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Pattern formation in
nature

How does nature form its




Lets focus on one: CDIMA reaction

“Simple set of chemical reactions can create spatial patterns”

MA + I —> IMA +I- + Hf
ClOy+ 1 —> ClOy + 0.5 1
ClOy + 4 +4H"™ —> 2I, + CI' + 2H>0

Well-stirred vat of chemicals feeds into gel suspension,
slows down diffusion of chemical species —>

Chemical reaction occurs in a spatially non-constant manner:

Striped and spotted states form at random orientations.

How does this happen?
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Mathematical modeling of patterns

- Alan Turing:

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Recerved 9 November 1951—Revised 15 March 1952)

Turing’s idea: Reaction + Diffusion = spatial patterns
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Figure 2. (a) The morphogen pattern in a ring of cells as deduced by Turing. The greyscale indicates concentration differences. (b) Turing’s hand-calculated ‘dappled
pattern’ created by a morphogen scheme in two dimensions [1, fig. 2]. () The resemblance to animal markings (here a cheetah) was obvious, albeit at this point no
more than qualitative.
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3. Concentrations of Y in the development of the first specimen (taken from table 1).
---- original homogeneous equilibrium; ,///// incipient pattern; final equilibrium.

- Mathematics reveals how simple physical mechanisms can combine and lead to complicated
spatial behavior

- Foundational work inspiring whole area(s) of research



Chemical reaction

Lets start with no spatial variation in the model: (ordinary differential equation)

4uv
U = a— bu— l+2 ¢ _ U =FU)= <f(”a V)> o (1) concentration of [I]
Uy g(u,v) v | - concentration of |ClO; |
v, = o(bu — >+ )
+U a,b, ¢, — parameters

In a well-stirred mixture there exists a chemical equilibrium:

Dynamics near equilibrium: Taylor expand about U=U,

V,=FU,+V)=FU,)+ DF(U,V + O(|V]?)

2D-Linear system: V; = AV, A= DF(U,) = (gug gvg)

Stability: Do solutions V(f) grow or decay in time?



Lineq r Sysi'em - Do solutions V(¢) grow or decay in time?

V, = AV, A=DF(U.) = (a“‘f a”f> = (a” a12)

Oug Oug ag1  A22
. + V72— 46
Study the eigenvalues of A: )\, = T ; : T = a1 + a2, 0 = a11a29 — 12091

Stability condition:

RedLr <0 <— 7<0,0>0

—> V/(t) decays in time degonerste sink
T
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Upshot: If well-stirred, chemical concentrations will approach a stable equilibrium state.



Reaction - Diffusion

Now allow the chemical species to spread or diffuse in space (i.e. fed them into a gel):
4uy

=du.+a—bu-—

utxx 1+ 2 (partial differential equation)

=+ )

uy
=dyv,  + oc(bu—
1 4+ u

VXX

What effect does the diffusion have? Re ¢ = cos(kx) Spatial “mode

Linear stability analysis about U,: insert py=r, + Vet \/ \/

2mlk = spatial period

Taylor expand and truncate at linear order in V:

—d k> 0

d
—V, =AKk)V,, A(k) =
g =AY © ( 0 —di

> + DF(U.)

prw.) = (30 59)

Eigenvalues: Ay (k ) ++/7(k ),
7(k) = a11 + asy — k*(dy, + dy),
5(]6) = (a11 — d1k2)(a/22 — dgkz) — 12021
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“Turing” instability

Choose parameters correctly: typically d, <« 1 and d, ~ 1 (short range activation, long range
inhibition), obtain an unstable eigenvalue } (k) with non-zero wavenumber

Re A, (k)

“Linear growth of spatially

M L — — v . non-constant modes”

2xlk = spatial period

In two spatial dimensions, this corresponds to an annulus of d
wavenumbers becoming unstable
2 2 .
A O X x = (r1,20)T, k= (ke k)T K2 = k2K
ox?  0y?
\ |
k

“Turing Pattern”: diffusion induced, spatially periodic equilibrium

If no diffusion. then no

spatial patterns!




