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We study the modulational dynamics of striped patterns formed in the wake of a planar directional quench. Such
quenches, which move across a medium and nucleate pattern-forming instabilities in their wake, have been shown in
numerous applications to control and select the wavenumber and orientation of striped phases. In the context of the
prototypical complex Ginzburg-Landau and Swift-Hohenberg equations, we use a multiple-scale analysis to derive a
one-dimensional viscous Burgers’ equation which describes the long-wavelength modulational and defect dynamics
in the direction transverse to the quenching motion, that is along the quenching line. We show that the wavenumber
selecting properties of the quench determines the nonlinear flux parameter in the Burgers’ modulation equation, while
the viscosity parameter of the Burgers’ equation is naturally determined by the transverse diffusivity of the pure stripe
state. We use this approximation to accurately characterize the transverse dynamics of several types of defects formed
in the wake, including grain boundaries and phase-slips.

Directional quenching is a novel way to harness self-
organized pattern-forming processes in a variety of sys-
tems. Here an external mechanism rigidly progresses
across a medium, exciting pattern-forming instabilities in
its wake. While recent work has sought to understand how
the orientation and wavenumber of striped patterns are
selected by the quench, little has been done to understand
the dynamics of defects and modulations of such patterns.
Focusing on the interfacial dynamics of the patterned
front just behind the quench, we derive a viscous Burgers’
modulation equation to understand slowly-varying modu-
lational dynamics in the direction perpendicular, or trans-
verse, to the quenching motion. Crucially, we find that the
selected wavenumber in the direction of quenching motion
determines the parameters of the viscous Burgers’ equa-
tion. We evidence the ubiquity of this modulational ap-
proximation by characterizing several types of wavenum-
ber defects in quenched versions of the prototypical Com-
plex Ginzburg-Landau and Swift-Hohenberg equations.

I. INTRODUCTION

Directional quenching has arisen as a novel way to harness,
mediate, and control pattern forming instabilities in diverse
application areas. Generally, some sort of external mecha-
nism, possibly controlled by the experimenter, travels across
the domain initiating a pattern-forming instability in its wake.
One then hopes to control the shape, size, and orientation of
the pattern by altering the speed and structure of the quench.
Some examples include ramped fluid flows (Ref. 1), solid-
ification problems in crystal formation (Ref. 2) , and light-
sensing reaction-diffusion experiments (Refs. 3 and 4). Ad-
ditionally, directionally quenched systems serve as a proto-
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type and testbed to understand how spatio-temporal hetero-
geneities and growth processes affect pattern-forming sys-
tems. Most works have studied the existence of stripe-forming
front solutions in the wake of a quench, in particular focusing
on how the quenching speed and shape affect the orientation
and bulk wavenumber of the far-field pattern. Furthermore,
a few works have studied (in)stability of these front solutions
in specific systems (Ref. 5 and 6). See (Ref. 7 and 8) for
recent reviews of these works as well as references to other
application areas.

In comparison, relatively little is known about the dynam-
ics, defects, and interactions of striped patterns formed in dif-
ferent sub-domains behind the quench. This becomes a ques-
tion of interest, for example, when one studies the evolution
of a quenched system starting with small fluctuations of the
homogeneous background state. Here, patches of large am-
plitude patterns interact through defects which move along the
quenching line. See for example Fig. 3 of the aforementioned
(Ref. 3) or Fig. 2 of (Ref. 4). There a quench, while gen-
erally organizing the wavenumber and orientation of the local
striped phase, still leaves behind several defects and imperfec-
tions which evolve as the quench moves through the system.
See also, for example, Figure 1 below which depicts the evolu-
tion of the quenched domain from random perturbation of the
trivial state in the complex Ginzburg-Landau equation. Moti-
vated by such phenomena, we seek to understand and model
defect dynamics in such quenched stripe formation.

