgr, (2.5)

with a somewhat implicit pinching condition [35]. We will find examples here where the
simplified criterion fails since group velocities are not defined, ∂λd = 0. Also, λ̃ will not be
real in most cases considered here.

2.2 Absolute spreading speeds

An alternative notion to the pointwise stability criterion used above is the notion of absolute
spectrum, introduced in [27].

Definition 2.2 (Absolute spectrum) [27] The absolute spectrum Σabs is defined as the set
of λ such that there exists two roots ν of ds(λ, ν) = 0 with equal real part. More precisely, one
requires that Re νN = ReνN+1, where the 2N roots of ds(λ, ν) are repeated with multiplicity
and ordered with non-decreasing real part Re νj ≤ Re νj+1.

Clearly, double roots νN = νN+1 are in the absolute spectrum if the other 2(N−1) roots satisfy
the above splitting condition. The absolute spectrum captures pointwise instabilities in the
following sense. Roughly speaking, the absolute spectrum is the non-discrete part of the limit
of spectra of the right-hand side in (2.2) in bounded domains ξ ∈ [−L,L] when L→∞, where
of course suitable boundary conditions need to be prescribed at ξ = ±L; see [27] for precise
statements and proofs. In that sense, the absolute spectrum captures instabilities in large
finite windows with separated boundary conditions, whereas double roots capture instabilities
in finite windows as subsets of x ∈ R.

Definition 2.3 (Absolute spreading speeds) We define the absolute spreading speed as
the supremum of speeds s > 0 for which Re Σabs > 0.

In some cases, one can see that absolute and linear spreading speeds coincide. We refer to
Definition 4.12 for a precise characterization of this simple scenario.

Looking at a homotopy λ→ +∞, one concludes that pointwise instability implies instability of
the absolute spectrum. Indeed, suppose the double root which causes the pointwise instability
does not satisfy the splitting condition. Since for λ → +∞, there are precisely N roots with
Re ν → −∞ and N roots with Re ν → +∞, one finds that during the homotopy λ necessarily
crosses a curve of absolute spectrum, which then necessarily is unstable. In other words, we
just showed that

sabs ≥ slin. (2.6)

The absolute spectrum can be located by solving

ds(λ, ν) = 0, ds(λ, ν + iγ) = 0, (2.7)

with 0 6= γ ∈ R, and by tracking the splitting condition. One can follow roots to this complex
system of equations for (λ, ν) in γ, which yields algebraic curves in the complex plane. One
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can show [26] that all curves of absolute spectrum end in double roots, γ = 0, and continue to
Reλ = −∞. In particular, the absolute spectrum is connected. Moreover, due to analyticity
of (2.7), one can define multiplicities of the absolute spectrum and show that the absolute
spectrum depends continuously on system parameters and speed s.

Remark 2.4 One can more generally define linear (or absolute) spreading speeds as the set of
speeds s for which one observes pointwise instability (or instability of the absolute spectrum).
In general, this set need not be connected. Examples are easily constructed near so-called
Turing-Hopf bifurcations [31, Def. 2.3], where a homogeneous state is unstable with respect to
linear waves u(kx∓ωt), k, ω 6= 0, both with non-vanishing group velocity ±sg. Instability can
be observed in frames with speed close to zero or speed close to ±sg. In such cases, we expect
invasion processes to be more subtle, involving transients.

2.3 Spreading speeds in precipitation kinetics

We specify the above considerations to the case of precipitation kinetics and find the dispersion
relation

ds(λ, ν) = d(λ− sν, ν), d(λ, ν) = λ2 − (fe − fc + (1 + κ)ν2)λ− (κfc − fe)ν2 + κν4. (2.8)

In our case, fc = γ and fe = a(1− a). Since the parabolic scaling

fc = r2 · f̂c, fe = r2 · f̂e, ν = r · ν̂, ω = r2 · ω̂, s = r · ŝ, (2.9)

leaves the equations invariant, we may assume fc = 1, fe = 1, or fc + fe = 1.

Unfortunately, solving the algebraic equations in (2.4) (let alone verifying the pinching condi-
tion) for ν, ω, s ∈ C×R×R explicitly appears to be impossible. In the following sections, we
therefore consider the limits fe = 1, fc = µ, and fc = 1, fe = κfc + µ, with µ > 0, µ→ 0. In
the last section, we calculate solutions numerically as a function of fc, setting fe = 1− fc.

2.4 Spreading speeds at weak coupling

We set fe = 1 and fc = µ by rescaling time and space as in (2.9) so that actual spreading
speeds are slin = s

√
fe with s computed below. We find

ds(λ, ν) = (ν2 + sν − λ)(κν2 + sν + 1− λ)− µ(κν2 + sν − λ).

For µ = 0, the roots ν(λ) are

ν±1 =
1
2

(
−s±

√
s2 + 4λ

)
, ν±2 =

1
2κ

(
−s±

√
s2 + 4κ(λ− 1)

)
, (2.10)

which satisfy ν±j (λ) → ±∞ for λ → +∞. Possible branch points that satisfy the pinching
condition therefore are the four combinations ν+

j = ν−k , j, k ∈ {1, 2}. Elementary algebra
shows that only two combinations give branch points with λ = 0 so that Reλ > 0 for s < s∗:

(i) s22 = ±2
√
κ, ν−2 = ν+

2 = −s22/(2κ), λ = 0;
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(ii) s12 = ± 1√
1−κ , ν−1 = ν+

2 = −s12, λ = 0, when κ < 1
2 .

Since |s12| > |s22| for κ < 1
2 , the actual spreading speed is

slin =

{
1√
1−κ , for 0 < κ < 1

2 ;

2
√
κ, for 1

2 ≤ κ ≤ 1;
(2.11)

We note that the spreading speed of instabilities is nonzero in the limit when κ → 0. Also,
ν ∈ R at the double root, that is, the instability generates a uniform pattern with wavenumber
k = 0 in the uncoupled limit γ = 0.

We next study the effect of weak coupling, 0 < fc = µ � 1. In each case κ < 1/2, κ =
1/2, κ > 1/2, it is sufficient to follow double roots locally, that is, to use perturbation analysis
for double roots in µ.

The case κ > 1/2. We locally expand in ν̂ = ν + 1/
√
κ, ŝ = s− 2

√
κ, λ, and µ,

ds(λ, ν) = −2κ− 1
κ

λ−(2κ−1)ν̂2 +µ+
2κ− 1
κ3/2

ŝ+O(|µ|2 + |ŝ|2 + |λ|2 + |ν̂|2(|µ̂|+ |ŝ|+ |λ|)+ |ν̂|3).

Solving ∂νds = 0 for ν̂ and substituting the result into the equation ds = 0, one readily finds
the expansion for the spreading speed

slin(µ) = 2
√
κ− κ3/2

2κ− 1
µ+ O(µ2), κ > 1/2 (2.12)

The case κ < 1/2. The case κ < 1/2 is slightly more difficult. In fact, ∂λds vanishes at the
double root, so that for µ 6= 0 we have two double roots that collide in the degenerate limit
µ→ 0. In order to derive a local expansion, we set ν̂ = ν + 1/

√
1− κ, ŝ = s− 1/

√
1− d, and

find

ds(λ, ν) =λ2 − 1− 2κ
1− κ

ν̂2 +
2κ√
1− κ

λν̂ + µ+
1

1− κ
ŝ2 +

2κ
1− κ

ν̂s+
2√

1− κ
λŝ

+ O(|µ|(|ŝ|+ |ν̂|+ |λ|) + |µ2|+ |ν̂|3 + |λ|3 + |ŝ|3).

We can solve the equation ∂νds(λ, ν) = 0 for ν with the implicit function theorem and obtain

ν̂ = ν∗(λ, ŝ, µ) =
κ
√

1− κ
1− 2κ

λ+
κ

1− 2κ
ŝ+ O(|µ|+ |λ|2 + |ŝ|2).

Substituting this expression into ds(λ, µ) = 0, we obtain after some manipulations

(1− κ)2

1− 2κ

(
λ+

1√
1− κ

ŝ

)2

+ µ+ O
(
|µ|2 + |µ|(|λ|+ |ŝ|) + |λ|2 + |ŝ|2

)
= 0.

Setting µ = ε2 and scaling λ = ελ1, ŝ = εs1, we find

(1− κ)2

1− 2κ

(
λ1 +

1√
1− κ

s1

)2

+ 1 + O(ε) = 0. (2.13)
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At the linear spreading speed, λ1 = iω1 is purely imaginary. We split real and imaginary part
and find for the imaginary part of (2.13)

(1− κ)3/2

1− 2κ
ω1s1 + O(ωε) = 0,

which gives s1 = O(ε) and ŝ = O(µ) with the implicit function theorem after dividing by ω1.
Substituting into the equation for the real part, we find

−(1− κ)2

1− 2κ
ω2

1 + 1 + O(ε) = 0,

which in turn yields ω1 = ±
√

1−2κ
1−κ + O(ε).

Summarizing, we find linear spreading speeds s, leading edge decay νlin, and temporal fre-
quency ω as

slin =
1√

1− κ
+ O(µ),

ω =
√

1− 2κ
1− κ

√
µ+ O(µ),

ν = − 1√
1− κ

± i
√
µ

κ√
1− κ

√
1− 2κ

+ O(µ), (2.14)

for fc = µ > 0.

We note in passing that in the case of µ = fc < 0, one finds ω = 0 and

slin =
1√

1− κ
+

√
1− 2κ
1− κ

√
µ+ O(µ).

In this case, there are actually two spreading speeds, solutions to sph = sgr. However, only
the larger one, which corresponds to the first instability, is physically relevant.

One can summarize the calculations here as follows. At fc = 0, there are two double roots that
cross the imaginary axis simultaneously at the origin with nonvanishing speed as s decreases.
Perturbing, fc 6= 0, the two roots split much like a double eigenvalue into either a pair of
complex double roots or a pair of real double roots, depending on the sign of fc. The pair of
double roots, real or complex, crosses the imaginary axis as s decreases. In the case where
the eigenvalues are complex, the imaginary part is of order

√
fc and the real part is of higher

order, so that the crossing happens at the same value of s at leading order. Somewhat
counterintuitively, the crossing of complex (oscillatory) double roots occurs in the case where
the system possesses a gradient structure, fc = γ > 0, while the crossing of real double roots
occurs in the regime fc = γ < 0, where there is no Lyapunov function and Hopf bifurcations
are known to occur in bounded domains [25].

The case κ ∼ 1/2. When κ crosses the critical value κ = 1/2, we see a crossover from
spreading speeds with simple (in λ) double roots, κ > 1/2, to a pair of complex double roots
crossing at κ < 1/2. Without attempting to give complete expansions, here, we sketch the
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main phenomena, only. The leading order expansion of the dispersion relation near κ = 1/2
is

λ2 − 1√
2
ν̂3 +

√
2λν̂ + µ+ 2ŝ2 + 2ŝν̂ + 2

√
2ŝλ− 2κ̂(

√
2ŝ+

√
2ν̂ + λ) + h.o.t. = 0,

where ŝ = s−
√

2, κ̂ = κ− 1/2, and ν̂ = ν +
√

2. One can solve the equation ∂νds = 0 for λ,
which gives

λ =
3
2
ν2 −

√
2s+ 2κ+ h.o.t..

Substituting back into the dispersion relation gives an equation for ν with three roots, and
thus three double roots λj . For fc > 0, two of these three double roots are complex conjugate,
one is real. The real part of all double roots is increasing as s decreases. As κ increases, the
real part of the real double roots increases relative to the real part of the complex pair of
double roots so that a real instability determines the linear spreading speed for larger values
of κ.