Light-sensitivity of CDIMA
reaction

Light suppresses spatial patterns

Traveling mask speed selects pattern
and mediates defects

Experimental model for a growing
organism

Light Intensity
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FIG. 1. Schematic of the experiment. A moving opaque mask
image creates a growing shadow domain where Turing patterns
can develop. In the illuminated domain the pattern is suppressed.

Homogeneous medium,
|Epstein et. al. '12]
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Patterns and Growth

How does growth or spatial heterogeneity mediate or select
patterns?

e External mechanism travels through system, or system domain grows,
mediating pattern formation.

e Aim is to more efficiently and effectively form novel materials at various
length-scales, and understand growth processes in nature.
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Quenching/solidifcation in
Eutectic Lamellar Crystals

Ion bombardment of alloys Early stage digit-patterning

Chemical precipitation



Nonlinear Dynamics viewpoint

Existence, Stability, Bifurcation, and Dynamics of nonlinear coherent states, which organize behavior

Simple ODE example: u, = pu — u’ u € R, p - bifurcation parameter

u. = 0 equilibrium, changes stability at 4 =0

lllllllllllllllllllllllllllllll

Bifurcation indicated by a linear instability of u. =0, at u=0: V., = Uy
Dynamics saturated by nonlinearities, non-trivial states U+ attract nearby trajectories

What is the “basin of attraction” of each non-trivial state u,?



Dynamics of spatial patterns?

Can we study patterns in a simpler setting compared with coupled system: so a scalar equation?

Could introduce (2D) spatial dependence by adding in diffusion: M
_ 3 . 92 2 300

ur = Au + pou — u”, A._8x+8y ”

A Allen-Cahn equation 00

“Diffusion” “Reaction” 00

700

but patterned solutions are unstable, or not persistent 200

901
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Turns out... a simple way to get stable patterns,

in scalar PDE: i Swift-Hohenberg, t = 0

0.25

ur = —(1 4+ A)?u + pou — u’,
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Swift-Hohenberg equation
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[SH-"77], [Cross, Hohenberg ’93]
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Pattern forming model: The Swift-Hohenberg equation

2 3 |[SH-"77], [Cross, Hohenberg 93|
ug = —(14+A)*u+pou —u’, u:R" =R,

u - order parameter, measures state of system

Originally derived for Rayleigh-Bénard convection —>

FIG. 1. Schematic picture of Rayleigh-Bénard convection
showing fluid streamlines in an ideal roll state.

Universal model for many phenomena:
In fact Turing was working on a similar equation! [Dawes "15]

“Outline of development of the Daisy’ [Turing, unfinished draft|

Been used as a model for liquid crystals, soft-materials, plant phylotaxis, reaction-
diffusion

Nice starting point because much is rigorously known:

Grain Boundaries Hexagons Zig-7.ags Stripes
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Patterns in Swift-Hohenberg equation

uy = —(1+ A)*u+ pou —u?, w:R" =R,
Turing Patterns: “Pitchfork” bifurcation of a family of spatially periodic equilibria

Turing instability: insert u = re’®*t* into linear equation yields A = —(1 — k%)% + g, k = |K|

Re{\}

po /0

2xlk = spatial period

Nonlinear bifurcation of family of stable

L1 instability of b tat -0 = . crer
Iear mstability ol base state u “roll” /stripe equilibrium states

up(x) = \/4(po — k) /3 cos(kx) + O(|po — w[*'?),
k=Fk*—1k~1

Rotational invariance -> all orientations of stripes are solutions \
up(k - x; k) \

K |CrossHohenberg’93]




Swift-Hohenberg equation

uy = —(1+ A)*u+ pou —u’, u:R* =R,

Swift-Hohenberg, t =0

-250 0.25
-200 402
-150 0.15
-100 0.1
-50 0.05
0 0

50 -0.05
100 0.1
150 0.15
200 0.2
250 0.25

25 <200 <150 <100 50 0 50 100 150 200 250

“Incoherent patches of patterns”



Growth model in Swift-Hohenberg equation

Spatially progressive bifurcation: jump heterogeneity changes stability of u=0 for x —ct = 0
up = —(1+A)*u + p(z — ct)u — v, p(€) = —posgn(§)

