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Abstract. We study bifurcations in networks of integrate-and-fire neurons with stochastic spike
emission, focusing on the effects of the spatial and temporal structure of the synaptic interactions.
Using a deterministic mean-field approximation of the population dynamics, we characterize spatial,
temporal, and spatiotemporal patterns of macroscopic activity. In the mean-field theory, synaptic
delays give rise to uniform oscillations across the population through a subcritical Hopf bifurcation
of the stationary uniform equilibrium. With local excitation and long-range inhibition the network
undergoes a Turing bifurcation, resulting in a localized area of sustained activity, or stationary
bump. When the coupling has both delays, local inhibition, and long range excitation, the network
undergoes a Turing-Hopf bifurcation leading to spatiotemporal dynamics, such as standing and
traveling waves. When multiple instabilities are excited, we observe other complex spatiotemporal
dynamics. We confirm all these predictions of the mean-field theory in simulations of the underlying
stochastic model.

Relevance to Life Sciences. Spatiotemporal neural activity patterns are key features of
sensory perception, decision-making, and working memory. These patterns depend on both the
structure of synaptic connectivity and the intrinsic dynamics of neurons and synapses. Here, we
study spatiotemporal dynamics in a simple spiking neuron model: soft-threshold integrate-and-
fire networks. We show how the single-neuron and synaptic dynamics, together with the spatial
structure of the network, determine the presence of various activity patterns. The synaptic structure
we consider here incorporates transmission delays and spatially organized excitation-inhibition. In
contrast to classic neural field theories, ours is derived from a specific microscopic neuron model
whose parameters can be measured experimentally. We thus develop a method that can expose how
specific neural and synaptic biophysics shape macroscopic activity patterns.

Mathematical Content. We extend a recent mean-field theory, for integrate-and-fire networks
with stochastic spike emission, to incorporate temporally delayed and spatially nonlocal interactions.
The resulting neural field equation resembles the classic Amari-Grossberg model, with an additional
term from the reset of the membrane voltage following the emission of an action potential. We
identify spatial, temporal, and spatiotemporal primary instabilities of the system. We numerically
continue both temporally and spatially periodic solutions of the mean-field model and track their
spectral stability to identify folds of finite-amplitude oscillations, as well as codimension-2 bifurcation
points. This framework also exposes regimes of complex spatiotemporal dynamics, far from the onset
of instabilities.
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1. Introduction. Spatially and temporally patterned behavior in large-scale
neuronal activity are thought to play a role in a wide range of neurobiological phenom-
ena. Some examples include geometric visual hallucinations [22], orientation tuning in
the visual cortex [4], and short term working memory [11, 12]. These spatiotemporal
dynamics are often understood using neural field equations, which are macroscopic
descriptions of large networks’ activity [54, 2, 5, 27, 28]. Although they have proven
extremely useful in modeling neuronal dynamics, these macroscopic equations lack
biophysical detail and can fail to capture spatiotemporal behaviors observed in mi-
croscopic spiking network models [10]. The lack of a direct connection between scales
obscures the relation between single-cell and population dynamics.

Integrate-and-fire (IF) models can capture a range of single-cell neural dynamics
[48, 34, 37]. In these models, the nonlinear dynamics of spiking are replaced with a
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simple fire-and-reset rule where the membrane voltage returns to a fixed value after
the neuron emits a spike. IF models can be lower dimensional approximations of more
bio-physical conductance based models such as the Hodgkin-Huxley model [1]. Net-
works of IF neurons can exhibit spatial, temporal and spatiotemporal patterns. Oscil-
lations can be induced by either synaptic delays or excitatory-inhibitory interactions
[8, 7, 51, 53]. The spatial profile of synaptic projections controls transitions between
spatially incoherent and coherent activity [35, 43]. Despite their simple single neuron
dynamics, large networks of IF neurons are high dimensional and complex. Therefore,
to analytically study temporal and spatial transitions in the network-level dynamics,
there has been much interest in field theories that are both analytically tractable and
directly connected to the microscopic single-neuron properties [10, 46, 36].

Here, we study soft-threshold leaky IF (sLIF) networks, which incorporates sto-
chastic spike emission and a leak term driving the membrane potential toward a resting
value, alongside a corresponding mean-field theory [38]. In particular, we explore os-
cillatory, spatial, and spatiotemporal instabilities in networks of sLIF neurons with
temporal or spatial structure in their synaptic interactions. First, we introduce the
sLIF network and mean-field approximation (Section 2) and determine the linearized
dispersion relation to identify various instabilities present in the model (Section 3.1).
These instabilities, along with bifurcations of the resulting patterns, delineate regions
in the parameter space phase diagram where there exist one or more qualitatively
distinct steady state solutions of the model. Each of these steady states correspond
to a different type of behavior exhibited by the network.

We identify ten distinct regions of parameter space (labeled (i)-(x)) where the
network can support one or more activity states. Identifying the existence regions
provides a qualitative picture of the dependence of the network dynamics on the spa-
tiotemporal structure of synaptic connectivity. We identify and analyze four primary
types of solutions: (a) homogeneous steady states, constant in both time and space,
which correspond to either globally active or quiescent network states depending on
whether activity is above or below threshold (Sections 3.1-3.2), (b) homogeneous oscil-
latory states, which correspond to global oscillations in network activity (Section 3.3),
(c) stationary spatial patterns, in which only a portion of the profile is above threshold,
corresponding to local activity in the network (Section 3.4), and (d) spatiotemporal
patterns, including standing waves, traveling waves, and oscillating bumps (Section
3.5). Finally, we discuss the influence of more complex temporal coupling structures
on the emergence of instabilities (Section 4). Together, our findings reveal how differ-
ent structures of connectivity and temporal dynamics give rise to a rich repertoire of
network behaviors in a spatially extended sLIF network. In particular we show that
transmission delays and spatially structured excitation-inhibition in the synaptic con-
nections support multiple kinds of activity states across different network structures,
as well as multi-stability within individual structures.

2. The model. We will use a soft-threshold leaky integrate-and-fire neuron
(sLIF) as our microscopic model to describe how individual neurons integrate incom-
ing signals and generate action potentials (or spikes). We consider a network of N
sLIF neurons on the ring [−π, π) (Fig. 1A). One-dimensional networks defined on peri-
odic domains have been used to model feature selectivity in neuronal populations—for
example, the sensitivity of neurons in the visual cortex to the orientation of visual
stimuli [29, 4]. Neuron i has membrane voltage vi(t) at time t. Let nj(t) be the
counting process associated with neuron j, recording the total number of spikes that
neuron j has emitted up until time t. The increments of that process are dnj(t). After
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neuron j emits a spike, its membrane potential is reset to the fixed value r. A post-
synaptic neuron i receives and integrates spikes from presynaptic neuron j through
the synaptic filter Jij(s−D), where s is the time since the presynaptic spike and D
the synaptic delay (Fig. 1B).

We implement stochastic spike emission to model the variability in the membrane
potentials at which neurons emit a spike [25]. This soft-threshold for spike emission
distinguishes the sLIF model from classic LIF models, where neurons deterministically
emit a spike at threshold. The increments dnj(t) define a point process, ṅj(t), called
the spike train. We take its intensity to be f(vj(t)), where f is a non-negative function.
The intensity function is often chosen to be zero or near-zero below a threshold, so
there is no or low chance of emitting a spike at low membrane voltages. Above
threshold, f is increasingly higher so there is an increasing chance of generating a
spike at higher voltages.

Finally, each neuron has resting potential Ei, also incorporating any external
input currents. Together, the membrane voltage of neuron i, vi(t), evolves according
to the Itô stochastic differential equation
(2.1)

dvi(t) =
dt

τ

−vi(t) + Ei +
1

N

N∑
j=1

∫
Jij(t− s−D) dnj(s)

− dni(t+) (vi(t)− r)
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Fig. 1. The sLIF network (2.1) with coupling (3.4)-(3.6): J(x, t − D) = 1
2π
δ(t − D)(J0 +

J1 cos(x)) and D = 1, E = 2, and N = 1000. A) A connected network on the ring. B) The delayed
impact of a spike from a presynaptic neuron (red) on a postsynaptic neuron (blue). Spike times are
marked with tick marks above. J0 = −1. C) Homogeneous steady activity, J0 = −2, J1 = 0. D)
Homogeneous oscillatory activity, J0 = −15, J1 = 0. E) Local activity, J0 = −2, J1 = 20. F) A
standing wave transitioning into a traveling wave, J0 = −2, J1 = −20.