Absolute spreading speeds. One can easily verify that in the limiting regime γ ∼ 0,
absolute spreading speeds equal linear spreading speeds. In other words, the absolute spectrum
is bounded to the right by a pair of double roots. To see this, we exploit continuity of the
absolute spectrum in both γ and s to see that we need to control the absolute spectrum at γ =
0, only. At this limiting point, one finds absolute spectrum from possibly four combinations
of equations Re(ν±j − ν±m) = 0. The case Re ν+

j = Re ν−j can be readily computed explicitly
and gives a branch of absolute spectrum {λ ∈ R;λ ≤ λbp}. The combinations Re ν−j = Re ν+

m,
m 6= j can be seen to be stable as follows. One first notices that the curves of absolute
spectrum do not cross the imaginary axis. This is readily seen by substituting λ = iω into
the expressions (2.10) for ν±j and noticing that the real part of the roots is monotonically
increasing with ω. This excludes absolute spectrum in the right half plane for s = slin since
curves of absolute spectrum are connected to Reλ = −∞ in the complex plane [26]. One then
verifies that the absolute spectrum close to the double roots is contained in the open left half
plane: in fact, the curves of absolute spectrum are to leading order horizontal, for all values of
κ. We will refer to this fact later, in Remark 4.13 and in Lemma 4.14, when we characterize
pulled fronts.

2.5 Onset of instability and Cahn-Hilliard spreading speeds

A second limit in which analytic computations of spreading speeds are tractable is the regime
near onset of the spinodal instability. We therefore investigate double roots in the parameter
regime fc = 1, fe = dfc + µ, with µ ≥ 0, small. We find

d(λ− sν, ν) = (λ− sν)2 + (1−κ)(λ− sν)− (1 +κ)ν2(λ− sν) +κν4−µ((λ− sν)− ν2), (2.15)

and

∂νd(λ, ν) = −2κ(λ−sν)+ν(4κν2−2(1+κ)(λ−sν)+2µ)− (1−κ)s+s(1+κ)ν2 +µs. (2.16)

We first discuss the case s = 0. At µ = 0, double roots that satisfy the pinching condition
are necessarily located in {Reλ ≤ 0} since the essential spectrum is contained in the closed
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left half plane. We find λ = ν = 0 as the only critical double root at ν = 0. For µ > 0,
one double root remains at λ = 0 while two double roots cross into the unstable half plane
at λ = µ2/4κ + O(µ3), with ν2 = −µ/(2κ) + O(µ2). When increasing s, the real part of λ
associated with a double root decreases. We need to track the value of s for which Reλ = 0.
We therefore notice that we can solve (2.15)–(2.16) for λ and s as functions of ν. The solutions
can be expanded as

(1− κ)λ = 3κν4 + µν2 + O(|ν|6 + |µν4|+ |µ2ν2|),
(1− κ)s = 4κν3 + 2µν + O(|ν|5 + |µν3|+ |µ2ν|). (2.17)

Scaling
λ̂ = λ(1− κ)κ/µ2, ŝ = s(1− κ)

√
κ/µ3/2, ν̂ = ν

√
κ/µ,

gives

λ̂ = 3ν̂4 + ν̂2 + O(|µ|),
ŝ = 4ν̂3 + 2ν̂ + O(|µ|). (2.18)

At leading order, this system coincides with the linearization at a Cahn-Hilliard spinodal
unstable equilibrium, and spreading speeds have been calculated in [35, §2.11 (82)]. We
outline the calculation here in order to show that it is robust with respect to higher-order
terms.

We obtain two real equations Re λ̂ = 0, Im ŝ = 0 for the complex variable ν. The latter
equation for ν̂ = η + ik is at leading order

4κk(3η2 − k2) + 2µk + kO(µ2 + |µ|(η2 + k2) + η4 + k4) = 0.

Dividing by the trivial double root at k = 0, this gives k2 = µ/2κ+ 3η2 + O(µ2 + |µ|η2 + η4)
with the implicit function theorem. Substituting into Re λ̂ = 0, we obtain at leading order a
quadratic equation for η2 with one simple positive root. This yields expressions

η2 =
−1 +

√
7

24
+ O(µ), k2 =

3 +
√

7
8

+ O(µ),

and a linear spreading speed and eigenvalue

ŝ =

√
2
27

(17 + 7
√

7) + O(µ), λ̂ =
i(3 +

√
7)

4

√
2 +
√

7
6

+ O(µ).

Summarizing, we find a unique linear spreading speed s at the double root (λ, ν) with expan-
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sion in µ

slin =
µ3/2

(1− κ)
√
κ

√
2
27

(17 + 7
√

7) + O(µ5/2),

ωlin =
µ2

κ(1− κ)
3 +
√

7
4

√
2 +
√

7
6

+ O(µ3)

Re νlin =
√
µ

κ

√
−1 +

√
7

24
+ O(µ3/2),

Im νlin =
√
µ

κ

√
3 +
√

7
8

+ O(µ3/2). (2.19)

Again, in this case, one can verify that linear and absolute spreading speeds are equal. One
finds that the absolute spectrum close to the imaginary axis is determined by the Cahn-Hilliard
limiting problem. A somewhat lengthy calculation shows that double roots yield indeed the
most unstable points in the absolute spectrum.

We finally note that in this regime as well as in the limit fc ∼ 0 (as well as in the Cahn-Hilliard
equation itself), the frequencies in the comoving frame ω and in the steady frame ω − s Im ν

do not vanish at leading order, so that the patterns generated in the wake of the front are not
stationary in either steady or comoving frame. This phenomenon is illustrated in the right-
hand image of Figure 1.3, where near the leading edge of the invasion front, patterns appear
to be slanted in the space-time plot, hence traveling and not stationary with ω − s Im ν 6= 0.

2.6 Numerical continuation of spreading speeds.

We solved (2.4) numerically in the regime κ < 1/2 using continuation from the limit fc = 0.
We continued the complex branchpoint but did not check the pinching condition during the
continuation procedure. We also did not check if other double roots crossed the imaginary
during the continuation. We did however find good agreement with direct numerical simu-
lations where comparisons were feasible. As expected, spreading speeds in direct numerical
simulations were slightly lower than predicted [10, 35].

We plotted results for several diffusion constants in Figure 2.1. The spreading speed is plotted
against fc = γ, setting fe = 1 − fc. Spreading speeds for different values of fc and fe are
obtained by scaling (fc, fe) 7→ r2(fc, fe) and s 7→ rs.

We comment on some of these numerical results. First, note that there is a cross-over, so
that spreading speeds increase with κ for small fc, the typical and expected behavior, but
spreading speeds decrease when κ is increased for larger values of fc. This is in agreement
with the predictions from (2.19), where slin decreases when κ� 1 increases, and from (2.11),
where slin increases when κ increases. Note however that the asymptotics in the Cahn-Hilliard
limit s ∼ µ3/2 are valid only in a very small range when κ is small. Spreading speeds change
little from κ = 0.01 to κ = 0.

The second plot in Figure 2.1 shows the selected wavenumber klin = ωlin/slin as a function
of fc. We compared this selected wavenumber to ktemp and kmax, which are characteristics
of the temporal dynamics rather than a spatial invasion process; see (1.8). As expected,
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Figure 2.1: Spreading speeds and selected wavenumbers as functions of fc, with fe = 1 − fc. On the
left, spreading speeds for κ = 0.01, 0.1, 0.2, 0.4 as a function of fc (dash length increasing with κ).
Spreading speeds are increasing in κ for small fc and decreasing for larger values of fc. Spreading
speeds vanish at fe = κfc, that is, fc = (1 + κ)−1. On the right, a plot of wavenumbers klin (dotted),
ktemp (dashed), and kmax (solid) over fc when κ = 0.1; see text for definitions. We also included klin

for κ = 0 (dotted-dashed); ktemp = kmax = +∞ in this limit.

kmax > klin: a temporally unstable wavenumber is selected by the invasion process. The
wavenumber selected by the invasion process is different from the wavenumber with fastest
temporal growth rate, klin 6= ktemp. In particular, temporal dynamics select homogeneous
states, ktemp = 0, for small fc, while invasion processes select patterns, klin > 0.

Another remarkable fact is that even in the limit κ = 0, where the linearization fails to select
wavenumbers (ktemp = kmax = +∞), 0 < klin < +∞: wavelengths are controlled by diffusion
in the c-component, diffusion in the e-component is not crucial. This is in stark contrast
with the expansions that we derived (for fixed κ > 0), which show blowup of leading-order
expansions of klin in the weak coupling and the Cahn-Hilliard limit.

3 Pushed fronts

Linear spreading speeds give a lower bound on actual spread of disturbances: any spreading
behavior with speed lower than the linear spreading speed would be linearly unstable (in the
sense that perturbations grow pointwise, or that the absolute spectrum is unstable). A much
more difficult question is to establish upper bounds. For this, one needs to control the effects
of nonlinearity and, in particular, discuss the possible appearance of pushed fronts [35]. There
can actually be multiple stable spreading mechanisms as illustrated in [2], where there are both
a stable pulled front and a stable pushed front, defined in Section 3.1, below. In the simplest
explicit example in [2], the two invasion mechanisms are distinguished by a topological winding
number of the solution profile in the regime between leading edge and wake. All this said, we
will not attempt to provide a complete picture of the invasion process, here, but focus on two
aspects: in this section, we exhibit a regime where pushed fronts exist and create homogeneous
states in their wake, and in the next section, we give a counting arguments for the existence
of coherent pulled fronts.

The strategy in this section is to perturb from the uncoupled case, γ = 0, where the system
decouples into the well-understood scalar Nagumo-equation for e and a linear equation for
the temperature field θ. We therefore start with a review of front propagation in the Nagumo

16



equation in Section 3.2. In particular, we highlight a transition from pushed to pulled fronts.
We then show how to obtain fronts in the full system using perturbative arguments in Section
3.3. For small diffusion constants κ < 1/2, the coupling generates a new instability mechanism
for pushed fronts, not present in the scalar Nagumo equation. In particular, pushed fronts exist
in a much smaller regime for infinitesimally small coupling than in the absence of coupling.

Some of the analysis here is reminiscent of [6], where a similar limit has been studied. As
pointed out in Remark 1.1, our situation is different since we are interested in fronts connecting
two unstable states.

3.1 Pushed fronts and strong decay

Many definitions of pushed front propagation assume in some way that the system is scalar. We
give a more general definition, here. Consider therefore the general reaction-diffusion system
(2.1) with dispersion relation d(λ, ν) for the linearization near an unstable state u = −u+.
For s > sabs, the absolute spectrum does not contain points λ ≥ 0. We can therefore order
roots ν of ds(0, ν) with increasing real part Re ν1 ≤ . . . ≤ Re νN < Re νN+1 ≤ . . . < Re ν2N .

We say that a traveling wave u(x− st) is a pushed front if |u(ξ)− u+| ≤ Ce(Re νN+δ)ξ, for all
ξ ≥ 0, for any δ > 0 and some C = C(δ) > 0.

In many cases, νN < νN+1 < 0, and νN < ν∗N+1 < 0, where ν∗N+1 is computed for λ = 0 and
s = slin. In other words, pushed fronts, as defined here, often decay faster than pulled fronts.

We will see later that pushed fronts typically occur in a robust fashion, for specific values of
the wave speed s; see Section 4.7. Without going into details, we note that our definition
here guarantees precisely that λ = 0 belongs to the extended point spectrum of the front:
in appropriately weighted spaces, the linearization at the front is Fredholm with index 0 and
possesses a one-dimensional kernel associated with translations of the front. This is in general
not true for pulled fronts or other fronts (without strong decay) with s 6= slin.