“Fast” growth
“mild” growth

“slow” growth




Similar behavior to experimental RD system

Swift-Hohenberg Light Sensing RD system

Perpendicular stripes
t=500, c =0.5
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1-D patterns in Swift-Hohenberg

uy = —(1 4+ 02)*u + pu(x — ct)u — u’

(&) = posgn(—§)

Study existence of pattern-forming fronts, characterize wavenumber dependence on growth speed c
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Wavenumber “selection” curves
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Results for slow and fast speeds

Curves k/c) give mechanism and prescription for control of pattern formation process



Fast speeds

uy = — (14 02)*u + p(z — ct)u — u’ (&) = posgn(—¢)
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¢ > Ginv : pattern selected by c < ciny : pattern wants to invade Interface has no etfect on

unstable homogeneous state faster than you're letting it pattern for ¢ > cuy

behind inhomogeneity.

Co-moving frame: & =x— ct

Swifl-Hohenbery, =C.1, c= 14
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Fast speeds:

wu, = — (140" u+ pu(Eu —u’ + cou (MTW, k,=0)  E=x—ct
Existence for speeds near detachment point ¢ ~ ¢iny = 4y/pt0 E=x— ct

Look for “small amplitude” solutions with onset multiple scaling: Uy = 62, c=cec,0<ex1

u(&, 7)

([P

Theorem: For ¢ and 4 — ¢ > 0 sufficiently small, there exists a pattern forming front with wavenumber

k(c) =14+ 7c+ O(c?

kinv
1.01

—— Numerics
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——Leading order prediction
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Spatial Dynamics approach

Wiy :—(1+3§2)2u+u(§)u—u3—|—cu§ E=x—ct,T =wt

Look for front solutions as trajectories in a dynamical system with space £ as evolution variable, in

phase space of 7 - periodic functions,

non-autonomous in & (but only piece-wise constant!)

Ug = 0,
Write as first order system —> ve = w,
We = 6’,

AN N
VAVAVAVIAY,

stripe patterns w,(k.& + t)

PDE equilibrium (stable) u =0

ODE objects
periodic orbits

M=
A

Equilibrium (u, v, w, 8) = (0,0,0,0)



Look for front solutions as heteroclinic orbits:
Intersections of invariant manifolds W<e"(u,) N WZE(0)of asymptotic states

ps/u (0) := set of trajectories which converge to state in forwards/backwards evolution

[ ] [ J (] [ ] [ ] u — U

Geometry of intersection gives wavenumber predictions! ¢ ’
Ve = W,

’wg = U,

stripe patterns w,(k.& + t)

/\ /\ /\ /\ Py PDE equilibrium (stable) u=0
vV U U U VY g

periodic orbits

ODE equilibrium (hyperbolic) U =0

Unstable manifold Stable manifold

Ho [
0 £E>0

IU,:
£ <



Exploring 2-dimensional patterns

How to characterize relationship between patterns and growth speed?
Rigorous analysis requires application/development of new techniques

Explore (k,,c)- parameter space first using direct simulations 208

Fix a vertical period £,

ou, = — (1 + 07 + k0 + pu — u® + cou y € [0,27/k,)
Exponentially growing quenching/growth front wlx — L), () ~e”

Freeze pattern in the wake (gets rid of possible secondary instabilities)

Swift-Hohenberg, t = 964.5 ¢=0.00051987

pLelale 2000 >ac £000 S000 e00d Jooo oo

k, = 0.85



Swife-Hahenberg, t = 964.5 c¢=0.000519487

Juuoo 4000 L
Swift-Hohenberg, t = 964.5 ¢=0.0001936

3000 1CCt 5000
Swift-Hohenberg, t = 964.5 ¢=0.00051987

30CC <000 SCoC
Swift-Hahenberg, t = 964.5 ¢=0.00051987

0wl anul 50LD
Swift-Hahenberg, t = 2852.1 ¢=0.0035929

Joud anul 5000
Swift-Hohenberg, t = 964.5 ¢=0.00051987




Oscillatory behavior past saddle-nodes

Take c just above one of the saddle-node values

oc 2 0
Phase sees the “ghost” of the heteroclinic solution of MTW: ~
Dynamics similar to saddle-node on a limit cycle: S
+  Period of oscillation scaling like ~ (50)_1/ 2