The neuron integrates input spikes from the rest of the network through the synap-
tic filter, or coupling function, Jij(s). With simple pulse coupling and no synaptic
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delay, J(x, t) = J0δ(t), the sLIF network can exhibit homogeneous spiking behavior
(Fig. 1C). When J(x, t) has more temporal and spatial structure, the network exhibits
spatiotemporal dynamics. For non-zero delay values, the sLIF network can exhibit
homogeneous oscillatory activity (Fig. 1D). Additionally, with sufficiently strong spa-
tial modulation in J , the sLIF network exhibits spatially localized activity (Fig. 1E).
Finally, if our coupling function has both delays and spatial modulation, the network
can exhibit spatiotemporal dynamics with patterns of traveling or standing waves
(Fig. 1F, which also shows a spontaneous, noise-induced transition between those two
patterns). To understand these dynamics, we develop a neural field approximation of
(2.1).

2.1. Mean-field theory. We will study a mean-field theory for (2.1),
(2.2)

∂tv̄(x, t) = −v̄(x, t) + E +

∫ t−D

−∞

∫ π

−π
J(x− y, t− s−D) f̄(y, s) dy ds − f̄(x, t) v̄(x, t)

Here, v̄(x, t) is the mean membrane potential on the ring x ∈ [−π, π), f̄ := f(v̄) is the
mean-field approximation of the spike trains ṅ, J ∈ L1([π, π) × R+) is the synaptic
filter, and E is the mean resting potential. We have non-dimensionalized the model
by measuring time relative to τ and the membrane potential relative to r, setting
τ = 1 and r = 0. The presence of the reset term −f̄(x, t)v̄(x, t) differentiates this
model from the classic Amari-Grossberg activity equations [2, 28].

The neural field theory (2.2) can be derived from the microscopic model (2.1) in
two steps. We first take the mean-field limit of a large network, N →∞. This yields
a stochastic PDE. We then make a purely deterministic mean-field approximation of
that stochastic PDE.

We briefly and informally discuss two ways of taking the limit N → ∞, both
of which yield the mean-field approximation (2.2). In the first case, the connectivity
Jij(s) is a deterministic C0 function of the distance between neurons i and j (for fixed
s). We place each neuron at xi = −π + 2π

N i, so that Jij(s) = J(|xi − xj |, s). In (2.1),
the sum over neurons converges to a Riemann integral, yielding the stochastic partial
integrodifferential equation

(2.3) ∂tv(x, t) = −v(x, t) + E + (J ∗ ṅ) (x, t)− ṅ(x, t+)v(x, t),

where ∗ is the convolution in both time and space and ṅ(x, t) is the spatiotemporal
point process defined by the intensity f(v(x, t)).

In models with random (for example, randomly sparse) connectivity, Jij(s) may
not converge to a function of the position difference J(y, s). We instead take an
approach that yields the statistics of Jij(s) as functions of the position difference. We
divide the ring into M segments, each containing m neurons so that N = Mm. We
take the statistics of the connectivity between neurons i and j to depend only the
distance |xα(i) − xβ(j)|, where α(i) and β(j) are the segments containing neurons i
and j. The synaptic current onto neuron i at time t is

1

N

N∑
j=1

∫
Jij(s−D) dnj(t− s) =

1

M

M∑
β=1

1

m

m∑
k=1

∫
Jα(i)β(s−D) dn(β−1)m+k(t− s)

The inner sum concentrates around a joint second moment as m → ∞. We assume
that moment factorizes and take the limit M →∞ so that

(2.4) ∂tv(x, t) = −v(x, t) + E +
(
〈J〉 ∗ 〈ṅ〉

)
(x, t)− ṅ(x, t+)v(x, t),
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where 〈J〉(y, s) is the mean strength of connections between two locations and 〈ṅ〉(x, t)
the population mean activity of neurons at position x. The mean-field theory (2.2)
was developed in this way in [38], for non-spatial networks, by constructing the joint
density functional of the membrane voltages and spike trains using the response vari-
able path integral formalism, reviewed in [13]. (2.2) can also be derived directly by
averaging either (2.3) or (2.4) and truncating second and higher-order cumulants;
(2.2) is the lowest-order truncation of both of their moment hierarchies. Fluctuation
corrections to (2.2) will, however, differ depending on which large-network limit was
taken [9, 6]. For further discussion of spatial mean-field limits of integrate-and-fire
networks, see e.g., [33].

3. Results. We begin our study of the dynamics of (2.2) by characterizing its
homogenous equilibria and their stability. Throughout, we will take a rectified linear
intensity function, f(v) = bv − 1c+.

3.1. Homogeneous equilibria and dispersion relation. There are three
possible homogeneous equilibria of (2.2): one quiescent state below threshold (vQ)
and two solutions above threshold (v±). These are given by
(3.1)

v0 =


vQ = E if E < 1,

v+ =
(
J0 +

√
J2
0 + 4(E − J0)

)
/2 if J0 > 2 + 2

√
1− E or J < 2, E > 1,

v− =
(
J0 −

√
J2
0 + 4(E − J0)

)
/2 if J0 > 2 + 2

√
1− E and J0 > 2, E < 1,

where J0 =
∫ ∫

J(x− y, t− s) ds dy.
The quiescent state vQ is always stable because when the voltage is below thresh-

old the convolution and reset terms of (2.2) are zero, and the voltage converges to
the resting potential E. In absence of delay and spatial modulation in the coupling,
v+(v−) is always stable(unstable). Therefore, without spatial or temporal structure
in the coupling, the mean activity will converge to v+ or vQ [38]. The first three
regions we identify in the phase diagram (Fig. 2A), where the stable homogeneous
steady states exist, are:

i) Q: Only a quiescent state (vQ, below threshold) exists and is stable.
ii) H: Only a high activity state (v+, above threshold) exists and is stable.
iii) Q-H: Both the quiescent and high activity states are stable.

In the bistable region Q-H, the unstable equilibrium v− also exists and is the separatrix
between the two stable solutions vQ and v+. The boundaries of Q-H are saddle node
bifurcations, discussed further in Section 3.2.

To identify the instabilities of a homogeneous state v0, we perform a standard
linear stability analysis of the mean-field approximation (2.2). This yields a dispersion
relation exposing the stability of v0 with respect to perturbations in each spatial
Fourier mode. Given the threshold-linear intensity function, v0 above threshold (v0 >
1), and recalling the delay D in the synaptic coupling, the linearization of (2.2) about
v0 is

(3.2) ∂tw(x, t) = −2v0w(x, t) +

∫ t−D

−∞

∫ π

−π
J(x− y, t− s−D)w(y, s) dy ds

By taking the spatial Fourier transform of (3.2)
(
w(x, t) =

∑
k∈Z ŵk(t)eikx

)
and mak-
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ing the ansatz ŵk(t) = eλkt, we obtain the dispersion relation

(3.3) λk = −2v0 + e−λkD

∫ ∞
0

Ĵk(s) e−λks ds, k ∈ Z

where λk is the eigenvalue associated with the kth mode, ŵk. Note the depen-
dence of the stability on the structure of interactions between the neurons since
Ĵk(t) =

∫
e−ikxJ(x, t) dx are the time-dependent kth Fourier coefficients of the cou-

pling function. See Appendix 6.3 for the dispersion relation for a general intensity
function.

For simplicity, we assume delayed pulse coupling for the temporal profile and
cosine coupling for the spatial profile:

J(x, t−D) =Jspace(x) Jtime(t−D),(3.4)

Jtime(t−D) =δ(t−D),(3.5)

Jspace(x) =
1

2π
(J0 + J1 cos(x)) .(3.6)

With delayed pulse coupling, the dispersion relation (3.3) simplifies to

(3.7) λk = −2v0 + Ĵke
−λkD,

where Ĵk is the kth Fourier coefficient of the spatial coupling. For cosine coupling
(3.6), there are only three nonzero Fourier coefficients, Ĵ0 = J0 and Ĵ±1 = J1/2.
Therefore, all spatial modes of the homogeneous equilibria other than k = 0 and
k = 1 are always stable.

Other L2 spatial kernel functions can be studied in a similar way by using their
Fourier coefficients in (3.3). For other choices of temporal kernels, the temporal
integral in (3.3) will differ. In Section 4, we discuss two other temporal kernels which
model the rise and fall times of the action potential in addition to the delay.

The dispersion relation (3.7) only pertains to equilibria above threshold. The
quiescent state below threshold (vQ) is always stable. Consequently, we restrict our
analysis of instabilities to the two steady states above threshold (v±). The location
of primary instabilities are given by the dispersion relation (3.7) when Re(λk) = 0 for
different modes k and temporal frequencies Im(λk).

These instabilities correspond to four smooth bifurcations of v0: a saddle-node bi-
furcation (Section 3.2), a Hopf bifurcation (Section 3.3), a Turing bifurcation (Section
3.4), and a Turing-Hopf bifurcation (Section 3.5). At threshold (v0 = 1), non-smooth
bifurcations can occur due to the non-smooth point of the intensity function f at its
threshold. These are not described by the linearized analysis. We will study these
numerically.