3.2 Pushed and pulled fronts in the Nagumo equation

We review front propagation in the Nagumo equation,

et = κexx + e(1− e)(e− a),

with 0 < a < 1/2. We are interested in front solutions e(x− st) connecting e = 1 at x = −∞
to e = a at x = +∞. Such fronts solve the traveling-wave ODE

eξ = w, wξ = −κ−1(sw + e(1− e)(e− a)). (3.1)

The dispersion relation d(λ, ν) = κν2 + sν + a(1 − a) − λ possesses roots νN < νN+1 < 0 at
λ = 0 for s > slin. Pushed fronts correspond to heteroclinic orbits that lie in the strong stable
manifold of e = a,w = 0.

For a > 1/3, such heteroclinic orbits do not exist. In other words, snl = slin, the linear
spreading speed, which is given by slin = 2

√
κa(1− a). In the traveling-wave ODE, this

linear spreading speed is characterized by a double eigenvalue at the equilibrium e = a. This
double eigenvalue corresponds, of course, to a double root at λ = 0 of the linear dispersion
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Figure 3.1: Phase portraits for (3.1) for a < 1/3, left, a = 1/3, middle, and a > 1/3, right. The speed
parameter s is chosen to be the pushed (left) and pulled (right) front speed, respectively. Both speeds
agree at a = 1/3.

relation. Since there are only two roots ν of the dispersion relation, the double root that
characterizes the linear spreading speed automatically satisfies the pinching condition in the
Nagumo system. In particular, crossing of this double root induced by decreasing s induces
an absolute instability in the comoving frame. For speeds below the linear spreading speed,
fronts possess oscillatory decay towards e = a.

For a < 1/3, heteroclinic orbits that connect to the strong stable manifold exist, so that
snl > slin. Shape and speed of the pushed front can be computed explicitly in this particular
cubic case,

epushed(ξ) =
a+ eνssξ

1 + eνssξ
, ξ = x− snlt, snl =

(a+ 1)
√

2κ
2

, νss = −1− a√
2κ

. (3.2)

For speeds just below snl, fronts are non-monotone, with a unique minimum less than a.

Figure 3.1 illustrates the transition from a < 1/3 to a > 1/3 in the phase portrait of (3.1).

In this scalar case, one can actually show that fronts are stable in an appropriately weighted
space if and only if they are monotone. In particular, pushed and pulled fronts are stable, and
snl happens to be the smallest speed so that there exists a monotone front solution.

3.3 Pushed fronts in the system with small γ

Given a front in the Nagumo equation, we aim to find a nearby front to the system for
small values of γ using perturbation analysis. Writing out the traveling-wave equation for
(c, e)(x− st), substituting θ = c+ κe for c, and integrating the θ-equation once, one finds

eξ = w

wξ = −κ−1 (sw + e(1− e)(e− a) + γ(θ − κe))
θξ = −s(θ + (1− κ)e−m). (3.3)

Here, the mass m arises as a constant of integration in the θ-equation. Notably, the mass
c+ e = θ+ (1−κ)e of any equilibrium is given by m, the integration constant, which confirms
the intuitive claim that traveling waves preserve mass.

In the following, we fix m = a, so that e = a, θ = κa, and e = 1 + O(γ), θ = a+ κ− 1 + O(γ)
are equilibria with w = 0. We refer to these equilibria as Ea and E1, respectively. Linearizing
at those equilibria and using that s > 0, we find that Ea is asymptotically stable and E1 is
hyperbolic with one-dimensional unstable manifold, which we denote by W u(1). At γ = 0,
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the eigenvalues of the linearization at Ea are given by νss < νs < 0, and −s. Here, the νj solve
κν2

j + sνj + a(1 − a) = 0. The following lemma gives the crucial link between the value of a
and the ordering of eigenvalues.

Lemma 3.1 Set s = (a + 1)
√
κ/2, the speed of the pushed Nagumo front (3.2). Then a <

a∗(κ) is equivalent to −s < νs.

Proof. The proof is a direct calculation.

In the regime a < a∗(κ), the equilibrium Ea therefore possesses a two-dimensional strong
stable manifold W ss(a), tangent to the eigenspaces corresponding to eigenvalues νss and −s,
for all γ small enough. We will see below that the Nagumo front induces a decay e−sξ in the
θ-component, so that the Nagumo pushed fronts are pushed fronts for the system only when
a < a∗ in the limit γ = 0.

Lemma 3.2 For 0 < a < a∗(κ) and m ∈ R fixed, there exists γ0 > 0 such that for all
0 ≤ γ < γ0, there is a pushed front, that is, a traveling wave solution in the intersection
W u(1)∩W ss(a) for a speed s = s(m, γ, a). The traveling wave and the speed depend smoothly
on the parameters m, γ, a.

Proof. First notice that for γ = 0, there exists a pushed front of the required form in the
e− w-subsystem. One readily checks that the unique bounded solution to the equation for θ
is given through

θ(ξ) = −se−sξ
∫ ξ

−∞
esτ ((1− κ)e(τ)−m)dτ = −s(1− κ)

∫ ∞
0

e−sσe(ξ − σ)dσ +m <∞. (3.4)

Since e converges exponentially as ξ → ∞, one finds that θ converges exponentially. Since
moreover e is monotone, it solves a scalar equation eξ = h̃(e). Together with the equation
for θ and the linearization at the asymptotic states, one finds that θ converges with rate e−sξ

as ξ → +∞, so that the corresponding heteroclinic is indeed contained in the strong stable
manifold of e = a. The roots of the dispersion relation are given by νss, νs,−s, and ν = 0. The
last root is induced by the conserved quantity and was eliminated from the traveling-wave
equation by integrating the θ-equation. Since max (νss,−s) < min (νs, 0), solutions in the
strong stable manifold of our traveling-wave systems are indeed pushed fronts according to
the definition in Section 3.1.

It remains to prove that this intersection is transverse in s. To see this, consider the lin-
earization at the heteroclinic, which is a Fredholm operator of index 0, with one-dimensional
kernel in BC0(R,R3), say. Due to the block-triangular structure of the system at γ = 0, the
kernel of the adjoint is supported in e−w-space, only, that is, the θ-component vanishes. The
e − w-component is in fact given by the kernel of the adjoint to the e − w-equation, only.
We conclude that the derivative of the system with respect to s is not contained in the range
of the linearization with respect to (θ, e, w) since this is not the case for the e-w subsystem.
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In consequence, the intersection is transverse and the heteroclinic persists, smoothly depend-
ing on system parameters with values in BC0(R,R3), and, by a simple boot strap, also in
BCk(R,R3) for any k.

The heteroclinic orbits found in the previous lemma are in fact spectrally stable pushed fronts.
Therefore, define the exponentially weighted spaces L2

η± ,

‖u‖2η± =
∫
ξ>0
|u(ξ)e−η+ξ|2dξ +

∫
ξ<0
|u(ξ)e−η−ξ|2dξ.

We will choose weights η± so that the essential spectrum of the linearization is contained in
the open left half plane. More precisely, we choose

η+ ∈ (max{−s, νss}, νs), η− ∈ (−s, 0), (3.5)

where we used the values
νss = −1− a√

2κ
< νs = − 2a√

2κ
.

Lemma 3.3 The fronts constructed in Lemma 3.2 are spectrally stable in L2
η−,η+ with η±

chosen as in (3.5), that is, the spectrum of the linearization is contained in the open left half
plane with the exception of an algebraically simple isolated eigenvalue located at the origin.

Proof. We start by locating the spectrum at γ = 0. Because of the tridiagonal form, it is
sufficient to locate the spectrum of the diagonal parts, Lθ and Le, where

Lθθ = θxx + sθx, Lee = κexx + sex + g′(e∗)e.

One readily verifies that the constant coefficient operator Lθ − λ is invertible with the given
choice of weights in Reλ ≥ 0. The essential spectrum of the operator Le is contained in
the open left half plane with the exception of an algebraically simple zero eigenvalue. As a
consequence, the assertion of the lemma is true for γ = 0.

Since the front itself and thereby the operators depend smoothly on γ, the spectrum changes
continuously with γ. This shows stability in the exponentially weighted spaces up to a possible
eigenvalue near the origin. Since the eigenvalue λ = 0 is algebraically simple at γ = 0, there
is a unique eigenvalue in a neighborhood of the origin for all γ close to zero. The derivative of
the front itself provides us with a candidate for an eigenfunction to a zero eigenvalue. We need
to show that this derivative actually belongs to L2

η−,η+ . Since the front lies in W u(a)∩W ss(1),
the derivative belongs to the intersection of the tangent spaces. In particular, the derivative
is bounded as ξ → −∞ and decays with exponential rate eηξ, η ≤ max{νss,−s}. With our
choice of exponential weights, the derivative therefore lies in L2

η−,η+ . This shows that the zero
eigenvalue is pinned at the origin for all γ and proofs the lemma.

Lemma 3.4 For a > a∗(κ), pushed fronts do not exist in the limit γ = 0.
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Proof. For κ < 1/2, a > a∗(κ), the strong stable manifold is tangent to eigenspaces
associated with νss and νs, since νs < −s. However, (3.4) does not possess solutions with decay
stronger than e−sξ. This can be readily seen by substituting the asymptotics e ∼ e∞eνsξ into
(3.4) and expanding the integral in e−sξ.

In the case κ > 1/2, a > a∗(κ) = 1/3, fronts in the Nagumo equation decay with rate
eνsξ. For monotone fronts, one again finds from (3.4) that θ decays with minimal rate eνξ,
ν = max{−νs,−s}. This proves the lemma.

We next exclude pushed fronts for small γ > 0.

Proposition 3.5 Fix κ > 0. For any δ > 0 there is γ0 > 0 so that there are no pushed fronts
that connect e = 1 + O(γ) to c = 0, e = a for 1/2 ≥ a > a∗(κ) + δ and 0 ≤ γ < γ0.

Proof. Pushed fronts lie in the intersection of the strong stable manifold of e = a, θ = κa

and the unstable manifold of another equilibrium. Suppose that we would have a sequence of
pushed fronts with γk → 0. Since one can easily exclude pushed fronts for large speeds, we can
assume that sk → s and ak → a0 > a∗(κ). We will show below that the associated sequence
of heteroclinic orbits is bounded. Continuity of the strong stable manifold then shows that an
appropriately shifted subsequence converges locally uniformly to a bounded trajectory in the
strong stable manifold of e = a, θ = κa in the limit. This trajectory would correspond to a
pushed front in the limit, which however was excluded in Lemma 3.4.

It remains to show that the set of bounded solutions to (3.3) is bounded, uniformly in γ0 > γ ≥
0, and m ∈ [m−,m+]. This follows readily from the maximum principle as follows. Applied to
the second-order equation for e, the maximum principle gives sup |e(ξ)| ≤ c1 sup |θ(ξ)|1/3 + c2.
From the equation for θ, we find sup |θ(ξ)| ≤ c3 sup |e(ξ)|+ c4. Combining these two, we find
that both e and θ are uniformly bounded as claimed.

4 Transient versus persistent pattern forming fronts

In the previous section, we have seen that for a < a∗(κ), fronts create a bulk state in their
wake. For larger a, front propagation is typically oscillatory. Our goal here is to give crude
counting arguments for the existence of oscillatory fronts. Our main results give criteria for
robustness of fronts as stated in Theorem 2.

We discuss the problem of finding traveling-wave solutions that describe the invasion problem
near an unstable equilibrium. We therefore look for solutions to the reaction-diffusion system
in a frame moving with the linear spreading-speed s = slin.