This work considers quenched patterns in two spatial di-
mensions where the quench rigidly propagates in the horizon-
tal direction. Previous works have shown that such quenches
select the horizontal wavenumber kx, and thus the temporal
frequency ω , of the asymptotic pattern. In particular, they
are determined by the quenching speed c and the transverse
wavenumber ky. We use a formal multiple-scales analysis to
derive a reduced one-dimensional model for transverse modu-
lations of striped patterns, that is we consider vertical mod-
ulations along the quenching line. As they determine the
far-field pattern, we focus on solution dynamics just behind
the quenching line. We show that a one-dimensional vis-
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cous Burgers’ equation accurately predicts the dynamics of
slowly-varying, small amplitude wavenumber modulations.
Most strikingly, we find that the selection of a unique hor-
izontal wavenumber kx for a given speed c determines the
viscosity and nonlinear flux parameters in the associated vis-
cous Burgers’ equation. In Section II, we demonstrate our
approach through asymmetric grain boundary and phase-slip
examples in the prototypical complex Ginzburg Landau equa-
tion. In Section III, we then show its applicability in the Swift-
Hohenberg equation, studying similar types of defects. We
expect such modulation equations will predict transverse dy-
namics in many other quenched systems where the asymptotic
pattern is diffusively stable (Ref. 9 ). While we mostly focus
on transverse modulations of vertically independent stripes,
with ky = 0 so they are oriented parallel to the quench, we
expect our results to apply to slowly-varying modulations of
obliquely oriented stripes as well. Finally, in Section IV we
discuss future directions and briefly propose a phenomenolog-
ical boundary condition, derived from the selected wavenum-
ber kx as a function of ky, to study quenched stripe modu-
lations for the CGL equation using a fully two-dimensional
nonlinear phase diffusion equation.

II. PROTOTYPICAL EXAMPLE: THE QUENCHED
COMPLEX GINZBURG-LANDAU EQUATION

A. Quenched stripes

To introduce our approach, we consider the complex
Ginzburg-Landau (CGL) equation (Ref. 10) with cubic su-
percritical nonlinearity, posed in the plane,

At = (1+ iα)∆A+χ(x− ct)A− (1+ iγ)A|A|2 (1)
A ∈ C, (x,y) ∈ R2, α,γ ∈ R,

with directional quenching heterogeneity, χ(ξ ) = −sign(ξ ),
a step-function which rigidly propagates with speed c ≥ 0 and
which renders the trivial state A = 0, which is stable for x−
ct > 0, into an unstable state for x− ct < 0. We transform
into a co-moving frame of speed c in the horizontal direction,
setting ξ = x− ct, to obtain

At = (1+ iα)(∂ 2
ξ
+∂

2
y )A+ cAξ +χ(ξ )A− (1+ iγ)A|A|2.

(2)

Due to the invariance of the equation under the gauge action
A 7→ eiθ A, the homogeneous version of (2) with χ ≡ 1 has
explicit spatially periodic relative equilbria Ap(ξ ,y, t;kx,ky) =

rei(kxξ+kyy−ωt) with respect to this symmetry action. Further-
more, the amplitude r and wavenumber k2 = k2

x + k2
y satisfies

the following nonlinear dispersion relation in the co-moving
frame

r2 = 1− k2, ω = (α − γ)k2 − ckx + γ. (3)

Once again due to the gauge invariance, the simplest stripe
forming front solutions of (2) take the form

A(ξ ,y, t) = ei(kyy−ωt)Af(ξ ;c,ky), (4)

where Af is a function of the co-moving frame variable ξ , c
the quenching speed, and ky the transverse wavenumber of
the front. It solves the following traveling wave ODE with
corresponding asymptotic boundary conditions

0 = (1+ iα)(∂ 2
ξ
− k2

y)Af + cAf,ξ +(χ(ξ )+iω)Af

− (1+ iγ)Af|Af|2, (5)