3.2. Homogeneous, static instabilities. The first instability of the homoge-
neous state is of the spatially-constant mode (k = 0) with zero temporal frequency
(Im(λ0) = 0). With these assumptions and the instability condition (Re(λ0) = 0),
the dispersion relation (3.7) gives the location of the saddle-node bifurcation where
v± collide and vanish,

(3.8) J0 = 2 + 2
√

1− E.

Beyond the bifurcation, at lower J0 values, solutions tend toward the quiescent state
vQ. The bifurcation only occurs for J0 > 2 and E < 1 and does not depend on
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the delay or spatial modulation in the coupling. The saddle-node curve forms the
boundary between the bistable regime (Q-H) and the quiescent regime (Q) (Fig. 2A).

There is also a non-smooth saddle-node bifurcation at E = 1 where v− and vQ col-
lide and vanish. This bifurcation cannot be identified via the dispersion relation which
is derived from the linearized dynamics above threshold. The non-smooth saddle-node
curve is the boundary between the bistable region (Q-H) and high activity region (H)
(Fig. 2A). These bifurcations were identified in [38]. If the intensity function f(v) is
not threshold-linear, another saddle-node bifurcation between high and low activity
states can emerge [40].

3.3. Delay-induced instability. Transmission delays can induce a Hopf bifur-
cation, at which homogeneous oscillations (sometimes also called bulk oscillations)
of the network emerge. This oscillatory instability is in the spatially-constant mode
(k = 0) with nonzero frequency (Im(λ0) 6= 0), occurring when a pair of complex
conjugate eigenvalues cross the imaginary axis (Re(λ0) = 0). From the dispersion
relation (3.7), we find that v+ undergoes a Hopf bifurcation when

(3.9)
−1

D
cos−1

(
2v+
J0

)
= J0

√
1−

(
2v+
J0

)2

and v+ > 1, 3J2
0 + 4J0 > 4E, D > 0, and J0 < 0. See Appendix 6.4 for the derivation

of (3.9). Beyond the Hopf bifurcation at lower J0 values, there are homogeneous
oscillatory solutions vosc(Fig. 2B, upper). As the delay is increased, the Hopf curve
increases in J0 and approaches the curve 3J2

0 + 4J0 = 4E (Fig. 2C), which is the
boundary of the region on which the Hopf curve (3.9) is well-defined. Thus to obtain
uniform oscillatory behavior in our network, the coupling must be delayed and suffi-
ciently inhibitory with the reversal potential E above threshold. However, if E is too
large, it offsets the inhibition and oscillations do not occur.

We find through numerical continuation of vosc that the Hopf bifurcation (3.9) is
subcritical as J0 and E decrease and D increases, with a branch of unstable oscillations
emerging backwards out of the bifurcation point (Fig. 2D-F). See Appendix 6.2 for
details of numerical continuation. Shortly after the minimum voltage on this unstable
branch falls below threshold, it meets a stable branch through a fold of large amplitude
limit cycles. The Hopf bifurcation and the fold of limit cycles bound a narrow bistable
region of both v+ and vosc (Fig. 2A, “O-H”: dotted line). Decreasing E and J0 or
increasing D from the fold, stable oscillations grow in both amplitude (Fig. 2G-I)
and period (Fig. 2J-L). Only in the parameter E does the oscillation amplitude later
decrease until vanishing at a supercritical non-smooth Hopf bifurcation at E = 1,
where v+ drops below threshold (Fig. 2E).

To summarize, we have found with the presence of delays, there are two additional
regions of the phase diagram (Fig. 2A) involving vosc:

iv) O: Only a homogeneous, large-amplitude oscillation (vosc) around v+ is stable.
v) O-H: Both a homogeneous oscillation (vosc) and high activity (v+) state are

stable.

The Hopf curve (3.9) is the boundary between the oscillatory (O) and bistable (O-H)
regions, while the nearby fold of limit cycles is the boundary between the bistable
(O-H) and high (H) activity regions. The non-smooth supercritical Hopf bifurcation
at E = 1 separates the oscillatory (O) and quiescent (Q) regions.
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Fig. 2. Homogeneous oscillations in the mean-field approximation (2.2) and the sLIF Network
(2.1) with delayed pulse coupling (3.5). Unless otherwise stated, parameters are J0 = −4, J1 = 0,
E = 3, and D = 2. A) Phase diagram of the mean-field approximation (2.2) in the J0, E plane.
Quiescent activity(Q, red), high activity (H, purple), bistable region of quiescent and high activity
(Q-H, green), oscillatory (O, yellow), and bistable region of oscillatory and high activity (O-H,
dashed black line). B) Upper: homogeneous oscillation in mean-field approximation. Lower: The
comparison of the population averages of both the above mean-field (black) and the sLIF network
(orange) simulated at the same parameters C) Hopf curves (3.9) in the J0, E plane with D =
{0.2, 0.5, 1}. The dashed line shows the location of the Hopf curve as D → ∞. D-F) Bifurcation
diagrams in J0, E, and D respectively, showing min/max amplitudes of stable (unstable) limit cycle
with solid (dashed) black line and homogeneous solution (red). sLIF simulation data shown with
grey circles. G-I) ||v − v+||L2(0,P ) where v is the steady state oscillations and P is the oscillation

period, shown for varying J0, E, and D respectively. J-L) The period of the steady state oscillation
for varying J0, E, and D respectively.
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Oscillatory behavior in the sLIF network (Fig. 2B lower panel, orange) quali-
tatively matches the mean-field approximation (Fig. 2B lower panel, black). Some
discrepancy is expected due to the mean-field approximation. The maximum am-
plitude (Fig. 2D-F) and L2 norm (Fig. 2G-I) of the sLIF network oscillations (grey
circles) is in general lower than that of the mean-field approximation (solid black line).
Additionally, the oscillatory region of the sLIF network is smaller since the onset of
oscillation at the Hopf bifurcation occurs at a lower E value, while the non-smooth
Hopf bifurcation remains at threshold (Fig. 2E).

We are able to observe the small bistable region O-H in the sLIF network with a
slow ramp of the bifurcation parameter through the region, starting on either side. We
show this process first with the mean-field approximation, where we know the location
of the Hopf bifurcation analytically and the location of the fold of limit cycles from
numerical continuation. We then repeat the process using the sLIF network and
observe similar phenomena.

We initialize a simulation of the mean-field (Fig. 3A, grey) in the oscillatory
region (O) at a stable limit cycle and slowly increase the parameter J0, through the
bistable region (Fig. 3A, green). As the ramp continues, the limit cycle (Fig. 3B,
Fig. 3A blue) persists until it loses stability at the fold marking the end of bistable
region. The network activity then transitions to the stable homogeneous state and
the oscillation decays.

For the reverse ramp (Fig. 3C), we choose initial conditions above the bistable
region near the stable homogeneous state. As J0 is slowly decreased through the
bistable region, the network stays close to the stable homogeneous solution (Fig. 3D),
until it loses stability at the Hopf bifurcation. A temporal oscillation then begins to
grow and converges to the stable limit cycle. The delayed loss of stability, where the
system stays close to the unstable homogeneous state after the bifurcation point, is
expected when simulating smooth dynamical systems near a Hopf bifurcation [32]. It
is due to the time it takes for the system to diverge from the unstable equilibrium.

We repeat both parameter ramps with the sLIF network. When increasing J0
from the oscillatory region (Fig. 3E), we observe a stable oscillation persisting in
the bistable region (Fig. 3F) and a similar loss of stability of the limit cycle, but
at a slightly lower J0 value than that of the mean-field approximation. Decreasing
J0 from the homogeneous regime, we again observe similar behavior to the mean-
field (Fig. 3G) where the behavior stays close to the homogeneous solution in the
bistable region (Fig. 3H), and then loses stability, but slightly lower J0 values than
the mean-field.

We have shown that in the sLIF network, the loss of stability of the homogeneous
solution occurs at a lower parameter value than where the limit cycle loses stability.
Thus there is a parameter range where the stationary and oscillatory solutions coexist.
We also demonstrate this bistability at set parameter values where a stimulus switches
the network between the homogeneous and oscillatory states in both the mean-field
approximation (Fig. 3I) and the sLIF network (Fig. 3J).