Our linear analysis from Section 2 predicts that in this comoving frame ξ = x− st, solutions
will resemble exponentials eλt+νξ, with λ = iωlin and ν = νlin, the solutions to ds(λ, ν) =
∂νds(λ, ν) = 0. Since ωlin 6= 0 for almost all γ, such solutions are not stationary in the
comoving frame but necessarily time-periodic, with frequency ωlin. We therefore look for
solutions to the reaction-diffusion system that are time-periodic in the frame ξ, with period
T = 2π/ωlin. We refer to such periodic solutions, with exponential decay at ξ = +∞ as
described above, as coherent invasion fronts. We emphasize that nonlinear effects may well
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create subharmonic coherent fronts, with temporal periods `T , 1 < ` ∈ Z. Most of our analysis
can be adapted to this case.

While the linear analysis predicts the growth of spatio-temporal oscillations, it is not clear if
this linear growth will eventually create a periodic pattern. In fact, all periodic patterns are
unstable as solutions on the real line; see Lemma 4.18, below. One may argue that the invasion
of an unstable state should “typically” generate a stable pattern, so that fronts that leave a
periodic pattern in their wake would be untypical. We will see however that this intuitive
reasoning needs to be refined.

Our strategy involves dimension counting similar to arguments involved in the study of defects
in oscillatory media [29]; see also [30]. We view coherent fronts as heteroclinic orbits and
count dimensions of stable and unstable manifolds. The key argument involves a homotopy of
stable and unstable eigenspaces during which changes in dimension can be related to resonant
unstable modes. Since this analysis is more widely applicable, we present the main definitions
and tools in a general setting of reaction-diffusion systems, before specializing to our specific
kinetics.

Outline: We first present counting arguments for traveling fronts in Section 4.1. The basic
idea is to define robustness in terms of dimensions of stable and unstable manifolds in the
traveling-wave equation. We motivate the arguments in the case D = id in Section 4.1.1, first.
We then present the basic homotopy argument in Section 4.1.2 and relate multiplicities to
group velocities in Section 4.1.3. We then generalize these concepts to modulated fronts, which
are time-periodic in a moving frame of reference. We motivate modulated fronts and interpret
them as heteroclinic orbits in Section 4.2 and introduce the basic definition of robustness in
Section 4.3. We outline the strategy for the computation of dimensions of stable and unstable
manifolds in the modulated traveling-wave equation in Sections 4.4 and 4.5, for spatially
homogeneous and for spatially periodic equilibria, respectively. Section 4.6 introduces the
concept of critical decay, slightly restricting the class of pulled fronts, and Section 4.7 briefly
digresses to counting arguments for pushed fronts. Finally, in Section 4.8, we apply these
concepts to our case of precipitation kinetics and prove our main result, Proposition 4.23,
from which Theorem 2 follows as a special case.

4.1 Counting traveling fronts

Consider a reaction-diffusion system

ut = Duxx + F (u) ∈ RN , (4.1)

with D +D∗ > 0 and equilibria F (u±) = 0. We are interested in the traveling-wave equation

uξ = v

vξ = −D−1(sv + F (u)),

which we write in the short form
wξ = Aw +G(w), (4.2)
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with

A =

(
0 1
0 −D−1s

)
, G(w) =

(
0

−D−1F (u)

)
.

This traveling-wave equation possesses the equilibria w± = (u±, 0). We are interested in
heteroclinic orbits connecting these two equilibria and would therefore like to determine
dimensions of stable and unstable manifolds. The key observation is that temporal stabil-
ity information from (4.1) determines the dimension of the stable manifold of w+ in (4.2).
The connection is provided by the dispersion relation, which determines temporal stabil-
ity. In fact, eigenvalues ν of the linearization at the equilibrium (u, v) = (u+, 0) solve
ds(0, ν) = det (Dν2 + sν + F ′(u+)) = 0.

4.1.1 The case D = id.

For D = id, one can find eigenvalues ν from eigenvalues λj of F ′(u+) by solving ν2+sν+λj = 0,
with solutions ν±j . Recall that throughout we assume s > 0. One then sees that ±Re ν±j > 0
when Reλj < (Imλj/s)2, and that Re ν±j < 0 when Reλj > (Imλj/s)2. In other words, a
simple eigenvalue ν crosses into the left half plane when λj increases across the curve Reλ =
(Imλ/s)2. If we assume that the spectrum of F ′(u+) consists of eigenvalues λ1 > 0 > Reλj ,
j ≤ 2 ≤ N , there are precisely N − 1 spatial eigenvalues ν with positive real part and N + 1
spatial eigenvalues with negative real part in the traveling-wave equation.

If on the other hand we assume that u− is stable, that is, Reλj < 0 for all λj in the spectrum
of F ′(u−), we find that the linearization at w− = (u−, 0) possesses precisely N stable and N

unstable eigenvalues ν. As a consequence, intersections between the N -dimensional unstable
manifold of w− and the N + 1-dimensional stable manifold of w+ can be transverse, along the
necessarily at least one-dimensional intersection given by an orbit w(ξ). We then say that the
traveling wave is robust by dimension counting. In particular, a traveling wave traveling at
the linear spreading speed can be given by a robust heteroclinic orbit in this case. We refer
to Definition 4.4 for a formal definition of robustness.

On the other hand, if u− is temporally unstable with respect to a simple real eigenvalue, too,
then the unstable manifold of w− in the traveling-wave equation is N − 1-dimensional, and
intersections with the N + 1-dimensional stable manifold of w+ cannot be transverse for a
fixed wave speed s. We conclude that invasion at the linear spreading speed will typically not
select an unstable state u−.

Interestingly, when we assume that u− is hyperbolic, unstable precisely with respect to a com-
plex conjugate pair of eigenvalues {λ, λ̄}, with large enough imaginary part Reλ < (Imλ/s)2,
we find that two of the associated roots ν possess positive real part and two possess negative
real part. As a consequence, the dimension counting argument predicts that at the linear
spreading speed one can have a robust traveling wave that leaves behind an unstable state —
provided the instability is oscillatory with large enough frequency.

4.1.2 The general case — λ-homotopies.

The reasoning above was oversimplified since we assumed that D was a scalar, which allowed
us to make the connection between spatial rates ν and temporal rates λ explicit. Slightly
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generalizing, our arguments apply whenever D and F ′ are simultaneously diagonalizable.
Unfortunately, this still excludes most interesting cases, for instance the case of precipitation
kinetics (1.3) which is of interest here.

In the general case when D is a positive matrix, for instance D = diag (dj) > 0, it is convenient
to count dimensions using a homotopy argument.

We introduce some convenient terminology, first. We refer to the number of unstable eigenval-
ues (Re ν > 0) of the linearization at an equilibrium of the traveling-wave equation, counted
with multiplicity, as the Morse index i. We call i − N the relative Morse index. As we saw
above, stable equilibria have relative Morse index 0 in the case D = id. Equilibria that are
unstable with respect to one real unstable eigenvalue possess relative Morse index −1. Con-
necting orbits where the (relative) Morse index decreases by one from −∞ to +∞ are robust
by dimension counting.

Recall that the dispersion relation is obtained through the ansatz u ∼ eλt+νx, d(λ, ν) =
det (Dν2 + F ′ − λ), where F ′ is evaluated at either u+ or u−. In the comoving frame, the
dispersion relation is ds(λ, ν) = d(λ − sν, ν). Also, recall that λ is in the essential spectrum
when d(λ, ik) = 0 for some k ∈ R. Eigenvalues ν of the traveling-wave equation are roots of
ds(0, ν), counted with multiplicity. The main idea is to count roots of ds(0, ν) = 0 in Re ν > 0
by tracking how roots cross iR during a homotopy from λ = +∞ to λ = 0. At λ ∼ +∞, one
easily finds that roots solve djν2 = λ at leading order, so that there are precisely N roots with
positive real part — the relative Morse index is 0.

In order to determine the relative Morse index at λ = 0, we need to locate values of λ during
the homotopy where the relative Morse index changes. This happens precisely when spatial
eigenvalues are located on the imaginary axis, that is, when ds(λ, ik) = 0 for some k ∈ R, that
is, on curves of essential spectrum. This motivates the following definition.

Definition 4.1 (Resonant modes — traveling waves) We say that the wavenumber k

corresponds to a resonant neutral mode (0, ik) if ds(0, ik) = d(−sik, ik) = 0. Similarly, we
define resonant growth modes (λ, ik) ∈ R+ × iR through the condition ds(λ, ik) = 0. In both
cases, we call k a resonant spatial wavenumber.

We say that a resonant growth mode (λ, ik) is temporally simple when ∂λds(λ, ik) 6= 0.

We define the spatial multiplicity of resonant modes (λ, ik) as the sum of the orders of the
root ν = ik of ds(λ, ·). The total spatial multiplicity of λ is the sum over all multiplicities of
resonant spatial wavenumbers associated with λ.

The concept of resonance will become somewhat clearer later when we study modulated trav-
eling waves. For now, resonance refers to temporal behavior of a mode that is in resonance
with the temporal behavior of the wave: since the traveling waves under consideration are
stationary in a comoving frame, we require resonant modes to be stationary (or to possess
real exponential growth) in a comoving frame.
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4.1.3 Crossing numbers

With any simple resonant mode, we can associate a generalized group velocity sg = −Re dλ
dν =

Re(∂νds/∂λds). The term group velocity is justified by the fact that for λ = iω, ν = −ik ∈ iR,
the expression reduces to the classical expression sg = dω

dk . Since ∂νds = −s∂λd+ ∂νd, we find
the typical Galilei transformation of group velocities scog in the comoving and sstg in the steady
frame (s = 0), scog = sstg − s.

Lemma 4.2 Assume that neutral and growing modes are simple and have nonvanishing group
velocities sg in the comoving frame. Denote by m± the total multiplicities corresponding to
positive and negative group velocities. Then the relative Morse index of u in the traveling-wave
equation is m+ −m−.

Proof. We follow the relative Morse index in a homotopy from λ = +∞ to λ = 0. At
λ = +∞, the relative Morse index is zero. The relative Morse index can change only when
λ = λ∗, one of finitely many resonant growth modes. For such a λ∗, there are m∗ < ∞
roots νj on the imaginary axis. Since we assumed that the resonant modes were simple,
∂λds(λ∗, νj) 6= 0, one readily computes that

sign
d Re ν

dλ
= −sign Re

∂λds
∂νds

= −sign Re
∂νds
∂λds

= −sign sg.

As a consequence, the relative Morse index is reduced by the total multiplicity `− of the

λ

νν ν ν

ν

ds(λ,ik)=0

Figure 4.1: The figure illustrates the change of the relative Morse index from 0 to -1 as λ is decreased
from λ = +∞ to λ = 0, crossing a curve of resonant modes ds(λ, ik) = 0. Shown is the complex plane
λ ∈ C with insets representing the locations of roots ν ∈ C to ds(λ, ·) = 0 depending on λ ∈ C. Lemma
4.2 relates the direction of crossing to group velocities.

resonant growth modes with negative group velocities and increased by the total multiplicity
`+ of the resonant growth modes with positive group velocities when λ is decreased through all
resonant growth modes; see also Figure 4.1 for an illustration. A similar argument applies to
neutral modes. For instance, neutral modes with negative group velocity satisfy ∂λ Re ν > 0.
They therefore lie in Re ν > 0 for λ > 0 and hence reduce the Morse index by their total
multiplicity, since the Morse index only counts roots with Re ν > 0.

Remark 4.3 (Multiple resonant modes) One can define and compute crossing numbers
of resonant modes also in the case when ∂λds(λ, ik) = 0 or when cg = 0. Of course, crossing

25



numbers are implicitly defined through the change in Morse index, which is equivalent to the
signed number of roots ν that cross the imaginary axis as λ is decreased. Somewhat more
explicitly, one can approximate dεs := ds + ε, ε ∈ C. Viewing dεs = 0 as two real equations in
the real variables λ ∈ R and k = Im ν ∈ R, Sard’s theorem gives us a sequence of εj → 0 so
that both ∂λd

ε
s and ∂kd

ε
s do not vanish at roots dεs = 0. In particular, all resonant modes are

simple and group velocities do not vanish. Since Morse indices stabilize as εj → 0 outside of
resonant modes, this allows us to compute relative Morse indices from group velocities for the
perturbed dispersion relation, provided that εj is sufficiently small.