0 = lim
ξ→−∞

∣∣∣Af(ξ )− reikxξ

∣∣∣ , 0 = lim
ξ→+∞

Af(ξ ), (6)

for some horizontal wavenumber kx. To summarize, Af con-
nects the stable trivial state ahead of the quench to a periodic
pattern with horizontal wavenumber kx. If a solution of (5)-(6)
exists, one obtains a solution of the full PDE which connects
a striped pattern with wavevector (kx,ky) to the trivial state
ahead of the quench. The work (Ref. 11) rigorously estab-
lished the existence of such fronts for ky = 0 in the fast growth
regime where c<∼ clin := 2

√
1+α2, the linear spreading speed

of fronts invading into the homogeneous unstable state for
χ ≡ 1 (Ref. 12). It showed that the temporal frequency ω ,
and thus the horizontal wavenumber kx is determined, or “se-
lected," by the quenching speed c, giving leading order expan-
sions for this dependence. We denote these selected quantities
as ωf and kx,f. Further, since the term involving ky is a regular
perturbation, we expect a family of front solutions, smoothly
dependent on k2

y , to persist for ky ∼ 0. This means that (5)-
(6) has a solution for an interval of ky values containing 0 for
each c ∈ (0,clin) fixed. Hence the frequency and horizontal
wavenumber will also be selected by k2

y . In sum, these quan-
tities can be written locally as graphs ωf(c,ky),kx,f(c,ky) over
(c,ky)-space; see Fig. 28 of (Ref. 8) for more discussion of
these graphs. We denote the corresponding family of front
solutions as Af(ξ ;ky,c). Figure 2 gives numerical continua-
tion results using AUTO07p (Ref. 13) which continue fronts
Af and horizontal wavenumber kx,f in both c and ky for sev-
eral values of α . We refer to the corresponding surface in
(c,ky,kx)-space as the moduli space of quenched stripes (Ref.
8, §5.3) as it organizes which type(s) of stripes can be selected
for a given quenching speed. The rigorous existence of such
fronts for other values of c and ky ̸= 0 is the subject of current
work.

For the remainder of the work we shall fix c > 0 such that
a traveling-front solution of (5) exists for all ky close to 0,
and hence we suppress the dependence of c in our notation.
We consider parameters α,γ such that stripes are Benjamin-
Feir stable, 1+αγ > 0. Substituting kx,f for kx, the nonlinear
dispersion relation then takes the form

ωf(ky) = (α − γ)(kx,f(ky)
2 + k2

y)− ckx,f(ky)+ γ. (7)

Since kx,f is smoothly dependent on k2
y , a simple calculation

gives that both ∂

dky
kx,f(0) = ∂

dky
ωf(0) = 0, yielding the expan-

sion

kx,f(ky;c) = kx,f(0)+β2k2
y +O(k4

y), ky ∼ 0,

for some constant β2. See Figure 2 for a depiction of this
quadratic dependence near ky = 0. As it will be critical in our
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(a) (b) (c)

FIG. 1. Evolution of 2D quenched pattern in (2) in (ξ ,y) variables, with α = 3,γ = 1,c = 2.5, from small random initial data at times
t = 100,200,300 (a) - (c) respectively, the co-moving frame with c > 0 causes stripes to emanate to the left from the quench line, note c > 0
corresponds to a right-ward traveling quenching line in the stationary frame; left subplots depict ReA(ξ ,y, t), upper right plots ReA(ξ0,y, t)
for ξ0 =−1, while lower right plots the measured local transverse wavenumber, calculated as Im Ay

A for ξ = ξ0 fixed.

modulation equation, we also calculate, recalling ∂kykx,f(0) =
0, that

∂
2
ky

ωf(0) = 2(α − γ)+∂
2
ky

kx,f(0)(2(α − γ)kx,f(0)− c) . (8)

The first term in (8) arises from standard 1-D modulational
theory (Ref. 14) as concavity of the homogeneous dispersion
relation (3). We highlight the second term as it is explicitly
induced by the wavenumber selection caused by the quench.
As will be seen in the following section, this will lead to an
altered nonlinear flux coefficient; see (Ref. 14, Eqn. 3.17).