3.4. Spatial instabilities. Next, we investigate the instabilities induced by the
spatial modulation of the coupling function. A spatial instability occurs when a non-
zero spatial mode with zero temporal frequency becomes unstable. Recall that the
amount of the spatial modulation of the synaptic coupling is given by the parameter
J1. Assuming k = 1 and λ1 = 0 in the dispersion relation (3.7) with cosine coupling
(3.6) reveals the spatial instability at

(3.10) 4v0 = J1, if J1 > 4.
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Fig. 3. Bistability between high activity (v+) and oscillatory states (vosc) with E = 3 and
D = 2. A) The loss of stability of vosc in the mean-field (2.2) (grey) at the fold of limit cycles and
upper boundary of the bistable region (green) under slow ramp up of J0 (right arrow). The voltage
is plotted against the current value of J0, overlaid with the bifurcation diagram (black). B) A zoom
in on the stable oscillation in the bistable region of the mean-field simulation (A, blue) C) Loss of
stability of v+ (2.2) (grey) at the Hopf bifurcation and lower boundary of the bistable region (green)
under slow ramp up of J0 (left arrow). D) A zoom in on the near homogeneous solution in the
bistable region of the mean-field simulation (C, blue) in the same parameter range as (B). E) Same
as (A) but with the sLIF network (2.1). F) A zoom in on the stable oscillation in the bistable region
of the sLIF network simulation (E, blue) G) Same as (C) but with sLIF network. H) A zoom in on
the near homogeneous solution in the bistable region of the sLIF network simulation (G, blue) in the
same parameter range as (F). I) Homogeneous and oscillatory behavior of the mean-field equation
at set parameters (J0 = −3.04). Pulses of amplitude 1 and -1 and duration 2 and 1.75 were applied
to E at t = 25 and t = 62.5 to turn on(off) the oscillatory pattern. J) Homogeneous and oscillatory
behavior in the spiking network at set parameters (J0 = −3.22). Pulses of amplitude 1 and -1 and
duration 2 and 1 were applied to E at t = 25 and t = 58.

There is no spatial instability if J1 ≤ 4. It is an instability of v+ if J0 < J1/2 and of
v− if J0 > J1/2 (Fig. 4A, solid red and dashed red curves). The instability of v+ at
the k = 1 mode is a Turing bifurcation since the k = 0 mode is still stable. Thus we
call (3.10) with v0 = v+ the Turing curve. The instability of v−, on the other hand,
is a secondary instability since the k = 0 mode of v− is already unstable.

The spatial instability switches from v+ to v− at a codimension-2 bifurcation,
where the Turing and saddle node curves meet tangentially (Fig. 4A, red and black
curves). This occurs at the parameter values J0 = J1/2 and E = J0 − J2

0/4. When
J0 = J1/2, the k = 0 and k = 1 Fourier coefficients of the coupling function are equal
and thus the saddle-node (instability of the k = 0 mode) and Turing (instability of
the k = 1 mode) bifurcations coincide there.

The existence and location of the spatial instability curve depends on the amount
of spatial modulation in the coupling function (Fig. 4B). A natural question is why
J1 = 4 emerges as a critical value for the spatial instability defined by (3.10). This is
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because at J1 = 4, the spatial instability curve lies at the boundary of the regions of
where v± are above threshold (E = 1). If J1 < 4, then (3.10) is only defined in regions
where v± are below-threshold and no longer correspond to equilibria. We conclude
that J1 must exceed this critical value (J1 > 4) for pattern formation to occur.
Additionally, the Turing bifurcation of v+ only occurs when the spatial coupling is
either purely inhibitory (J0 < −|J1|) or has local excitation and long range inhibition
(|J0| < J1). This is illustrated later in Figs. 6A and D (Section 3.5), which show the
spatial instability curves in J0, J1 plane.
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Fig. 4. A) Phase diagram in J0, E plane showing quiescent (Q, red), high (H, blue), and
local (L, yellow) activity regions. Bistable regions notated with a hyphen (e.g. Q-H). B) Turing
bifurcation of v+ (solid red), the spatial instability of v− (dashed red), and saddle-node bifurcation
(black), shown for J1 = {4, 6, 10}. C) Stable bump solution from the mean-field model at E = 3, J0 =
−2, J1 = 8. D) Corresponding bump in a spiking network with N = 1000. E) the comparison of the
solution profiles of mean-field (blue) and sLIF network (black) from the simulations shown in (C) and
(D) at t = 20, smoothed over time and space, shown with the firing threshold (grey dashed). F-H)
Bifurcation diagrams (top) showing the subcritical Turing bifurcation: bump amplitude (black lines,
min/max) and homogeneous states (purple), with solid/dashed lines indicating stability. Bottom
panels show the L2 norm ||v − v+||L2(−π,π) of the bumps solutions. Continuation shown with: F)

varying E (J0 = 5, J1 = 10), G) varying J0 (E = 5, J1 = 10), H) varying J1 (E = 5, J0 = 5).

3.4.1. A bump solution. Beyond the instability of the first spatial mode, a
stationary periodic bump solution exists (Fig. 4C). The bump profile has portions
above and below threshold, corresponding to the active and inactive portions of the
network. We therefore call this the local activity state (L). The sLIF network also
exhibits local activity in a similar parameter regime (Fig. 4D), and the mean-field
theory (4E, blue) gives a reasonable approximation to the activity of the spiking
network (4E, black).

The Turing bifurcation is subcritical with a nearby fold of bump solutions. We
used numerical continuation of the bump solution and determined the stability with
numerical computation of eigenvalues for the mean-field linearization about the bump
state (see Appendix 6.2). An unstable branch of small-amplitude bump solutions
emerges backward when the active state v+ (Fig. 4F-H, purple) destabilizes through
the Turing bifurcation as E or J0 decrease or J1 increases (Fig. 4F-H, dashed black).
The numerical continuation revealed that any completely supra-threshold bump so-
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lutions are unstable. When the minimum value of the unstable bump drops below
threshold at v = 1, it is shortly followed by the fold where it meets a stable branch
of bump solutions. The stable branch extends off in both J0 (Fig. 4G) and J1 (Fig.
4H), but ends at a non-smooth Turing at E = 1 when v+ drops below threshold (Fig.
4F).

3.4.2. Multi-stability with the bump. Due to the subcritical nature of the
Turing bifurcation, there exists a bistable region of both the homogeneous and bump
states between the bifurcation point and the fold. Within this region, networks can
support either local or high activity behavior (Fig. 4A, “L-H”). Additionally, we find
that in a small neighborhood of the codimension-2 bifurcation of the Turing and
saddle-node, the non-smooth Turing is also subcritical with a nearby fold extending
into the quiescent region (Fig. 5). This gives rise to two additional regions of multi-
stability with the bump involving the quiescent state: a quiescent-local region and a
local-quiescent-high region (Fig. 4A, “Q-L” and “L-Q-H”) when the subcritical regions
of the two bifurcations overlap. These regions are listed here for completeness. A
detailed characterization of their boundaries is provided in the following section.

To summarize, we have identified four additional regions of the phase diagram
(Fig. 4A) involving the bump solution:

vii) L: A stable local (bump) solution exists.
viii) L-H: Local (bump) and High (v+) activity solutions exist and are stable.
viii) Q-L: Stable Quiescent (vQ) and Local (bump) solutions exist.

ix) L-Q-H: Local (bump), Quiescent (vQ), and High (v+) activity solutions exist
and are stable.

The spiking network also exhibits multi-stability in these regions. First, we ob-
serve bistability between the local and high activity states, as predicted by the sub-
critical Turing bifurcation in the mean-field approximation described above (Fig. 5A).
Additionally, we observe the bistability between the quiescent and local activity states
(Fig. 5B), as predicted by the subcritical non-smooth Turing, and bistability between
all three states (Fig. 5C).

3.4.3. Tracking the fold points to identify the boundaries of bistable
regions. The regions Q-L and L-Q-H only exist in a small neighborhood near the
co-dimension 2 bifurcation of the saddle-node and Turing bifurcations (Fig. 5D). The
boundaries of these and the surrounding regions are defined by the various instabilities
which occur in this neighborhood: the subcritical Turing bifurcation (Fig. 5D, solid
red) and nearby fold of bump solutions (Fig. 5D, dashed green), the saddle-node
bifurcation (Fig. 5D, solid black), and the subcritical non-smooth Turing (Fig. 5D,
solid orange) with a nearby fold of the bump solutions (Fig. 5D, dashed blue). We
refer to this second fold as the ‘lower’ fold since it occurs at lower E and J0 values
than the ‘upper’ fold. Since both of the spatial instabilities are subcritical in this
neighborhood, the boundaries of the stable bump region are determined by the folds.

To track the fold points and understand the interaction of various instabilities
in this region, we computed bifurcation diagrams across a range of parameter values
(Fig. 5E-L). These bifurcation diagrams are slices of the phase diagram (Fig. 5D)
with an additional dimension showing v. The upper row (Fig. 5E-H), which shows
continuation of the bump solution in the parameter E, are vertical slices of Fig. 5A
at different J0 values. The lower row (Fig. 5I-L), showing continuation in J0, are
horizontal slices of Fig. 5A at various E values.
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Fig. 5. Regions of multi-stability near codimension-2 bifurcations with J1 = 10. A-C) Raster
plots showing multi-stability of spiking network’s activity at parameter locations marked in panel
a. At t = 15 and t = 30, perturbations were applied to E. D) Phase diagram in J0, E plane
showing regions quiescent (Q), High (H), local (L) activity, and regions of bistability notated with a
hyphens (e.g. Q-H) separated by various bifurcation curves. Turing bifurcation of v+ (red, solid),
secondary spatial instability of v−(red, dashed), fold of bump solution (green and blue, dashed),
saddle-node bifurcation (black, solid), and ‘non-smooth’ saddle-node/Turing bifurcation (orange).
The codimension 2 bifurcation of the simultaneous Turing and saddle-node bifurcations marked with
an empty circle and the cusp-point of the two folds of bump solutions marked with an empty square.
E-H) Bifurcation diagrams in parameter E at the J0 value written at top of panel. Colored circles
corresponding to the various bifurcations curves shown in the phase diagram. I-L) Bifurcation
diagrams in parameter J0 at the E value written at top of panel.