4.2 Modulated fronts as a dynamical system

As pointed out in the beginning of this section, we are interested in traveling waves that are
time-periodic in a comoving frame. In this section, we therefore make precise this notion and
show how to adapt the above dimension counting arguments. We refer to [22, 20, 28, 12, 29, 30]
for background on this type of equation.

Consider a modulated traveling-wave solution u = u(x − st, ωt), u(ξ, τ) = u(ξ, τ + 2π) to
the reaction-diffusion system (4.1). This particular solution to a reaction-diffusion system
solves a parabolic equation with time-periodic boundary conditions, which in many respects
should be considered as a degenerate elliptic boundary-value problem; see for instance [29].
We nevertheless rewrite the equation for u as a first-order system in the spatial variable ξ,
setting w = (u, uξ)(ξ, τ), with τ = ωt ∈ S1 = R/2πZ, and obtain the modulated traveling-wave
equation,

wξ = Aw +G(w). (4.3)

Here,

A =

(
0 1

D−1ω∂τ −D−1s

)
, G(w) =

(
0

F (u)

)
.

We regard this equation as a dynamical system on H1(S1,RN ) × H1/2(S1,RN ), with an
underlying rotational symmetry acting through the temporal shift w(ξ, τ) 7→ w(ξ, τ + ϕ),
ϕ ∈ S1. Note that, within the fixed point space Fix(S1) lie solutions that are independent of
τ , that is, pure traveling wave solutions u = u(x− ct).

Spatially homogeneous equilibria of the reaction-diffusion system correspond to equilibria of
this modulated traveling-wave equation contained in Fix(S1). Spatially periodic, temporally
steady solutions correspond to periodic orbits, or, more precisely, relative equilibria with
respect to the S1-symmetry: w(ξ, τ) = w∗(x) = w∗(ξ + s

ω τ). Note that necessarily w∗(x) =
w∗(x + L) with wavelength L = 2π/k, k = ω

s . Somewhat more generally, we could consider
spatio-temporally periodic wave trains, w∗(ξ− τ

k ) with period 2π
k and speed ω

k . If k 6= −ω
s , those

wave trains are moving in the steady frame with speed ω
k + s. The modulated traveling waves

that we are interested in connect the spatially homogeneous equilibrium w+ = w(τ) ≡ (u+, 0)T

at ξ = +∞ with a homogeneous equilibrium w−(τ) = (u−, 0), or with a pattern w−(ξ, τ) =
w∗(ξ+ s

ω τ). In other words, we are interested in intersections of the stable manifold of w+ and
the unstable manifold of w−. One can show that under (normal) hyperbolicity assumptions,
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these stable and unstable manifolds exist and are smooth, at least locally near a solution to
the nonlinear problem [23, 29].

4.3 Robustness — the role of Fredholm and Morse indices

Our strategy for addressing the question of robustness of a given time-periodic invasion front is
as follows. Suppose that we are given a fixed modulated traveling wave. Near such a front, we
construct center-stable and center-unstable manifolds and ask if the intersection is transverse.
Using smooth dependence of these manifolds on parameters, we can conclude robustness when
the intersection is transverse, that is, the sum of tangent spaces spans the ambient phase space.
To make this more precise, define the injection map near a modulated wave w,

ι : Tw(0)W
cs
+ × Tw(0)W

cu
− 7→ Y, (wcs, wcu) 7→ wcs − wcu.

Transversality is equivalent to surjectivity of ι. Since modulated waves come in families, ι
necessarily possesses a kernel. Clearly, ξ- and τ -derivatives contribute to the kernel.We define
the linear multiplicity ilm as the minimal dimension of the kernel. For generic traveling-
wave problems, this dimension is one, with kernel spanned by the derivative of the traveling
wave. For generic modulated wave problems, this dimension is 2, since the time-derivative
contributes to the kernel, too. In our case of precipitation kinetics, it is 3: robust modulated
waves come in families parameterized by the mass m, position ξ, and phase τ ; see Lemma
4.21 and Remark 4.22, below. The following definition formalizes this robustness concept.

Definition 4.4 We say that a modulated wave is robust by dimension counting if ι is Fred-
holm with index at least ilm. In other words, we require that ι may be onto after taking into
account the necessary multiplicities of waves.

Similarly to the finite-dimensional case, one can determine the Fredholm index of ι from
dimensions of stable and unstable manifolds, although these are both infinite-dimensional.
One therefore defines relative Morse indices at the asymptotic state w± by comparing unstable
eigenspaces to a fixed reference subspace. A convenient choice, which also normalizes the
relative Morse index, is the unstable subspace of the system with f ′ = −id. One compares
dimensions between subspaces in a straightforward fashion by computing the Fredholm index
of the spectral projection, restricted to the reference subspaces; we refer to [30] for more details
and alternative characterizations of relative Morse indices. All these (equivalent) definitions
allow for the computation of relative Morse indices using crossing numbers as in Section 4.1.3.

Proposition 4.5 [28, 30] Suppose that the relative Morse indices of the asymptotic states are
given by i± and that the total multiplicity of neutral modes is n±. Then the map ι is Fredholm
with index i(ι) = i−− i+ +n−. In particular, we have robustness by dimension counting if the
multiplicity index imult is non-negative,

imult := i− + n− − i+ − ilm ≥ 0.

In the following, we compute relative Morse indices using the same homotopies as in the finite-
dimensional case, Section 4.1. Since crossing numbers are finite, one obtains relative Morse
indices by simple bordering lemmas for Fredholm operators; see again [30].
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4.4 Computing relative Morse indices — homogeneous equilibria

We consider spatially homogeneous equilibria, first. A short direct calculation shows that
the linearization of the modulated traveling-wave ODE (4.3) possesses solutions of the form
w0eνξ+i`τ , w0 ∈ R2N , when ν, ` solve

ds(i`ω, ν) = d0(i`ω − sν, ν) = 0, (4.4)

where ds is the dispersion relation associated with the linearization at the homogeneous equi-
librium, ds(λ, ν) = det (Dν2 + sν + F ′ − λ). In analogy to the definition in Section 4.1, we
define resonant modes as follows.

Definition 4.6 (Resonant modes — modulated traveling waves) We say that the wave-
number k corresponds to a resonant neutral mode (i`ω, ik), ` ∈ Z, k ∈ R, if ds(i`ω, ik) =
d0(i`ω − sik, ik) = 0. Similarly, we define resonant growth modes (λ + i`ω, ik), λ > 0,
` ∈ Z, k ∈ R, through the condition ds(λ + i`ω, ik) = 0. In both cases, we call k a resonant
spatial wavenumber and ` the temporal harmonic.

We say that a resonant growth mode (λ+i`ω, ik) is temporally simple when ∂λds(λ+i`ω, ik) 6=
0.

We define the spatial multiplicity of simple resonant modes (λ + i`ω, ik) as the sum of the
orders of the root ν = ik of ds(λ+ i`ω, ·). The total spatial multiplicity of λ is the sum over
all multiplicities of resonant spatial wavenumbers and temporal harmonics associated with λ.

Note that resonance now refers to linear growth modes that oscillate with the same tempo-
ral period as the primary modulated traveling wave, or, in other words, they are (higher)
harmonics to the traveling-wave frequency.

Using [30], one can now prove Lemma 4.2 for the modulated-wave equation. The proof is the
same as in the case of the traveling-wave equation and will be omitted.

Lemma 4.7 Assume that neutral and growing modes are simple and have nonvanishing group
velocity sg. Denote by m± the total multiplicities corresponding to positive and negative group
velocities. Then the relative Morse index of u in the traveling-wave equation is m+ −m−.

4.5 Computing relative Morse indices — periodic patterns

One can treat the linearization at periodic patterns in a similar fashion. Consider the lin-
earization at a time-periodic traveling wave w∗(k∗ξ − ωt), w∗(0) = w∗(2π), with k∗ 6= 0, and
phase speed sp = ω

k∗
in the frame moving with speed s. One can show [29] that solutions to

the linearized equations can be written in the form w0(k∗ξ − ωt)eλt+νξ, with a 2π-periodic
function w0. Substituting this ansatz into the parabolic equation, one obtains a linear elliptic
boundary-value problem for w0 = (u0, u0,ξ),

[D(k∗∂y+ν)2 +s(k∗∂y+ν)+F ′(u∗(y))+ω∂y−λ]u0 = 0, u0(0) = u0(2π), u′0(0) = u′0(2π),
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or,

[D(k∗∂y+ν)2+ s̃(k∗∂y+ν)+F ′(u∗(y))−λ̃]u0 = 0, u0(0) = u0(2π), u′0(0) = u′0(2π), (4.5)

where s̃ = s+sp = ω̃
k∗

and ω̃ = k∗s̃ are the speed and frequency of the wave train in the steady
frame, and λ̃ = λ+ ω

k∗
ν is the shifted eigenvalue. Of course, ω̃ = 0 for standing patterns u∗(x).

Solutions to this boundary-value problem exist if the period-map to the associated first-order
ODE possesses a non-trivial fixed point. Therefore, consider the flow to the non-autonomous
ODE

k∗uy = v

k∗vy = −D−1(s̃v + F ′(u∗(y))− λ̃), (4.6)

with associated period map Φλ̃(u(0), v(0)) = (u(2π), v(2π)). Solutions to the boundary-value
problem (4.5) correspond to Floquet exponents of Φλ̃, that is, to roots of

ds(λ, ν) := d0(λ− spν, ν), d0(λ̃, ν) = det (Φλ̃ − e2πν/k∗). (4.7)

Note that we need to restrict to Im ν ∈ [0, ik∗), thus eliminating the Floquet symmetry, when
we count multiplicities of roots.

With this definition of the dispersion relation ds(λ, ν), one can define resonant modes as in
Definition 4.6, while restricting the allowed set of ν to 0 ≤ Im ν < ik∗, and prove Lemma 4.7.

We also consider the special case where the wave train is stationary in a steady frame, u∗(ξ−
st) = u∗(x) = u∗(−x), sp = −s, s̃ = 0. In this case, the linearized ODE (4.6) is reversible with
respect to the reverser R(u, v) = (u,−v) in the following sense. We have that Φλ = RΦ−1

λ R,
so that det Φλ = 1 and

det (Φλ − ρ) = det (ρΦλ)det (Φ−1
λ − ρ

−1) = ρ2Ndet (Φλ − ρ−1).

Thereby, the function d̃(λ, ρ) := ρ−Ndet (Φλ − ρ) satisfies d̃(λ, ρ) = d̃(λ, ρ−1).

In summary, the modified dispersion relation

d̃0(λ, ν) := e−Nπν/k∗d0(λ, ν)

satisfies d̃0(λ, ν) = d̃0(λ,−ν), can be written as a real analytic function d̂(λ, ν2), and possesses
the same roots as d0. For λ real and ν purely imaginary, ∂λd̃0 is therefore real, and ∂ν d̃0

purely imaginary. This proves the following lemma.

Lemma 4.8 Suppose that u∗(x) = u∗(−x) is a spatially periodic, even function. Then group
velocities for real eigenvalues λ ∈ R and purely imaginary ν vanish in the steady frame. In
particular, the relative Morse index is given by −m−, the number of resonant neutral and
growing modes, provided that the spectrum is real and simple, that is, when d0(λ, ik) 6= 0 for
λ 6∈ R, and ∂λd0(λ, ik) 6= 0 whenever d0(λ, ik) = 0.
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4.6 Pulled fronts with critical decay — Morse indices and the absolute spectrum

The linear analysis near the unstable state predicts spatial decay of fronts with asymptotics
ξeνlinξ for ξ →∞. Our computations of Morse indices allow for fronts with decay slower than
this rate. The following definition restricts the class of fronts to fronts with this critical linear
decay rate.