Initiating (2) from small random initial data with speed
c = 2.5, one observes the formation of patches of coherent
stripes, oriented with weak oblique angle to the quench inter-
face. One observes slow modulations in the striped phases as
well as dislocation-like defects and grain boundaries of var-
ious orientations and angles; see Figure 1. Taking a cross-
section in y for some ξ0 < 0 just behind the quench location
at ξ = 0, one observes wavenumber dynamics similar to 1-D
systems.

B. Transverse modulations

To study the dynamics of small amplitude, long wavenleg-
nth transverse modulations in the y-direction, we adapt the
approach of (Ref. 14) which considers stripes in 1-D; see
also (Ref. 10, §II.G). We look for slow transverse modula-
tions of front solutions of (2) by introducing a slowly-varying
transverse phase modulation function Φ(Y,T ) dependent on
the slow variables Y = δy, T = δ 2t for some small parameter
0 < δ ≪ 1, and form the ansatz

A(ξ ,y, t)= ei(Φ(Y,T )−ωft)
[
Af(ξ ;δΦY (Y,T ))+δ

2w1(ξ ,Y,T ;δ )
]
.

Here, Ψ := ∂Y Φ gives the slowly-varying transverse
wavenumber modulation and w1 higher order corrections. We
insert this ansatz into (2) and its associated complex-conjugate
equation. We treat Y,T and y, t as independent variables. Note
that while slow and fast variable derivatives formally do not
commute, this has no effect in our case as Af and the coeffi-
cients of (2) are independent of t and y. We then collect terms
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FIG. 2. Wavenumber selection curves with γ = 1 and α = 1.5,2,3.
Plot of the wavenumber selection curves kx,f against c for ky = 0
fixed (a), and against ky for c = 2.5 fixed (b). Note the quadratic
behavior near ky = 0. In (a) note that the curves terminate at the linear
spreading speed clin = 2

√
1+α2 ≈ 3.61,4.47, and 6.33 respectively.

of the same order in δ , and fix ξ = ξ0, a location just behind
the quench with −1 ≤ ξ0 < 0. At O(1) in δ we obtain the
traveling wave equation (5) for the front, at O(δ ) we obtain
an equation for the kernel of the associated linearized equa-
tion, satisfied by the derivative of the front solution along the
gauge action, and finally at O(δ 2) we obtain a linear equa-
tion in (w1, w̄1). The solvability condition for this equation
yields the following viscous Burgers equation for the trans-
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verse wavenumber,

ΨT =
λ ′′

lin(0)
2

ΨYY +
ω ′′

f (0)
2

(Ψ2)Y , (9)

where ω ′′
f (0) is given in (8) above and λ ′′

lin(0) ≈ 2(1+αγ)
gives the effective diffusivity of transverse perturbations of the
parallel striped state, obtained by perturbing the pure striped
solution Ap in the y-direction with the ansatz,

A(ξ ,y, t)=Ap(ξ ,y, t;kx,ky)+ei(kyy−ωt)
[
a1eλ t+νy +a2eλ t−νy

]
,

(10)
collecting leading order terms in a1,a2, and solving to obtain

λ = λlin(ν) =−cgν +λ
′′
lin(0)ν

2 +O(ν3), ν ∈ iR, (11)

where

cg = ω
′
f(0) = (α − γ)k′x,f(0)(2kx,f(0)− c) ,

gives the transverse group velocity for parallel stripes with
ky = 0. Since k′x,f(0) = 0 one readily calculates that cg =

ω ′
f(0) = 0. For more details of these calculations, see Ap-

pendix A.
We remark that the modulation ansatz (10) will not be ac-

curate in the far-field as we modulate the front uniformly in
ξ . Despite this, since the interfacial dynamics will be con-
vected into the bulk in the co-moving frame traveling with the
quench, we expect our modulation to give good qualitative
predictions of the far-field dynamics; see Sec. IV for brief
discussion on possible extensions of our work addressing this.