In each of these bifurcation diagrams, the instabilities’ locations are marked with a
circle whose color matches the corresponding curve in the phase diagram (Fig. 5D). For
example, consider Fig. 5E, where five different instabilities (uniquely colored circles)
are visible. The saddle-node bifurcation, where v+ and v− collide and vanish, is
marked with a black circle. The Turing bifurcation, where a unstable bump solution
emerges from v+, is shown with a red circle. Both a non-smooth Turing and saddle-
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node bifurcation occur at the same point, shown with an orange circle, where v−, vQ,
as well as an unstable bump emerge as E is decreased. Lastly, there are two folds of
the bump solution: the upper fold (green circle), connected to the Turing bifurcation
via an unstable branch of bump solutions, and the lower fold (blue circle), connected
to the non-smooth Turing via an unstable branch. The stable branch connecting the
two folds determines where there is stable local activity.

All three regions of multi-stability with the bump solution are present when J0 = 4
(Fig. 5E). First, the L-H region, where only the bump solution and v+ are stable, lies
between the non-smooth Turing bifurcation and the upper fold. The Q-L region,
where there is bistability of vQ and the bump solution, lies between the lower fold
and the Turing bifurcation. The last region of multi-stability between three solutions
(the bump, vQ, and v+) lies between the Turing and non-smooth Turing bifurcations.

As J0 increases (Fig. 5F, J0 = 5), the L-H and Q-L regions vanish and L-Q-H is
the only remaining multi-stable region with the bump. The two fold points (green and
blue) have moved closer together and passed by the locations of the spatial instability
(red) and the non-smooth Turing (orange). Therefore the stable branch of bump
solutions between them is smaller and lies entirely in the region where both v+ and
vQ are also stable.

In addition to the loss of two of the bistable regions at J0 = 4, the location of
the spatial instability is now on the v− branch after having just passed through the
location of the saddle-node bifurcation (black circle) in a co-dimension 2 bifurcation.
Despite being a secondary instability, the emerging branch of unstable bump solutions
leads to a stable branch through a fold (Fig. 5F, green). We mark this secondary
instability of v− with an open red circle (largely obscured by the black circle) to
distinguish it from the Turing bifurcation of v+ (marked with a solid red circle in the
other panels).

If J0 is further increased (Fig. 5G, J0 = 5.75), the distance between the two folds
continues to decrease and thus the size of the L-Q-H region decreases. They continue
to approach each other until they collide and vanish in a codimension-2 cusp point
(Fig. 5D, empty square) along with the stable branch between them, ending the L-
Q-H region. Beyond the cusp point, an unstable branch of bump solutions remains,
connecting the spatial instability to the non-smooth bifurcation (Fig. 5H, J0 = 6.5).

We can also see the emergence and disappearance of these bistable regions as
the resting potential passes through threshold by looking at the continuation of the
bump solution in the parameter J0, at differing E values. When above threshold
(E > 1, Fig. 5I), there is no lower fold and thus the only bistable region with local
activity is L-H. The stable branch of bump solutions exists for all J0 values below the
upper fold extending off to −∞ and slowly decreasing in amplitude as J0 is decreased.
The stable branch also decreases in amplitude as E is decreased until at the threshold
(E = 1, Fig. 5J), it no longer extends to −∞ and instead meets vQ at the non-smooth
supercritical Turing bifurcation (Fig. 5J, J0 ≈ −1.3). This is where the non-smooth
Turing bifurcation becomes subcritical in the bifurcation parameter E and the lower
fold emerges. Recall there are multiple transitions between homogeneous solutions at
threshold. For J0 < 2, the above threshold state v+ meets the below threshold state
vQ (i.e. v+ = vQ = 1). For J0 > 2, there is the non-smooth saddle bifurcation where
both v− and vQ emerge. Thus the homogeneous solution at E = 1 is stable for J0 < 2
and half-stable (dash-dotted) for J0 > 2. Then below threshold (E < 1, Fig. 5K),
there is a lower fold and an unstable branch of bump solutions that extends off to +∞
in J0. Consequently, there are now Q-L and L-Q-H regions. As E decreases, the two
folds move closer (Fig. 5L) leaving only the L-Q-H region. The folds eventually meet
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in the codimension-2 cusp point (Fig. 5A, blue dashed, green dashed, empty square)
ending the branch of stable bump solutions and local activity region.

3.5. Spatiotemporal instabilities. In the presence of both a delay and spatial
modulation in the coupling, a spatiotemporal instability occurs and gives rise to spa-
tiotemporal patterns. From the dispersion relation (3.7) we find the spatiotemporal
instability in the first spatial mode (k = 1) at nonzero frequency (Im(λ1) 6= 0). It
occurs when v0 is above threshold and

(3.11)
−1

D
cos−1

(
4v0
J1

)
=
J1
2

√
1−

(
4v0
J1

)2

.

This instability is a Turing-Hopf bifurcation of v+ if J0 < J∗ and a secondary insta-
bility of v− if J0 > J∗, where J∗ is the J0 value of the codimension 2 point at which
the Turing-Hopf curve and saddle-node curve intersect.

Four primary bifurcations occur throughout the phase space when D 6= 0 and
J1 6= 0: the saddle-node, Hopf, Turing, and Turing-Hopf bifurcations (Fig. 6A,B:
blue, green, red, purple). The locations of these instabilities for any resting potential
above threshold (E > 1), are topologically similar to Fig. 6A with different scaling
dependent on E and the delay. Similarly, the locations of the instabilities when E < 1
are similar to Fig. 6B.

Formulaically, the Turing-Hopf curve (3.11) is similar to the Hopf curve (3.9).
This is because they are both instabilities with non-zero frequencies, but at different
spatial modes. Despite this, the Turing-Hopf curve increasingly resembles a reflection
of the Turing curve across J1 = 0 as the delay increases. This becomes exact in the
limit D →∞.

Beyond the Turing-Hopf bifurcation, we observe the emergence of standing and
traveling waves (Fig. 6E, F) induced by the O(2) symmetry of J to translations and
reflections in x. The sLIF exhibits both these patterns (Fig. 1G). In that simulation,
a standing wave spontaneously transitions into a traveling wave, suggesting metasta-
bility in the sLIF network. Bistability of the standing and traveling waves with other
states of the network remains to be investigated, and could be done using numerical
continuation of solutions implementing both delays and spatial modulation. This is
the final region of the phase diagram we describe:

x) SW-TW: Standing and traveling waves exist and are stable.

In regions beyond multiple primary instabilities, both the mean-field approxi-
mation and sLIF network exhibit a variety of additional spatiotemporal patterns,
some likely arising from secondary or higher-order bifurcations. Beyond both the
Turing and Hopf bifurcations, we observe an oscillatory bump (Fig. 6H, I). Beyond
the Turing-Hopf bifurcation, we observe additional types of dynamics likely due to
an additional instability (Fig. 6P-Q). Finally, beyond both the Turing-Hopf and Hopf
bifurcations, we observe a variety of mixed mode oscillations (Fig. 6J-S). Investigating
these secondary instabilities and the rich variety of dynamical patterns to which they
lead remains a direction for future research.

4. More realistic synaptic responses. Synaptic potentials are characterized
by three time scales: the latency or transmission delay (the time between the presy-
naptic spike emission and the postsynaptic response), as well as the rise time and
the decay time [18]. So far for the temporal profile, we have studied delayed pulse
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coupling, which models just the transmission delay. We next consider two additional
forms for the temporal coupling which also model the rise and decay times of the
synaptic potential. The first is the delayed exponential

(4.1) Jtime(t−D) =
J0
τ
e−(t−D)/τH(t)

where H is the Heaviside step function. This kernel implements a decay time of the
action potential in addition to the delay (Fig. 7A). The additional decay time smooths
the postsynaptic response to incoming spikes compared to pulse coupling (Fig. 7B).
The locations of the four primary instabilities are very similar to the pulsed coupling
case (Fig. 7C and D).

The delayed alpha function (Fig. 7E) is another option for the temporal profile
which also includes the rise time of the synaptic potential. It is defined by

(4.2) Jtime(t−D) =
J0
τ2

(t−D)e−(t−D)/τH(t−D).