Definition 4.9 (Pulled front with critical decay) We say that u(x − st, ωt) is a pulled
front with critical decay if u(ξ, τ) = u(ξ, τ + 2π), s = slin, ω = ωlin, and if u possesses critical
asymptotics ξeνlinξ: we require that there exists u∞ ∈ H1(S1,RN ) and δ > 0 such that in
H1(S1,RN ),

eδξ
(
u(ξ, ·)− ξeνlinξu∞(·)

)
→ 0.

In the following, we show that one can associate a relative Morse index to the type of decay
prescribed in Definition 4.9. Recall the construction of the dispersion relation ds in (4.4).

Lemma 4.10 Suppose νlin and ν̄lin are double roots of the dispersion relation ds(i`ω, ν) for
` = ±1, s = slin, ω = ωlin. Moreover, assume that there are no other roots with Re ν =
Re νlin for any |`| 6= 1. Then there exists a smooth strong stable manifold of solutions with
critical asymptotic decay. Finally, let is be the number of roots (counted with multiplicity) in
{Re νlin < Re ν ≤ 0}. Then the relative Morse index of the tangent space of this strong stable
manifold is i+ + is.

Proof. The proof is a consequence of the existence of strong stable manifolds [23, 30, 29],
and the straightforward dimension counting.

Definition 4.11 (Morse index of critical decay) We refer to the relative Morse index of
the strong stable manifold as iss = i+ + is.

The assumptions in Lemma 4.10 are typical in the sense that one does not assume the linear
spreading speed to be caused by more modes with critical decay than necessary. On the other
hand, the lemma shows that the dimension counting for pulled fronts with critical decay may
be different than the one for pulled fronts in general, due to the presence of spatial eigenvalues
with weaker decay than Re νlin.

In order to calculate iss under typical conditions, we need to recall the characterization of the
absolute spectrum, given in Section 2.2. We defined the absolute spectrum Σabs as the set of λ
such that the roots of ds(λ, ν) satisfy Re νN = Re νN+1 when all 2N roots are ordered by real
part Re νj ≤ Re νj+1. The absolute spreading speed sabs was then defined as the largest s so
that the absolute spectrum intersects the closed right half plane. Of course, for s = sabs, there
exists a finite collection Σabs ∩ iR of values of λ ∈ iR in the absolute spectrum. If νN = νN+1

at such a λ, then it corresponds to a double root with pinching condition. We refer to the
subset Σabs ∩ {Reλ ≥ 0} where νN 6= νN+1 as remnant modes; see [27, 26].
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Definition 4.12 (Simple spreading via pointwise growth) We say spreading is caused
by simple pointwise growth if for s = sabs

(i) Σabs ∩ iR consists of λ = 0 or of λ = ±iω. In both cases, we require that λ is a simple
double root for a unique value ν: ∂νd = 0, ∂λd 6= 0, ∂ννd 6= 0.

(ii) There are no remnant modes.

In particular, sabs = slin.

Remark 4.13 We suspect that simple spreading via pointwise growth holds for almost all val-
ues of γ and a in our example. In particular, we suspect that there are no remnant instabilities,
that is, (ii) holds for all parameter values. Condition (i) is a generic condition and should
be satisfied in most examples. The calculations in Section 2 show that simple spreading via
pointwise growth holds in the weak-coupling and in the Cahn-Hilliard regime.

Lemma 4.14 Assume simple spreading via pointwise growth. Then iss = −2 (ωlin 6= 0) or
iss = −1 (ωlin = 0).

Proof. A homotopy from λ = +∞ shows that we can always separate by real part roots
coming from ν = +∞ and roots coming from ν = −∞, until λ ∈ iR, since otherwise we would
cross a curve of absolute spectrum. At λ ∈ Σabs∩ iR, precisely two of those roots meet at νlin,
therefore decreasing the relative number of roots with Re ν > Re νlin by one. It remains to
show that we have Re νlin ≤ 0. This can be readily established by following the double root
λdr of the dispersion relation in s. Differentiating the dispersion relation, one readily finds
that ∂sλdr = ν. Since s was maximal with the property that Reλdr > 0, we can conclude that
∂sλdr ≤ 0 and therefore Re νlin ≤ 0. This proves the lemma.

Corollary 4.15 (Robustness of invasion fronts with critical decay) Assume simple
spreading via pointwise growth in a generic reaction-diffusion system, that is, ilm = 1 for
steady (ωlin = 0) and ilm = 2 for oscillatory (ωlin = 0) propagation. Then pulled fronts with
critical decay are robust by dimension counting if the pattern in the wake does not possess
resonant unstable or neutral modes except for possibly a single neutral mode associated with
the translation of the pattern. .

This concept can be further generalized including possible resonant unstable modes such that
the multiplicity of modes with cg exceeds the multiplicity of modes with ccg < 0.

One can also generalize to harmonic invasion front, where the linear frequency ωlinis an integer
multiple of the frequency of the invasion front. Resonant unstable modes are then defined
relative to this frequency of the invasion front.

4.7 Counting pushed fronts

The counting arguments given above can be easily adapted to the study of pushed fronts as
defined in Section 3.1. According to the definition, there, pushed fronts lie in the manifold
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associated with the spatial eigenvalues ν1, . . . , νN . When νN < 0, this manifold corresponds
to a strong stable manifold with Morse index 0. As a consequence, the linearization at pushed
fronts that leave behind a state without neutral or growing resonant modes is Fredholm with
index 0. The one-dimensional kernel generated by translations of the front profile is compen-
sated for by the parameter s. In other words, pushed fronts are robust by dimension counting.
Similarly, one can show that modulated pushed fronts are robust by dimension counting.
Again, the relative Morse index of the strong stable subspace is 0, so that the linearization is
Fredholm with index 0. The two-dimensional kernel spanned by translation and time-shift is
compensated for by the free parameters s and ω.

All these counting arguments fail when ReνN > 0. For simple spreading via pointwise growth,
we have Re νlin < 0. Since the branch of absolute spectrum that ends in the associated double
root points into the stable half plane, Re νN < Re νlin < Re νN+1 for s & slin. Even in the
simple example with variational structure that we have studied here, it appears difficult to
prove that Re νN < 0 for all s > slin.

In a similar vein, it is difficult to show that Re νN < Re νlin, so that pushed fronts are actually
steeper than the linear prediction. In simple cases, one can verify this property explicitly [35],
but general criteria do not appear to be available.

4.8 The case of precipitation kinetics

We apply the results from the previous sections to the case of precipitation kinetics. We set
u = (c, e)T , D = diag (1, κ), and F = f(c, e)(−1, 1)T . We find the modulated traveling-wave
equation,

wξ = Aw + F (w). (4.8)

Here,

A =


0 0 1 0
0 0 0 1
ω∂τ 0 −s 0

0 κ−1ω∂τ 0 −κ−1s

 , F (w) =


0
0

f(c, e)
−κ−1f(c, e)

 .

We are interested in heteroclinic connections from the (temporally) unstable equilibrium
w+ = (c+, e+, 0, 0) with c+ = 0, e+ = a to a spatially homogeneous or periodic state
w− = (c−, e−, c−,ξ, e−,ξ).

We shall first exploit the gradient structure (1.4)–(1.5) in order to show that there are no com-
plex temporal eigenvalues λ to the linearization at a spatially periodic equilibrium (c∗, e∗)(x).

Lemma 4.16 Assume γ > 0 and 0 < κ < 1. Let d0(λ, ν) be the dispersion relation for
the linearization as defined in (4.4) for spatially homogeneous and (4.7) for spatially periodic
equilibria. Then d0(λ, ik) 6= 0 when λ 6∈ R.

Proof. We consider the case of a spatially periodic equilibrium of minimal period L, only,
which comprises the case of spatially homogeneous equilibria.

First, note that d0(λ0, ik0) = 0 for some λ0 with Imλ0 6= 0 implies that we can find λ1 close to
λ0 with Imλ1 6= 0 and k1 = (2π/L)(p/q), p/q ∈ Q such that d(λ1, ik1) 6= 0, by analyticity of d0
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and Rouché’s theorem. In particular, this implies that we would find a complex eigenvalue of
the linearization considered on a finite domain x ∈ [0, qL] with periodic boundary conditions.

Next, notice that the linearization can be written in the form L = −MA, where M was
defined in (1.5) and A is the second derivative of the energy W , defined in (1.4). One easily
verifies that L possesses a codimension-one invariant subspace X0 of L2([0, qL],R2), defined
by
∫

(c+ e) = 0, that is, L is densely defined on X0 and maps into X0. Moreover, L possesses
compact resolvent and pure point spectrum as an elliptic operator on a bounded domain. We
claim that L, restricted to this subspace does not possess complex eigenvalues.

We endow X0 with the (formal) scalar product 〈u, v〉 := (M−1u, v)L2 . One easily verifies that
this scalar product is well defined on X0, and that

〈Lu, v〉 = −(Au, v)L2 = −(u,Av)L2 = 〈u,Lv〉,

whenever u, v belong to the domain of L in X0. Complexifying the scalar product, one now
readily precludes complex eigenvalues in X0 and then in L2.

Lemma 4.17 The relative Morse index i of a spinodal unstable homogeneous state is

i = −1− 2[kmax/klin] ≥ 3.

The relative Morse index for a homogeneous unstable homogeneous state is

i = −2− 2[kmax/klin] ≥ 4.

Here, [a] = max{j ∈ Z, j ≤ a}, kmax is the maximal unstable wavenumber, and klin = ωlin/slin
is the wavenumber selected by the instability; see Section 2.6 for definitions. Spinodal refers
to region (ii) in Figure 1.1, homogeneous to regions (iii) and (iv).

Proof. Resonant modes satisfy d(λ + iω` − sik, ik) = 0 for some real λ ≥ 0 and ` ∈ Z.
By Lemma 4.16, k = `ω/s = `ksel. Nonnegative modes λ(k) ≥ 0 exist for k = 0 (neutral)
and |k| ≤ klim. All modes are simple. Resonant neutral or growth modes therefore exist for
any |`| ≤ klim/ksel. The count now follows from Lemma 4.8, provided that we can show that
klim ≥ ksel. For this, note that λ = iω yields a double root of ds with pinching condition. In
particular, there is a root ν of d(λ − sν, ν) that crosses the imaginary axis as Reλ = iω + η,
η → +∞. This gives the desired root d(iω + η0 − sν0, ν0) with ν0 ∈ iR.

Of course, the lemma also gives information on the Morse index of spatially homogeneous
equilibria w− in the wake of invasion fronts.

From the plot of kmax and klin in Figure 2.1, one sees that the maximal allowed wavenumber
is larger than wavenumbers selected by the invasion process and wavenumbers with maximal
temporal growth. In the Cahn-Hilliard limit γ → 1/(κ+1), one can check that 1 < kmax/ksel <

2. The second resonant mode becomes relevant, and thus the Morse index changes around
γ = 0.7 for κ = 0.1.

We next investigate the relative Morse index of spatially periodic patterns. Let (e, c)(x) be
a periodic pattern with minimal period L, wavenumber k∗ = 2π/L, so that ωlin = slink∗. In
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other words, we consider periodic patterns with the selected wavenumber, excluding harmonics
k∗ = jklin, for now. Moreover, we say that the periodic pattern is linearly stable if there are
no positive eigenvalues to the linearization when considered on functions with period L, and
if the linearization possesses a double eigenvalue λ = 0. We borrow the following lemma from
[25]; see also [18, 11] for more comprehensive (but slightly different) stability information.