1. Numerical approach

In the following examples, we give comparisons between
the numerically measured transverse wavenumber dynam-
ics of (2) and the corresponding numerical solutions of the
viscous Burgers’ equation (9). We simulate the quenched
CGL equation using a Galerkin spectral discretization and
the fast Fourier transform in both space directions on a pe-
riodic domain, (x,y) ∈ [−Lx/2,Lx/2]× [−Ly/2,Ly/2] with
Lx = 30π,Ly = 120π and Nx = 28,Ny = 212 modes in the
x and y direction respectively. The quench damping level
was strengthened to χ = −3 for x > Lx/4 to surpress fluc-
tuations coming from the periodic boundary conditions and
prepare a near homogeneous state close to A = 0 at the
quenching line. The 4th order Runge-Kutta exponential time-
differencing algorithm of (Ref. 15) was used to time step with
step sizes ranging from dt = 0.1 to dt = 0.0025; for most fig-
ures dt = 0.0025 was used. Numerical solutions of the vis-
cous Burgers equation (9) were solved in the same manner,
with spectral decomposition on the periodic computational
domain Y ∈ δ [−Ly/2,Ly/2], Ny = 212 and exponential time-
differencing in T with time-steps δ 2dt. Computations were
performed in MATLAB using both CPU and GPU computa-
tions.

2. Source-sink transverse defect pair

As a case study, we study the transverse wavenumber dy-
namics of a defect laden solution of (2) which connects stripe
solutions with small transverse wavenumber ky,+ = δq+ for
y > 0 and ky,− = δq− for y > 0, with 0 < δ ≪ 1 and q± =
O(1). In particular, Fig. 3 depicts a defect with q− = 3 and
q+ = 1. Such a defect solution was obtained numerically with
an initial condition of the form

A(ξ ,y,0) = h(−ξ )
(

h(y)r−ei(kx,−ξ+ky,−y)

+h(−y)r+ei(kx,+ξ+ky,+y)
)
, (12)

where h(z) denotes the Heaviside function, r2
± =√

1− (k2
x,±+ k2

y,±), and the wavenumbers kx,± are cho-
sen so that kx,± = kx,f(ky,±), using the computed wavenumber
curves depicted in Fig. 2. Since the numerical computation
uses periodic boundary conditions in the vertical direction,
this solution consists of two well-separated defects, one a
source (left in Fig. 3b) and one a sink (right in Fig. 3b). We
remark that the sink, with inward pointing group velocities in
the y direction, creates a grain boundary, also known as a do-
main wall, in the far-field. The source, with outward pointing
group velocities in the y direction, creates a wavenumber fan
between the two striped states.

As the periodic wavetrains are relative equilibria, the lo-
cal transverse wavenumber of the defect may be numerically
measured as

ψ(y, t) = ImAy(ξ0,y, t)/A(ξ0,y, t). (13)

To determine the coefficient ω ′′
f (0) of the viscous Burgers

equation, we measure kx,f(0) and k′′x,f(0) using the numerically
computed curve kx,f(ky) depicted in Figure 2b. For the second-
derivative, we performed a quadratic fit of the data near the
origin ky = 0. We then compared the measured wavenum-
ber to the predicted transverse wavenumber dynamics coming
from the Burgers’ equation. We use the initial local wavenum-
ber ψ(y,0) as the initial data for the viscous Burgers’ equation
(9),

Ψ(Y,0) = ψ(Y/δ ,0)/δ .

For the specific initial condition (12), Ψ(Y,0) = q− for Y ∈
[−δLy/2,0] and Ψ(Y,0) = q+ for Y ∈ [0,δLy/2). We then
numerically integrate forward in time the viscous Burgers’
equation on the scaled periodic domain and then scale back
to obtain a prediction for the transverse wavenumber dynam-
ics at time t > 0,

ψ(y, t)≈ ψvb(y, t) := δΨ(δy,δ 2t).