This synaptic kernel further smooths the change in voltage of the postsynaptic neuron
upon the arrival of a spike (Fig. 7F). Again, the instability diagrams are qualitatively
similar to the two previous cases of temporal kernels (Fig. 7G and H). Notably, a
nonzero delay is not required for the existence of a Hopf bifurcation and homogeneous
oscillatory behavior with this temporal profile. The rise time of the alpha function
acts as an effective delay in the transmission of action potentials between neurons.

Due to the similarity of instability diagrams for these other synaptic response
functions, we expect similar dynamics arising at onset. See Appendices 6.5 and 6.6
for the derivation of the dispersion relations and instability curves for these cases.

5. Discussion. Patterns in neural activity are classically modeled using neural
field equations such as the Wilson-Cowan and Amari-Grossburg models [54, 2, 28].
These can be derived as explicit mean-field theories for highly simplified microscopic
models or by making strong assumptions like a separation of timescales between neural
and synaptic dynamics [39, 26, 9, 41]. This complicates their relation to biophysical
microscopic models. This discrepancy is one motivation for the development of next-
generation neural field theories from specific microscopic models [36, 46, 10].

Soft-threshold integrate-and-fire networks replace the nonlinear dynamics of spike
emission with a probabilistic spike-and-reset rule, but other biophysical detail can
be directly incorporated. This family of models is often studied with a population
density approach, which exposes rigorous mean-field limits [25, 17]. The mean-field
limit can also be exposed through the joint density functional of network, rather than
the population density [42, 38]. The population density approach has recently been
extended to networks with either spatial connectivity or delays, exposing Hopf or
Turing bifurcations separately [33, 20, 19, 16].

Here, we instead used a deterministic approximation to study the dynamics of
soft-threshold leaky integrate-and-fire (sLIF) networks with both synaptic delays and
spatial connectivity. This approximation has a similar form to the classic Amari-
Grossberg equations with an additional term due to the voltage resets after action
potentials. We found oscillatory, spatial, and spatiotemporal instabilities that gener-
ate coherent activity patterns such as bulk oscillations, standing bumps, standing and
traveling waves. We identified various multi-stable regions of different network states
due to the sub-criticality of the Hopf and Turing bifurcations. In these regions, the
network can support both patterned behavior and a homogeneous state (quiescent or
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Fig. 7. Instabilities with other temporal coupling profiles. A) The delayed exponential profile
(4.1) B) presynaptic neuron (red) emits a spike causing a change in membrane voltage of postsynap-
tic neuron (blue) after the delay. C) Primary instabilities present above threshold with the delayed
exponential: Hopf(green), Turing(red), Turing-Hopf(purple), E = 2, D = 1, and τ = 1. D) Primary
instabilities present below threshold with the delayed exponential: Saddle(blue), Turing(red), Turing-
Hopf(purple), E = −2, D = 1, and τ = 1. E) The delayed alpha function (4.2). F) Presynaptic
neuron (red) emits a spike causing a change in membrane voltage of postsynaptic neuron (blue) after
the delay. G) Primary instabilities present above threshold with the alpha function: Hopf(green),
Turing(red), Turing-Hopf(purple), E = 2, D = 1, and τ = 1. H) Primary instabilities present below
threshold with the alpha function: Saddle(blue), Turing(red), Turing-Hopf(purple), E = −2, D = 1,
and τ = 1.

active), and can be switched from one state to the other by global or local perturba-
tions. We confirmed all these predictions of the mean-field dynamics in simulations
of the underlying microscopic stochastic system.

The classic neural field equation, ∂tx = −x + f(E + J ∗ x) on the ring, has
similar transitions from a homogenous equilibrium to oscillatory and bump solutions
in the presence of delays and spatially modulated coupling [44, 4]. The locations of
those bifurcations differ in the classic rate and sLIF networks, however. For example,
in the classic neural field equation the Turing instability of the homogenous active
state occurs at J1 = 2; in the sLIF mean-field dynamics we studied, the Turing
instability occurs at 2J1 = J0 +

√
J2
0 + 4(E − J0) ((3.10)). Secondary bifurcations

and codimension-2 points also differ between the two models.
From a mathematical point of view, all of the primary bifurcations we described

could be studied using a parameter dependent infinite-dimensional center manifold
reduction [30, 52, 3]. When J has no delay, the bifurcating eigenvalues in each case
are discrete, with finite multiplicity and a spectral gap to the rest of the spectrum,
all of which lies in the left half plane. One would derive a finite-dimensional ODE
system which unfolds the various bifurcations, as well as their codimension-two points,
and rigorously establishes the non-trivial states (oscillations, periodic pattern, etc.).
Due to the lack of other positive spectrum of the homogeneous equilibrium at the
bifurcation, one can use invariant foliations to show the center manifold attracts all
nearby trajectories, and hence that stability on the manifold implies local stability in
the full PDE. It would then be of interest to see if higher order expansions and/or
analytic continuation could be used to capture the large amplitude fold state.
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The sLIF networks we studied are members of a broader family of soft-threshold
integrate-and-fire networks with richer voltage dynamics. Soft-threshold integrate-
and-fire networks with nonlinear voltage dynamics can have oscillatory solutions [16].
Adaptive exponential integrate-and-fire neurons can capture a broad range of single-
neuron spike patterns [37, 49]. Adaptive nonlinear soft-threshold integrate-and-fire
networks are also amenable to the same type of mean-field approximation we used
here. Including excitatory and inhibitory cell types and their relative spatial coupling
profiles and synaptic timescales may also give rise to new spatiotemporal dynamics
[31].

Furthermore, it would be of interest to consider these patterns on unbounded
domains as well as infinite dimensions. Near the Turing instabilities found here, we
expect a family of (subcritical) periodic waves to bifurcate. The subcriticality and
bistability in the bounded domain problem indicates it should be possible in the
unbounded domain to construct fronts connecting the periodic state to the quiescent
state, localized patterns, and other complex modulated waves [23, 24].

Next-generation neural field theories also aim to explicitly describe fluctuations,
correlations, and synchrony [10]. The neural field equations we study can be straight-
forwardly extended to include these through a fluctuation expansion of the density
functional of the underlying microscopic model [38, 9, 6]. For the sLIF networks
studied here, there are three possible types of fluctuation correction: 1) corrections
to the mean-field rate f(v̄) due to fluctuations in the voltage, 2) a correction to the
mean-field voltage dynamics due to the spike-voltage covariance, and 3) variability in
the synaptic field due to correlated or finite-size fluctuations in the activity. These
have each been studied in non-spatial networks [38, 40, 45]. How these different fluc-
tuations interact with neural nonlinearities to shape spatiotemporal patterns in sLIF
networks remains to be investigated.
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6. Appendix.

6.1. Further reading. We used largely standard methods for linear stability
analysis of partial differential equations and numerical continuation, as described in
[14, 5, 50]. In the following sections, we describe these computations in detail.

6.2. Numerical methods.

6.2.1. Simulations. Simulations of the mean-field approximation (2.2) were
done using the forward Euler method with a step size of dt = 0.001. The ring (0, 2π]
was descritized as xi = −π + 2π

N i, i = 1, ..., N , and N = 100 (N = 1000 for MF
simulations of spatiotemporal dynamics in Fig. 6).

Simulations of the sLIF network (2.1) were done using the stochastic forward
Euler method with step size dt = 0.001 with N = 1000. The spatial coupling was
implemented within the randomly sparse connectivity matrix J ∈ RN×N . The con-
nections between neuron pairs (i, j) were independently sampled as Bernoulli random
variables with probability p = 0.5. Each connection has synaptic weight given by
Jij = 2π

pN (J0 + J1 cos(xi − xj)). Self-connections are excluded by setting Jii = 0. We
generated spikes by sampling dni as Bernoulli random variables at each time step
with success probabilities f(vi)dt. Finally, synaptic delays were incorporated with a
time-shift of Ndelay = bD/dtc to the synaptic input.

The initial conditions must be defined for t ∈ [−D, 0] due to the presence of
the delay. Most patterns were initialized with constant initial conditions or the
stationary form A + B cos(x). For the traveling wave pattern seen in Fig. 6F, we
used an initial condition of the form A + B cos(x + tv) with v 6= 0 to induce wave
propagation. Details for specific initial conditions are found in the code repository
https://github.com/lcforbes4/sLIFspatioTemporal.

6.2.2. Inducing network transitions in bistable regions. To switch from
the high activity state to the oscillatory state (Fig. 3 I-J), a positive pulse with short
duration was applied to the entire network. To turn off the oscillatory state and
return to the high activity state, a negative pulse was applied during the peak of the
oscillations to suppress oscillatory activity. The timing, amplitude, and duration of
the negative pulse were fine tuned to the particular simulation and set of parameters
to achieve the return to the high activity state. See figure caption for specific pulse
parameters.