Lemma 4.18 [25] Given a periodic pattern with minimal period L, there is a family of pat-
terns parameterized by µ = c + κe, of period L, and mass m(µ). We have the following
information on stability.

(i) All periodic patterns are unstable with respect to essential spectrum when considered on
x ∈ R.

(ii) Periodic patterns possess a double zero eigenvalue when considered with periodic bound-
ary conditions, provided m′(µ) 6= 0. The zero eigenvalue is triple if m′(µ) = 0.

(iii) Periodic patterns possess Morse index i = 2j−1 for m′(µ) > 0 and i = 2j for m′(µ) ≤ 0
when considered with jL-periodic boundary conditions.

Lemma 4.19 Given a linear spreading speed slin and frequency ωlin, consider a spatially pe-
riodic pattern with minimal period L = 2π/klin, klin = ωlin/slin, and with m′(µ) 6= 0. Then
the relative Morse index of this pattern in the modulated traveling-wave equation is −2 when
m′(µ) < 0, and −3 when m′(µ) > 0. The zero-eigenvalue of the pattern is geometrically double
in both cases.

Proof. The proof is similar to the proof of Lemma 4.17. Since the spectrum is real in
a steady frame, we have that k = `ω/s = `ksel. Since we assumed that the period of the
periodic pattern equals the selected wavenumber, and k ∈ [0, 2π/L) by its definition as a
spatial Floquet exponent, we conclude that k = 0 and resonant growth modes are necessarily
of the same period as the periodic pattern. Counting unstable eigenvalues and using Lemmas
4.8 and 4.18,we immediately obtain the formulas claimed in the lemma, with the caveat that
Lemma 4.8 only applies to simple resonant modes. It therefore remains to show that both
eigenvalues at 0 actually decrease the relative Morse index. We therefore expand the dispersion
relation d(λ, ν) = d11λ

2+d22ν
2+O(|ν|4+|ν2λ|+|λ|3). We claim that d22 = 0. This would give

that ds(λ, ν) = d11(λ− sν)2 + O((|λ|+ |ν|)3), and therefore λ = sν+ O(ν2), the desired result.
In order to see that d22 = 0, notice that at λ = 0, the multiplicity of the root ν counts the
multiplicity of the zero Floquet exponent of the periodic pattern in the steady-state ODE. This
zero Floquet exponent is geometrically double since translation and derivative with respect
to the conserved quantity provide eigenvectors. Reversibility gives at least two generalized
eigenvectors, so that the multiplicity is at least four. This proves the lemma.

Remark 4.20 A few remarks on the assumptions in the lemma are in order.

(i) Stable periodic patterns exist in many cases. One can see this for instance by minimizing
the energy (1.4) on a subspace with fixed mass of periodic functions. When spatially
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homogeneous equilibria with the given mass are all unstable, the minimizer is a spatially
periodic pattern. In particular, stable periodic patterns always exist when γ > 1/4.

(ii) On the other hand, there do not exist any stable periodic patterns of bounded period for
small γ. This can be readily seen by perturbing from the γ = 0 limit, where m′(µ) = 1 >
0: all periodic patterns in the Allen-Cahn equation are unstable.

Lemma 4.21 The (modulated) traveling-wave equation conserves mass. More precisely, for
any solution w(ξ), the pointwise time averages

∫
τ (c + e)(ξ, τ)dτ ≡ m are equal in the two

limits ξ → ±∞.

Proof. Solutions are smooth by parabolic interior regularity, so that we have the pointwise
equality

(c+ κe)ξξ + s(c+ e)ξ = ω∂τ (c+ e).

Integrating over τ and using periodicity in τ , this gives∫
τ

((c+ κe)ξξ + s(c+ e)ξ) dτ = 0,

and, upon integration in ξ, ∫ 2π

0
((c+ κe)ξ + s(c+ e)) dτ =: sm∗,

a constant independent of ξ. For equilibria (c, e)(x), we have c + κe ≡ µ, spatially constant,
so that ∫

τ
(c+ e)(ξ, τ)dτ → m∗, for ξ → ±∞.

Remark 4.22 In the following, we could pursue an alternative strategy and exploit the fact
that I[w(ξ, ·)] :=

∫
((c+ κe)ξ + s(c+ e)) dτ defines a first integral for the dynamics of the

modulated traveling-wave equation. We could then restrict to the affine codimension-one sub-
spaces of constant I, where neutral directions, but also ambient space dimension are reduced
by one. We prefer to count indices in full space, and accounting for the neutral mode and
additional multiplicities, caused by the conserved quantity, separately.

We are now ready to state robustness results for coherent pulled fronts, with and without crit-
ical decay. First, recall that spatially homogeneous equilibria come in one-parameter families,
typically parameterized by the mass m. Therefore the number of neutral modes of w+ is one.
Similarly, we already noticed that the number of neutral modes of spatially periodic equilibria
is two as long as m′(µ) 6= 0.

In the terminology of Proposition 4.5, we have n+ = 1 and n− = 1 for homogeneous equilibria
and n− = 2 for spatially periodic equilibria with m′(µ) 6= 0. Moreover, we have ilm = 3.

We summarize the results on relative Morse indices for asymptotic states w± in the following
Tables 4.1 and 4.2. The wavenumbers k±max refer to maximal unstable wavenumber at the
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pattern stability i− n− Reference

spatially homogeneous stable −1 1 Lemma 4.17

spatially homogeneous spinodal unstable −1− 2[k−max/k
+
lin] 1 Lemma 4.17

spatially homogeneous homogeneous unstable −2− 2[k−max/k
+
lin] 1 Lemma 4.17

spatially periodic stable on R/LZ -2 2 Lemma 4.19

spatially periodic unstable on R/LZ -3 2 Lemma 4.19

Table 4.1: Relative Morse indices and number of neutral modes for patterns in the wake of invasion
fronts.

pattern stability i+ Reference

spatially homogeneous stable −1 Lemma 4.17

spatially homogeneous spinodal unstable −1− 2[k+
max/k

+
lin] Lemma 4.17

spatially homogeneous homogeneous unstable −2− 2[k+
max/k

+
lin] Lemma 4.17

Table 4.2: Relative Morse indices and number for spatially homogeneous state ahead of invasion fronts.

asymptotic states u± at±∞, defined in (1.8). The wavenumber k+
lin is the selected wavenumber

at u+.

The relative Morse indices for critical decay are given in Lemma 4.10. However, we need to
correct for the neutral mode associated with variations in mass: we can consider the family
of strong stable manifolds parameterized by varying mass and thereby augment the effective
dimension iss by one without giving up on critical decay. This yields relative Morse indices as
summarized in Table 4.3. From the relative Morse indices in Tables 4.1–4.3, one can readily

pattern stability iss Reference

spatially homogeneous spinodal unstable −3 Lemma 4.10

spatially homogeneous homogeneous unstable −3 Lemma 4.10

Table 4.3: Relative Morse indices for coherent pulled fronts with critical decay.

conclude robustness by dimension counting as follows. Coherent pulled fronts are robust by
dimension counting if

imult = i− + n− − i+ − ilm ≥ 0, for coherent pulled fronts, (4.9)

and
imult = i− + n− − iss − ilm ≥ 0, for fronts with critical decay; (4.10)

see Proposition 4.5.

The following proposition condenses our counting arguments in simple predictions for occur-
rence of coherent pulled fronts and coherent pulled fronts with critical decay.
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Proposition 4.23 The following Tables 4.4 and 4.5 give multiplicity indices for coherent
pulled fronts with and without critical decay. In the case of critical decay, we assumed simple
spreading via pointwise growth, Definition 4.12. Fronts are robust by dimension counting if
the table entry imult is nonnegative. In particular, fronts leaving behind a stable or spinodal
unstable pattern are robust by dimension counting. Fronts with critical decay leaving behind
an unstable pattern are not robust by dimension counting. Fronts invading a homogeneous
unstable state and leaving behind an unstable periodic pattern are robust by dimension counting
but not when critical decay is imposed.

homogeneous
stable

homogeneous
spinodal

perodic
stable

periodic
unstable

spinodal
unstable

2
[
k+
max

k+
lin

]
− 2 ≥ 0 2

[
k+
max

k+
lin

]
−2

[
k−max

k+
lin

]
−2 2

[
k−max

k+
lin

]
− 2 ≥ 0 2

[
k−max

k+
lin

]
− 3 ≥ −1

homog.
unstable

2
[
k+
max

k+
lin

]
− 1 ≥ 1 2

[
k+
max

k+
lin

]
−2

[
k−max

k+
lin

]
−1 2

[
k−max

k+
lin

]
− 1 ≥ 1 2

[
k−max

k+
lin

]
− 2 ≥ 0

Table 4.4: Multiplicity index imult for coherent pulled fronts connecting a leading edge state (left column)
to a pattern in the wake (top row).

homogeneous
stable

homogeneous
spinodal

perodic
stable

periodic
unstable

spinodal
unstable

0 −2
[
k−max

k+
lin

]
≤ 0 0 -1

homog.
unstable

0 −2
[
k−max

k+
lin

]
≤ 0 0 -1

Table 4.5: Multiplicity index imult for coherent pulled fronts with critical decay connecting a leading
edge state (left column) to a pattern in the wake (top row).

Proof.

The table entries are obtained from Tables 4.1–4.3 and the formulas in (4.9) and (4.10). For
instance, invasion of an unstable homogeneous state by an unstable periodic pattern gives
i− ≤ −2, n− = 1, iss = −3, ilm = 3, so that imuult ≤ −1. On the other hand, i+ ≤ −4, so that
imult ≤ 1 for fronts without restriction on critical decay.

5 Numerical studies and discussion of results

We illustrate our predictions with numerical simulations and point to a variety of other inter-
esting phenomena.

We simulated (1.3) using finite differences and a semi-explicit scheme on x ∈ [0, L] with
Neumann boundary conditions. Initial conditions were taken to be (c, e) ≡ (0, a) for x ∈
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[0.08 · L,L] and (c, e) ≡ (a − 1, 1) for x ∈ [0, 0.08 · L]. All plots show e(t, x) as a gray-scale
plot with lighter color corresponding to larger values of e.

5.1 Weak coupling

Pushed-pulled transitions. For small γ, we predict a transition from pushed to pulled
front propagation near a = κ/(2− κ), when κ < 1/2, or near a = 1/3, when κ > 1/2. In the
first case, we expect the transition to be oscillatory due to the splitting of the double (in λ)
double (in ν) root into a pair (in λ) of complex double (in ν) roots. In the latter case, we
expect the transition to be stationary since a pair of real double roots crosses the imaginary
axis.

Figure 5.1 shows the transition in the case κ = 0.1 < 0.5, γ = 0.001, with a predicted
transition at a∗(γ) = 0.052 + oγ(1). The transition actually occurs approximately at a∗ =
0.042. For γ = 10−4, the transition occurs at a∗ ∼ 0.048. We also refer to [17] for a study of
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Figure 5.1: The oscillatory pushed-pulled transition for κ = 0.1, γ = 0.001 and a = 0.04, 0.048, 0.056.
The predicted value of the transition is a = 0.052 + oγ(1).

propagation speeds during this crossover. We computed propagation speeds of pushed fronts
by directly computing the heteroclinic connections using continuation software. On the other
hand, computations as in Section 2 give predictions for linear spreading speeds. The speed
measured in direct simulations agrees well with the maximum of the pushed and linear speeds
computed in this fashion.

For κ = 0.6, the transition only changes the speed of fronts moderately. We confirmed the
predicted acceleration of the front speed for a < a∗(d) in direct simulations. As predicted, we
do not see oscillations since the two double roots at λ = 0 split into two real double roots; see
Section 2.4.