As depicted in Figure 3, we find good agreement between
the prediction from the Burgers’ equation (9), which we
denote as ψvb, and the numerically measured wavenumber,
which we denote as ψnum(y, t). See Figure 4a-b for the evo-
lution of the absolute pointwise error, which we denote as
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FIG. 3. Source-sink defect pair with α = 3,γ = 1,c = 2.5 ob-
tained from initial condition (12) which connects stripes solutions
with transverse wavenumbers ky,− = 0.3, ky,+ = 0.1 and δ = 0.1;
(a): Plot of ReA(ξ ,y, t = 300) of (2). Note the source defect ini-
tially lies on the upper and lower domain boundaries. (b): plot of the
cross-section of ReA along the line ξ = ξ0 =−1 for a range of times
t = 5(blue),30(orange),150(purple),300(dark red). (c): Comparison
of the local transverse wavenumber Im∂yA/A along the line ξ = ξ0
(solid), with the appropriately rescaled numerical solution of the vis-
cous Burgers’ equation (9), δΨ(δy,δ 2t) (dashed) with δ = 0.1, for
same range of times. The nonlinear Burgers’ parameter was calcu-
lated from data in Fig. 2b and (8) as ω ′′

f (0) = 4.2126....

Errψ(y, t) := |ψvb(y, t)−ψnum(y, t)|. Figure 5 depicts errors
for the wavenumber prediction for initial conditions (12) for a
range of δ values. This shows that both the L2 and L∞ norm
of Errψ in y decreases as δ → 0 and the temporal regime of
validity appears to scale like δ−2 (roughly consistent with the

results of (Ref. 14)). We also note that the initial large error
and sharp decrease is due to numerical instabilities in the mea-
sured wavenumber ψ . As the wavenumber is initially discon-
tinuous, the derivative Ay, used in the measured wavenumber
(13), is calculated spectrally so that the sharp jump at y ∼ 0
in (12) induces Gibbs-type oscillations. Parabolic regulariza-
tion in (1) smooths the instantaneous jump in wavenumber,
leading to a local decrease in the error for short times.

We also note that the viscous Burgers’ modulation equa-
tion gives accurate predictions of the defect speed, cd, in
the transverse direction. For example, considering the right-
ward traveling defect where q− > q+ > 0, we use the fact
that ω ′′

f (0) > 0 to approximate the transverse group veloci-
ties, cg,± := ω ′

f(ky,±) ≈ cg,0 +ω ′′
f (0)δq±, of the asympototic

wave trains,

cg,− > cd > cg,+, (14)

so that they point inwards and the defect behaves as a sink.
The sink defect portion of the solution in Figure 3 corresponds
to a traveling shock wave solution q∗(Y − c∗T ) of (9) with
speed c∗ connecting the asymptotic states q± at Y = ±∞ re-
spectively. The Lax entropy condition for a traveling shock
requires, ω ′′

f (0)(q−− q+) > 0. The Rankine-Hugoniot crite-
rion in this case gives the shock speed as c∗ = (ω ′′

f (0)q− +
ω ′′

f (0)q+)/2. This allows us to obtain a prediction for the
transverse defect speed in the full 2-D system. Since the par-
allel stripe has transverse group velocity cg,0 := ω ′

f(0) = 0, we
find the defect speed to be

cd = cg,0 +δc∗ = δ
ω ′′

f (0)
2 (q−+q+). (15)

See also Sec. 1.3 of (Ref. 14) for more detail on such calcu-
lations. Figure 4c shows good agreement of the numerically
measured defect speed with that predicted by the modulation
equation. In particular the measured shock speed converges
to the predicted speed with rate O(dt) as dt is reduced. We
also observe that source defects with ω ′

f(k
−
y ) < cd < ω ′

f(k
+
y )

behave as rarefaction waves.