In all three simulations (Fig. 5A–C), a spatially dependent drive of the form
−2 cos(x), applied for a duration of 1, was used to induce a transition to local network
activity. To transition from the local activity state to the high activity state (Fig. 5,
A and C), a pulse with amplitude -2 was applied to the quiescent middle third of the
network (neurons [N/3 : 2N/3]). To transition from the local activity state to the
quiescent state (Fig 5 B), a pulse with amplitude -2 was applied to the active outer
two thirds of the network (neurons [0 : N/3] and [2N/3 : N ]).

6.2.3. Continuation of oscillatory solutions. Continuation of oscillatory so-
lutions was performed using a one-dimensional, spatially homogeneous mean-field
reduction (2.2). This approximation assumes zero spatial modulation (J1 = 0) in
the coupling function, such that each neuron in the network evolves according to the
spatially independent delay-ODE. We used the Matlab package DDE-Biftool, which
was developed for bifurcation analysis of delay differential equations (DDEs)([21] [47]).
First, we computed and continued a branch of equilibria along with the spectrum of
its linearization to identify the location of the Hopf bifurcation. Then we initialized

https://github.com/lcforbes4/sLIFspatioTemporal
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a small-amplitude orbit near the Hopf bifurcation to construct and continue a branch
of oscillatory solutions. Stability of periodic orbits was determined by simultaneously
computing Floquet multipliers of the linearized periodic map.

6.2.4. Continuation of bump solutions. The periodic bump solutions com-
puted in Section 3.4 are steady-state solutions of the mean-field approximation (2.2)
with spatial connectivity (J1 6= 0) but without delay (D = 0). To compute these so-
lutions numerically in Matlab, we discretized (2.2) using a Fourier spectral method
with N = 212 modes on the periodic domain [0, 2π). We denote the discretized time-
independent version of (2.2), as the non-linear system F1(v) = 0 where v ∈ RN is the
spatially discretized steady-state solution.

To obtain a good initial guess for the bump, we ran a short Euler time-stepper
initialized with a small perturbation (of order 10−1) of the spatially homogeneous
steady state. To fix the continuous translational symmetry on the ring, we appended
the following phase condition on our system

F2(v) = 〈u(x), sin(x)〉L2 = 0,

which pins the solution, and modified F1 with an additional drift term c∂xv. The
imposition of this condition requires an additional unknown or dummy variable c.

We then solved the resulting augmented system F (v, c) =

[
F1(v) + c∂xv

F2(v)

]
= 0 for v

and c using a Newton–GMRES method, where vector products in the Jacobian were
computed spectrally and GMRES without preconditioning was used to compute the
Newton step.

Once the initial bump solution was obtained, we performed numerical contin-
uation in a single bifurcation parameter β using secant continuation. To do this,
we introduced the augmented variable z = [v, c, β] and appended the orthogonality
condition

F3(z) = 〈z − z0, sec〉 = 0,

where z0 = [v0, c0, β0] is the previously computed solution in the continuation and
sec ∈ RN+2 is the normalized secant vector between the two most recent solutions.
The variable c stays uniformly close to zero throughout the continuation. The com-
plete augmented system used for secant continuation is then

F (z) =

F1(v) + c∂xv
F2(v)
F3(z)

 = 0 where z = [v, c, β].

At each step of the continuation, we computed the spectral stability of the lin-
earized operator near the origin with leading eigenvalues of Jacobian of the original
system F1 (without the phase and orthogonality conditions) and Matlab’s eigs func-
tion. In Fig. 8, we plot the real part of the eigenvalues with Re(λ) > −5 along the
entire continuation curve in the parameter E. The continuation starts at the Turing
bifurcation and initially has an eigenvalue with Re(λ) > 0, indicating instability and
likely a subcritical bifurcation. When the largest eigenvalue drops below zero (which
occurs near E = 2.90), marks the location of a fold of bump solutions and the continu-
ation’s switch onto the stable branch at the upper fold. The continuation then follows
the stable branch until the lower fold where a real part of an eigenvalue becomes posi-
tive (E = 0.22) and solutions are unstable until terminating at the non-smooth Turing
bifurcation. The eigenvalue with Re(λ) = 0, which remains present throughout the
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continuation, is a consequence of the translational invariance of solutions on the ring.
The locations of the two fold curves in the phase diagram in Fig. 5D were identified
by determining the location of the fold in multiple single-parameter continuations of
the bump solution at varying parameters, not through continuation of the fold itself.

Fig. 8. Tracking eigenvalues along the continuation of the bump solution.

6.3. General dispersion relation. To derive the dispersion relationship, we
consider the mean-field approximation with a general coupling function J(x, t − D)
where J(x, t) ∈ L1((−π, π)× (0,∞)) along with the intensity function f(v(x, t)),
(6.1)

∂tv(x, t) = −v(x, t) + E − f(x, t) v(x, t) +

∫ t−D

−∞

∫ π

−π
J(x− y, t− s−D) f(y, s) dy ds

with periodic spatial domain, x ∈ (−π, π]. Assuming v = v0 + εw, we linearize (6.1)
about its stationary uniform solution, v0 = E − v0f(v0) + (J ∗ f(v0))(x, t−D),
(6.2)

∂tw = (−1− f(v0)− v0f ′(v0))w + f ′(v0)

∫ t−D

−∞

∫ π

−π
J(x− y, t− s−D)w(y, s) dy ds

Taking the Fourier transform of (6.2) in space results in the following system of
differential equations indexed by the wave number k

(6.3) ∂tŵk = (−1− f(v0)− v0f ′(v0))ŵk + f ′(v0)

∫ t−D

−∞
Ĵk(t− s−D)ŵk(s) ds , k ∈ Z

where ŵk(t) =
∫
e−ikxw(x, t) dx and Ĵk(t) =

∫
e−ikxJ(x, t) dx are the time-dependent

kth Fourier coefficients of w and J . Finally, making the ansatz ŵk = eλkt and the
substitution s̃ = t− s−D, we get the dispersion relation

(6.4) λk = −1− f(v0)− v0f ′(v0) + f ′(v0)e−λkD

∫ ∞
0

Ĵk(s̃)e−λk s̃ ds̃

Note that with the additional assumption of a threshold linear intensity function of
the form f(v) = bv − 1c+, (6.4) simplifies to (3.3).
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6.4. Instabilities with delayed pulse coupling. To derive the dispersion
relation for delayed pulse coupling, we assume Ĵk(t) = Ĵkδ(t), f(v) = [v − 1]+, and
v0 > 1. The dispersion relation (6.4) then simplifies to

(6.5) λk = −2v0 + Ĵke
−λkD

Separating the real and imaginary components of (6.5) and assuming the instability
condition Re(λk) = 0, {

0 = −2v0 + Ĵk cos(−Dλi,k)(6.6a)

λi,k = Ĵk sin(−Dλi,k)(6.6b)

where λi,k := Im(λk). We remark that the eigenvalue equation can also be formu-
lated with the Lambert W equation [15] to achieve the same results. From now on,
we assume the Fourier coefficients of cosine spatial coupling (3.6) which are Ĵ0 = J0,
Ĵ±1 = J1/2, and Ĵk = 0∀k /∈ {0,±1}. We next identify the locations of four instabil-
ities of the stationary uniform equilibria v± given in (3.1).

I. Saddle-node Bifurcation (k = 0, λi,0 = 0): This is an instability of the k = 0
mode with zero temporal frequency. Given that the imaginary part of the eigenvalue
is zero, (6.6b) is trivial. Then by substituting the form of v± given in (3.1), (6.6a)
simplifies to J0 = 2 ± 2

√
1− E. Note that in the minus case, neither v± are above

threshold and thus are not equilibria. Therefore the instability only occurs along the
curve

(6.7) J0 = 2 + 2
√

1− E

II. Hopf Bifurcation (k = 0, λi,0 6= 0): This is an instability of the k = 0 mode
with non-zero temporal frequency. We solve (6.6a) for λi yielding λi = −1

D cos−1( 2v0
J0

),

using the principle branch of cos−1. Substituting this form of λi into (6.6b) gives the
Hopf curve as an implicit function of the parameters

(6.8)
−1

D
cos−1

(
2v0
J0

)
= J0

√
1−

(
2v0
J0

)2

We show below that only v+ can undergo a Hopf Bifurcation if 3J2
0 + 4J0 > 4E,

v+ > 1, and J0 < 0. Using the expression for v± in terms of the parameters given in
(3.1), the real part of the dispersion relation (6.6a) simplifies to

(6.9) 1± |J0|
J0

√
1 +

4(E − J0)

J2
0

= cos(−Dλi)

Due to the range of cosine, (6.9) is only well defined for the minus case (instability
of v−) if J0 > 0. (6.9) is well defined for the plus case (instability of v+) if J0 < 0.
But since the principle branch of arccosine is a non-negative function, the Hopf curve
given in (6.8) is only well defined for J0 < 0. Therefore, we conclude that only v+
can undergo a Hopf bifurcation.
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Finally, to satisfy the domain of arccosine, we have the condition

(6.10)

∣∣∣∣2v0J0
∣∣∣∣ =

∣∣∣∣∣J0 +
√
J2
0 + 4(E − J0)

J0

∣∣∣∣∣ < 1

which can be rewritten as the set of inequalities 3J2
0 + 4J0 > 4E, v+ > 1, and J0 < 0.