In both cases, we saw that the measured speed in the pulled regime underestimates the actual
pulled speed, due to the predicted slow relaxation towards pulled fronts; see [10, 35] and
references there.

The bistable regime — transient pattern forming fronts. Since periodic solutions
in the Allen-Cahn equation are unstable, periodic patterns are unstable for small values of
γ. However, this regular perturbation result is valid for bounded periods, only. For masses
a 6= 1/2, one can readily show that instability holds for all periodic patterns, with arbitrary
periods, since those would accumulate on a spike, a spatially homoclinic pattern, which in
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turn is unstable; see [24]. We will briefly discuss the case a ∼ 1/2 in the context of Figure 5.3,
below.

One is lead to predict that there are no pulled fronts with critical decay that leave behind
a periodic pattern for small γ. The simulations that we show below strongly confirm this
prediction. In fact, pulled fronts form a transient periodic pattern, that persists for a fixed
finite time interval, before a homogeneous state is formed in the wake.

This confirms that the notion of existence of a coherent front with critical decay is a more
accurate predictor than existence of a more general coherent pulled front: counting arguments
(see for instance the bottom right entry in Table 4.5) do predict robust occurrence of more
general coherent pulled fronts that leave behind a periodic pattern, but these fronts are not
observed in direct numerical simulations.
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Figure 5.2: Coherent pulled fronts forming a transient pattern for κ = 0.1, γ = 0.005 and a =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

Curiously, the simulations do show a coherent pulled front leaving a pattern behind near
a = 0.5. Figure 5.3 resolves this transition in more detail. In fact, numerical and asymptotic
stability analysis in this regime predict stable periodic patterns with wavelength klin in a
narrow wedge a ∈ (a−(γ), a+(γ)), a±(0) = 1/2. The simulations, below, indicate that this
stable pattern is in fact selected by the invasion front.

5.2 The spinodal regime — persistent patterns

In the parameter regime γ > 0.25, spatially homogeneous equilibria are unique for fixed
mass, so that unstable equilibria always coexist with at least one stable periodic pattern,
m′(µ) < 0. We therefore predict consistent occurrence of persistent pattern forming fronts.
This is illustrated in Figure 5.4. In all cases, a wedge of periodic patterns opens behind the
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Figure 5.3: A heteroclinic codimension-one bifurcation for κ = 0.1, γ = 0.005, a = 0.46, 0.47, . . . , 0.51.
Near a = 0.5 a persistent pattern forming front appears.
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Figure 5.4: Coherent pulled fronts in the spinodal regime, κ = 0.1, γ = 1.5, a = 0.22, 0.33, 0.44.

leading front in the space-time plot. We studied wide ranges of parameter space and have not
observed transient patterns in the spinodal regime.

5.3 From transient to persistent pattern forming fronts

Transitions from transient to persistent patterns occur for moderately small values of γ as a
increases. Figure 5.5 shows the transition for γ = 0.05 near a = 0.35. The simulations suggest
that, at criticality, there exists a coherent pulled front that generates an unstable periodic
pattern, consisting of a narrow band with e ∼ 0 and a wide band with e ∼ 1. For larger values
of a, the pulled front creates a stable periodic pattern in its wake. For smaller values of a,
it creates a homogeneous state. For temporal dynamics with Neumann or periodic boundary
conditions, the existence of such unstable periodic patterns, whose stable manifold separates
basins of attraction of stable homogeneous states and stable patterned states, is a common
phenomenon in Cahn-Hilliard and phase-field equations. The stable manifold of these states
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is typically understood as the nucleation threshold. The dimension counting theory in the
present work predicts that such thresholds states can be created by codimension-one pulled
fronts, that is, for isolated values of the parameter a. Figure 5.5 shows some numerical
evidence.
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Figure 5.5: Transition from transient to persistent pattern forming fronts in the bistable regime, γ =
0.05, κ = 0.1. As a is increased a = 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, some of the spikes that are formed
in the wake begin to persist until a persistent pattern is created for larger a. We suspect that at the
point of transition, a perfect persistent unstable periodic pattern is created in the wake.

5.4 More bifurcations

A closer inspection of patterns in the spinodal regime brings out a quite complex behavior. In
the left picture of Figure 5.4, one observes a different frequency at the interface, where only
some of the small spikes in the leading edge eventually form a large spike. In the other pictures,
one sees coarsening in the wake of the first coherent front, typically merging neighboring spikes
to double the wavelength. We explored this relation between wavenumbers in the leading edge,
klin, and wavenumbers in the wake, ksel, in some more detail numerically.

The spatial period-doubling transition in the leading edge is studied in more detail in Fig-
ure 5.6. One can see how a transient of patterns with half the wavelength gradually changes
into a persistent pattern near a = 0.27.

Of course, doubling of periods always suggests the presence of a cascade. Numerical simula-
tions over large time intervals suggest that period-doubling cascades are indeed a predominant
mechanism in the coarsening process that follows the primary invasion front. Figure 5.7 shows
simulations on increasing time intervals, where one can observe a tertiary front that induces
a second period-doubling, thus resulting in an effectively quadrupled spatial period.

Until now, we have described period-doubling mechanisms: the wavelength 2π/ksel of the pat-
tern observed in the wake of the front is double (or quadruple) the linearly selected wavelength
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Figure 5.6: Transition from period-doubled transient to persistent patterns for coherent pulled fronts in
the spinodal regime, κ = 0.1, γ = 1.5, a = 0.258, 0.266, 0.274.

Space x

T
im

e 
t

a=0.33, γ=1.5

150 300 450 600

2000

4000

6000

8000

Space x

T
im

e 
t

a=0.33, γ=1.5

150 300 450 600

6000

12000

18000

24000

Space x

T
im

e 
t

a=0.33, γ=1.5

150 300 450 600

750000

1500000

2250000

3000000

Figure 5.7: Successive spatial period-doublings leading to a quadrupled period. Parameters are chosen
in the spinodal regime, κ = 0.1, γ = 1.5, a = 0.33. The diagrams show space-time plots up to final
times T = 8000, 24000, 3 · 106.

2π/klin,
ksel = klin/2j , j = 0, 1, 2, . . .

The doubling can occur in the leading edge, leading to transients of half-wavelength patterns in
the space-time diagram, or in the wake, leading to persistent patterns in space-time diagrams.
For fronts with weakly unstable equilibrium, that is, with homogeneous state close to the onset
of the spinodal instability, one can observe other multiples: Figure 5.8 shows a transition

ksel = klin/3 ←→ ksel = klin/2,

in the leading edge of the pattern. We have observed other ratios, and spatial frequency-
locking: the ratio ksel/klin changes with parameters while being constant when rational.

5.5 Discussion

We have presented results that can serve as guiding principles in the study of invasion prob-
lems. The system that we focused on, here, turned out to exhibit a rich phenomenology,
despite its apparent simplicity and rigid variational structure.

Pushed fronts. Our first main result shows that in some parameter regimes, pushed fronts
govern the invasion process. Main consequences are

• an invasion speed much faster than the linear speed;
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Figure 5.8: Transition from period-doubling to period-tripling of transient patterns for coherent pulled
fronts in the spinodal regime, κ = 0.1, γ = 1.5, a = 0.214, 0.216, 0.218.

• the formation of a bulk state in the wake rather than the pattern selected by the linear
analysis.

We also show that the coupling of c- and e-equation drastically increases the linear spreading
for κ < 1/2. The coupling generates oscillatory linear modes, which lead to pattern formation
in the wake. As a consequence, the regime where nonlinear pushed fronts dominate pulled
fronts is much smaller than in the uncoupled system (γ = 0).

Counting fronts. Our second main result can be used to qualitatively predict the existence
or non-existence of invasion fronts based on dimension counting. It shows that one can expect
to create an unstable pattern in the wake of an invasion front, provided that the instability of
that pattern is not in resonance with the frequency of the invasion process. The creation of an
unstable pattern typically leads to wedges in space-time plots, where the first invasion front is
followed by a second invasion front with slower speed. We have not observed situations where
the second front catches up with the primary invasion front. When the pattern in the wake
possesses resonant unstable modes, there will typically not be an invasion front that creates
this pattern — we observed such fronts only for isolated parameter values.

Invasion of periodic patterns. Following the counting arguments that we presented for
the invasion of spatially homogeneous states, one can study the invasion of spatially periodic
states. Examples are in particular the period-doubling fronts in Figure 5.7. Since periodic
patterns with wavenumber k∗ > 0 are unstable, one can again define a linear spreading speed
analogous to the spatially homogeneous case through the dispersion relation; see Section 4.5.
Together with this linear spreading speed slin, one finds a temporal frequency ωlin and a spatial
wavenumber νlin. It turns out that spatial period-doubling in the leading edge, Im νlin = k∗/2,
ω = k∗slin/2, can occur in a robust fashion. In this case, one can then follow our counting
arguments and show that period-doubling invasion fronts are robust. It is an interesting
question whether such spatial period-doubling is in fact the selected spreading mechanism for
all (or most of) the periodic patterns in our system.

Existence of pulled fronts. Our counting arguments give criteria for robustness — once
existence is known. In some cases one can expect to be able to actually prove existence
exploiting the gradient structure of the system. We refer to [32], where existence and stability
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of coherent pulled fronts has been studied in the Allen-Cahn equation using Conley index
theory. In fact, the traveling-wave equation (3.3) possesses a Lyapunov function,

V (e, θ, eξ) = Ṽ (e, θ − κe, eξ), (5.1)

where

Ṽ (e, c, eξ) =
κ

2
e2ξ −G(e) +

γ

2(1− κ)
(
(c+ e)2 − (1 + κ)e2

)
− s γ

1− κ
(c+ κe), (5.2)

and µ := (c + κe)ξ + s(e + c) is the mass function in the traveling-wave phase space. One
readily calculates that

d
dξ
V = −s

(
(eξ)2 +

γ

(1− κ)s2
(θξ)2

)
≤ 0.

As a consequence, all bounded solutions to (3.3) are heteroclinic orbits to equilibria.

Similarly, one can show that the modulated traveling-wave equation (4.8), which describes
coherent fronts, possess a Lyapunov function,

V(e, c, eξ, cξ) =
∫ 2π

0

(
κ

2
e2ξ −G(e) +

κω

s
eξeτ −

γ

s(1− κ)
[(c+ κe)(c+ κe)ξ + κec]

)
dτ, (5.3)

so that along solutions,

d
dξ
V = −1

s
(seξ + ωeτ )2 − γ

s(1− κ)
θ2
ξ ≤ 0

In particular, all bounded solutions converge to stationary patterns, seξ + ωeτ = et = 0,
θξ = 0.

Although the traveling-wave equation to phase-field systems has been studied quite extensively
in the literature, it seems that the existence of a Lyapunov function, even for pure traveling
waves, (3.3), has not been noted previously.

Exploiting the Lyapunov function in order to prove existence of coherent pulled fronts will be
subject of future work.

Bifurcations. We have presented both numerical and theoretical evidence for the presence of
a number of bifurcations that change the pattern in the wake in a qualitative fashion. It would
be interesting to study some of those bifurcations in more detail theoretically. For instance,
it would be interesting to analyze the pushed-pulled transition theoretically, thus deriving
expansions in γ for the transition point a∗(κ) and possibly prove existence of transient pattern
forming fronts. In a related direction, we plan to investigate the period-doubling bifurcations
both in the leading edge and in the wake.

Summary. Our analysis gives a first rough outline of the complexity that arises from spa-
tially localized perturbations of unstable states in extended systems. Although the systems
that we study possess a gradient structure, the spatial complexity involves complicated dy-
namic bifurcations, such as Hopf bifurcations, period-doublings, and frequency locking. There
are numerous open questions, but we hope that a complete description of pattern selection
through front invasion will be possible in the near future.
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