Past perpendicular fold

t—2,c— 044, k, — 1

_ 20
=40
60
100 200 300 400 500 600 100 800 900
£
“Phase-kink” shedding
Past oblique fold
¢ = H3U, ¢ = D.UbL, k, = U.Y4d
0
e e e e e et et
El g ce——— e

-307 0 30a

{ = Ok}, € = WS, By = Y1

-307 0 30x
.I

“Wrinkled” patterns



Organize/represent solutions: “Moduli space”

@t = =0 0% p(©u — v+ deu, ul7) = uly 7+ 2m)
lime oo (&, 7) = up (k& + 7, k), limg oo u(€,7) = 0, k= (ky, ky),w = cky

. 3. . : .
M = {(k,,c,k) € R’ : MTW hasasolution}—>Each point on surface represents a striped pattern
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“Cookbook” for creating patter%s 0
y




—— Parallel
Ca W Oblique

Put it all together | e

Perpendicular

Y ZZ Y Y

Boundaries of pattern transitions governed by bifurcation curves

Moduli space # is the “pattern cookbook”:
how to create and select a given pattern




Other systems: how do patterns behave?

Complex Ginzburg Landau equation Reaction-Diffusion systems
3
Ay = (14i0)(07 4+ 02)A+ p(z — ct)A — (1+iy)AlA|, AeC

U = dytge + p(x — ct)u — u’ — v
Moduli space, « = 0.1y =4

VU = dyUge + U — YV

=220

~150

1. -0

50

o

3

10

! 1 0
Cahn-Hilliard: (phase separative systems) [RG, Scheel '15]
1,
up = —A(Au + x(&)u — u’) + cuy, x(§) =

Cahn-Hilliard, t = 1
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Other types of growth

- For example: radial growth front




Patterns in experiment

Precipitation and Vapor deposition Gastrulation in embryos
a; = DAa — f(a,b) + h(t,z;c) s 4 A?
by = Ab+ f(a,b) A= DAt gy T

I, = DAL + s; A% — k;

CDX2/BRA/SOX2

w/ P. Shipman, S. Thompson |S. Chhabra, L. Liu, RG, A. Warmflash,’ 19|



Summary

Nature is incredibly capable of forming patterns and structure

Growth is a useful way to mediate pattern formation in natural and experimental settings

Mathematics can characterize the phenomena:

Dynamics and Functional Analysis are powerful viewpoint to illuminate the underlying
structure/mechanisms in PDE models

1-D patterns: existence and wavenumber selection for fast and slow growth speeds

2-D patterns: Transitions between different orientations of stripes, many interesting
dynamics and phenomenal

Use the moduli space representation as a pattern cookbook
Yields explicit qualitative/quantitative predictions for pattern selection

Many of these predictions can be used in other PDE models

There is much more to be done, using a variety of tools and approaches:

Rigorous approaches, formal asymptotics, numerics. ..



Some good references to get into this area

“Forging patterns and making waves from biology to geology: a commentary on Turing
(1952) ‘The chemical basis of morphogenesis’, Ball, Phillip, Phil. Trans. R. Soc. B 370:

20140218.

The Chemical Basis of Morphogenesis A. M. Turing, Phil. Trans. R. Soc. B 237: No. 641.
(Aug. 14, 1952), pp. 37-72

Nature’s Patterns: a tapestry in three parts, Phillip Ball

Pattern Formation: An Introduction to methods, Rebecca Hoyle

febeCCa Hoyle

pattern Formation

Andntrocuction 10 methods

‘it ¥(an

PHILIP BALL PHILi# BALL PHILIP BALL




Career as an academic mathematician



My path

Always liked math, was decent at it (mom was a high-school math teacher)

Started reading non-technical books on math (non-Euclidean geometry, Rlemann B ""h
Hypothesis, Godel’s incompleteness) one stuck out: L ‘,.”.\.‘ A s

Chaos, by James Gleick

(2007-2011) Attended Michigan State University: B.S. in math, B.A. in physics

Research in dynamics of piecewise-linear maps, and ODE modeling of dye-
sensitized solar cells

Attended an REU at Univ. of Minnesota with Arnd Scheel

(2011-2016) PhD in Mathematics at University of Minnesota: studied dynamical
systems, functional analysis, partial differential equations, with applications to
formation of coherent structure in nature