We note that using implicit differentiation, one can also show the transverse
crossing condition of a Hopf bifurcation is satisfied along the curve (6.8). Additionally,
for D � 1, the Hopf Curve lies approximately at 3J2

0 + 4J0 = 4E.

III. Turing Bifurcation (k = 1, λi,1 = 0): This is an instability of a non-zero mode
with zero temporal frequency. Similar to the saddle-node bifurcation case, since the
imaginary part of the eigenvalue is zero, (6.6b) is trivial and (6.6a) simplifies to
2v0 = J1/2. Note that v0 > 1 only if J1 > 4. Therefore, there is a spatial instability
of v± at

(6.11) ±
√
J2
0 + 4(E − J0) = J1/2− J0 if J1 > 4

This can be rewritten as

(6.12) E = J2
1/4 + J0(4− J1)

which corresponds to the Turing Bifurcation of v+ if J0 < J1/2 and a secondary
instability of v− if J0 > J1/2.

IV. Turing-Hopf (k = 1, λi,1 6= 0): This is an instability of a non-zero mode with
non-zero temporal frequency. Similar to the Hopf bifurcation case, we substitute
λi,1 = −1

D cos−1( 2v0
J0

) from (6.6a) into (6.6b). This gives the curve of a spatiotemporal
instability of v0

(6.13)
−1

D
cos−1

(
4v0
J1

)
=
J1
2

√
1−

(
4v0
J1

)2

if v0 > 1 as well, which occurs if J1
4 cos(Dλi,1) > 1 from (6.6a).

Note that this curve intersects the saddle-node curve in a codimension-2 bifurca-
tion if J0 = J1

2 cos(−Dλi,1). The instability (6.13) is a Turing-Hopf bifurcation of v+
if J0 <

J1
2 cos(−Dλi,1) and a secondary instability of v− if J0 >

J1
2 cos(−Dλi,1).

6.5. Instabilities with delayed exponential coupling. To identify the loca-
tions of instabilities with the delayed exponential temporal profile of the coupling, ie
Ĵk(t) = Ĵkτ

−1e−(t)/τH(t), we assume f(v) = [v − 1]+ and v0 > 1. The dispersion
relation (6.4) then simplifies to

(6.14) λk = −2v0 + Ĵke
−λkD

1

(1 + λkτ)

Separating the real and imaginary components of (6.14) with the assumptionRe(λk) =
0 results in

{
−τλ2i,k = −2v0 + Ĵk cos(λi,kD)(6.15a)

λi,k = Ĵk sin(−λi,kD)− 2v0λi,kτ(6.15b)



COHERENT DYNAMICS IN SOFT-THRESHOLD INTEGRATE-AND-FIRE NETWORKS25

Note that when λi,k = 0, (6.14) is equivalent to (6.5). Therefore the instabilities
with zero temporal frequency occur along the same curves as the delayed pulse case.
The saddle-node bifurcation in the delayed exponential case is then also given by (6.7)
and the Turing bifurcation is given by (6.12).

To identify the locations of instabilities with non-zero temporal frequencies, first
rewrite (6.15b) as λi = Ĵk sin(−λi,kD)/(1+2v0τ) and substitute it into (6.15a) to get

−τ

(
Ĵk sin(−λi,kD)

1 + 2v0τ

)2

= −2v0 + Ĵk cos(λi,kD)

Then, by using the identity sin2(x) = 1 − cos2(x) and defining y := cos(λi,kD), we
can transform the equation above into the quadratic

(−Ĵ2
kτ)y2 + (Ĵk + 4v0τ Ĵk + 4v20τ

2Ĵk)y + (τ Ĵ2
k − 2v0 − 8v20τ − 8v30τ

2) = 0

We solve this quadratic for y and thus for λi,k = D−1 arccos(y)

(6.16)

λi,k =
1

D
arccos

(
(1 + 4v0τ + 4v20τ

2)

2Ĵkτ

±

√
(1 + 4v0τ + 4v20τ

2)2 + 4τ(τ Ĵ2
k − 2v0 − 8v20τ − 8v30τ

2)

2Ĵkτ

)

Plugging this λi, which is in terms of the parameters Ĵk, E, τ,D, into the imaginary
part of our dispersion relation (6.15b) gives

arccos

AĴk ± |Ĵk|
√
A2 + 4τ(τ Ĵ2

k − 2v0A)

2Ĵ2
kτ

 (1 + 2v0τ)

= −ĴkD

√√√√√1−

AĴk ± |Ĵk|
√
A2 + 4τ(τ Ĵ2

k − 2v0A)

2Ĵ2
kτ

2

(6.17)

where A = 1 + 4v0τ + 4v20τ
2. This is the Hopf curve when k = 0 and Ĵk = J0 or the

Turing-Hopf curve when k = 1 and Ĵk = J1/2.
Next, we will look at which parameter values and which equilibria v0 the curve

(6.17) is well defined for. First, we note that the range of the principle branch of
arccosine is non-negative, so (6.17) is not defined for Ĵk > 0.

To satisfy the domain of arccosine in (6.16) to be defined, we need∣∣∣∣∣∣
A±

√
A2 + 4τ(τ Ĵ2

k − 2v0A)

2Ĵkτ

∣∣∣∣∣∣ ≤ 1.

When k = 0, the minus case does not satisfy this inequality and the plus case can be
rewritten as the set of conditions. J0 < −2, v+ > 1, and 4E < 4J0 + 3J2

0 . Therefore
the Hopf and Turing-Hopf bifurcations are both instabilities of v+
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6.6. Instabilities with alpha function coupling. To identify the dispersion
relation and primary instabilities of the homogeneous solution with the delayed alpha
function chosen for the temporal coupling profile, we assume v0 > 1, f(v) = [v − 1]+

and Ĵk(t) = Ĵk
τ2 te

−t/τH(t). The dispersion relation (6.4) becomes

(6.18) λk(1 + λkτ)2 + 2v0(1 + λkτ)2 = Ĵke
−λkD

Separating the real and imaginary components of (6.18) with the assumptionRe(λk) =
0, {

λ2i,k(−2τ − 2v0τ
2) = Ĵk cos(Dλi,k)− 2v0(6.19a)

λi,k(1 + 4v0τ − λ2i,kτ2) = −Ĵk sin(Dλi,k)(6.19b)

When λi,k = 0, as in the precious cases, the saddle-node and Turing bifurcations are
given by (6.7) and (6.12) respectively.

Next we identify the other two types of instabilities which have non-zero temporal
frequency. From the real part of the dispersion relation (6.19a), we solve for λi,k

λi = ±

√
Ĵk cos(λiD)− 2v0
−2τ − 2v0τ2

and substitute it into the imaginary equation (6.19b),
(6.20)(

Ĵk cos(λi,kD)− 2v0
−2τ − 2v0τ2

)(
1 + 4v0τ −

(
Ĵk cos(λi,kD)− 2v0
−2τ − 2v0τ2

)
τ2

)2

= Ĵ2
k sin2(λi,kD)

Then, using the identity sin2 x = 1− cos2 x and defining y := cos(λi,kD), we have the
equation

(6.21)

(
Ĵky − 2v0
−2τ − 2v0τ2

)(
1 + 4v0τ −

(
Ĵky − 2v0
−2τ − 2v0τ2

)
τ2

)2

= Ĵ2
k (1− y2)

which can be rewritten as cubic in y

(6.22) − Ĵ3
kτ

8(τv + 1)3
y3 +

Ĵ2
k

(
4τ3v3 + 4τ2v2 + 5τv + 2

)
4(τv + 1)3

y2

−
Ĵk(2τv + 1)2

(
4τ2v2 + 2τv + 1

)
2τ(τv + 1)3

y +
v(2τv + 1)4 − Ĵ2

kτ(τv + 1)3

τ(τv + 1)3
= 0.

We can explicitly solve for the roots of the cubic, one of which is always real.
Finally, substituting λi,k = 1

D arccos(y) into the real equation (6.19a) gives an
implicit equation of the instability in terms of the system parameters

(6.23) (
1

D
arccos(y))2(−2τ − 2v0τ

2) = Ĵky − 2v0

This is the Hopf curve when k = 0 and Ĵk = J0 and a Turing-Hopf curve when k = 1
and Ĵk = J1/2.
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