(2016-2019) Postdoctoral fellowship at Boston University, mentored by Prof. C.
Fugene Wayne

(2019- ) Tenure-track assistant professor at Boston University



Undergrad studies in math/applied math

Explore!!!
Take classes, go to talks, meet with faculty
Directed /independent study, research project with faculty,
Summer REU /Interships (academic vrs. industry career paths)
Maybe teach a little (7), grading, teaching assistant, etc. ..
Start thinking about graduate school

How to prepare: all the above!, discuss with faculty advisors, start reading and thinking
about types of research

Choosing one: don’t just go on rankings
Want a school with at least at least few research areas/faculty that interest you
What is the grad student culture/community like?
Where do PhD graduates go after?

Location and benefits?



Graduate School

Last place where you just get to learn! (and learn how to learn, establish habits)
It’s hard, but mostly fun! (good to have a support group)
Learn mathematics more deeply (core subjects algebra, topology, analysis, applied math)
Learn one or two subjects really, really well
After introductory course work, start reading papers with faculty, start a small project,
Typically have to pass written/oral exams
Stipend support by either Teaching Assistantship, Research support from advisor
Math is social!  (i.e. soft-skills matter too!)
Talk with professors (possible collaborations, will need letters)

-> Go to workshops/conferences/summer schools, present a poster, give a talk, maybe even
collaborate with someone!

Organize department events (STAM, MAA, AMS, AWM student chapters)
Maybe do internship? (Math PhD’s can go into industry!)

Start thinking about career track: Research University (large/small, public/private), liberal arts 4-
year, national lab.



Postdoctoral studies

Become an independent researcher - though typically mentored by a senior faculty
Move into different research areas

Gain experience as a lecture/instructor of record (teach various courses, 1 to 2 (maybe 3) a

semester)

Start applying for tenure-track jobs

Taking on more responsibilities:
Mentor undergrad research
Organize professional events, referee journal papers
Maybe work of multiple projects

Help with department functions (write prelims, organize department seminars, ... )



Tenure- Track Assistant Professorship

Research:
develop and produce high-quality, impactful research (papers, review articles, etc... )
Maybe recruit a graduate student or two

Be active in your research community

Teaching: (one to two courses/a semester, varies depending on institution)
high-quality instruction (student evaluations and peer-reviews)

Variety of courses (large 100-200 level lectures, 500-advanced undergrad /masters classes,
graduate courses)

Maybe develop a new course or two?!

Service:
Department: take part in administration and direction of department /school
University: faculty council, etc. ..

Community: academic and public



Academic Career: Pros and Cons

Pros: Cons:
Get to do math for a living! - Positions are competitive (difficult to get)
Relatively independent (still have bosses, - Pay not at the level of industrial job with
but less direction than at a company) equivalent experience (though not bad at all!)
Academic freedom and tenure - Work/Life balance can be tough (especially

. . during early career)
No profit incentive (though have to get

grants!) - Societal /economic trends & broad changes in

academia (student debt bubble, etc... )
Relatively flexible schedule

o Need to bring in grant $$ for university
Get to visit a lot of cool places and meet
interesting and diverse people - “Publish or perish”

Contribute new knowledge to the world

Educate/Impact the next generation of
mathematicians and scientists

Sabbaticals are nice

Job security (once you get one... )



Day in the life (on “teaching day”)

5:30-6am wake-up, breakfast, get ready, bike in around 7am
7:15-7:30am - Arrive on campus, respond to emails
7:30 - 9: work on a research problem
9-10: teaching prep, review lecture notes, grading, course emails
10-11: teach
11-12 decompress & send emails (maybe lunch)
Afternoon (varies):
Research collaboration meetings, work on research projects
Office hours, student research projects
Committee /faculty meetings (undergrad, graduate, etc... )
Referee journal articles
Other activities for more senior faculty (advising, university committees, editor of academic journals etc. . .
Go to seminar talks
4 - 6pm: Bike home

6-8:30pm: Dinner and family time, 8:30-10pm work on a research project, 10-10:30 get ready for bed



Thanks!!



Thanks!
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