3. Phase-slip defect modulation

As another example, we consider a localized wavenumber
perturbation of a quenched stripe in (2). Figure 6 depicts the
transverse dynamics of this localized defect, initiated by an
initial condition of the form

A(ξ ,y,0) = h(−ξ )
√

1− k2exp [i(kxξ +δy+φ0(δy))] ,
(16)

where φ0(Y ) = πerf(Y ) and erf(Y ) = 2π−1/2 ∫ Y
0 e−t2

dt de-
notes the Error function. This initial condition induces a
phase slip perturbation which does not alter the asymptotic
wavenumber for |y| large. Here, as one moves vertically, the
local phase shifts, or “slips" by half an oscillation. We refer
to this defect as a phase slip (though we note that this term
often refers to change of the number of zeros of the phase as
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FIG. 4. (a): Spacetime diagram of the absolute error Errψ (y, t) between measured transverse wavenumber Im∂yA/A and the rescaled viscous
Burgers’ solution δΨ(δy,δ 2t), for the same initial condition and parameters as Fig. 3; (b): Plots of the corresponding L2 and L∞ norm of
Errψ (y, t) in y, note the large error for t ∼ 0 is due to Gibbs oscillations in the measured wavenumber; (c): Plot of the dt-convergence of error
between the numerically measured defect speed and the theoretical prediction cd = cg,0 +δc∗, for range of α values.
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FIG. 5. Evolution of (a) the L2 and (b) the L∞ error, between the measured transverse wavenumber in (2) and the rescaled viscous Burgers’
solution (9), for the source-sink initial data (12) for δ = 0.025,0.05,0.1, showing decrease in the error as δ → 0. Same initial condition and
parameters as Fig. 3.
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FIG. 6. Top row: Localized phase-slip defect solution of (2) with initial data (16), c = 2.5,α = 3,γ = 1 and δ = 0.1, numerical time
step dt = 0.0025. (a): plot of ReA(ξ ,y, t = 150); (b): Comparison of numerically measured transverse wavenumber (solid line) with the
associated prediction from viscous Burgers equation (9) (dashed line) for times t = 5(blue),30(orange),150(purple),300(dark red); (c): point-
wise absolute error between measured and predicted wavenumber; Bottom row: plots of both the L2 and L∞ errors, (d) and (e) respectively, for
the localized phase-slip for δ = 0.025,0.05,0.1.
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time, not y, evolves (Ref. 16)). Such defects arise in vari-
ous crystalline media, and pattern forming systems. We con-
sider one here to highlight how they are affected by quench-
ing mechanisms. We chose transverse wavenumber ky = δ

so that the corresponding scaled wavenumber profile satisfies
Ψ(Y ) = 1+ 4π1/2e−Y 2

. We once again find good agreement
between the transverse wavenumber dynamics and the viscous
Burgers prediction, with both L2 and L∞ error decreasing as δ

is decreased; see Figure 6(c-e). We do note a numerical re-
laxation effect where the Gaussian perturbation in the Burg-
ers’ equation initially decays slightly faster than the measured
wavenumber in CGL leading to slower convergence in δ com-
pared with the source-sink initial condition (12) above.

III. MODULATIONS IN THE QUENCHED
SWIFT-HOHENBERG EQUATION

To show the applicability of this approach, we also em-
ploy it to describe stripe modulations in the quenched Swift-
Hohenberg (SH) equation (Ref. 17) with supercritical nonlin-
earity,

ut =−(1+∂ 2
x +∂ 2

y )
2u+µχ(x− ct)u−u3, (17)

(x,y) ∈ R2, µ > 0.

We choose this equation as it does not have exact closed form
periodic stripe solutions - only leading-order expansions at
onset 0 < µ ≪ 1 - and thus one generally must compute the
viscous Burgers’ coefficients, λ ′′

lin(0) and ω ′′
f (0) with asymp-

totic expansions or numerically. For χ ≡ 1 and µ > 0, it is
well-known that (17) has stable stripe equilibrium solutions
up(kxx+ kyy;k), 2π-periodic in the first argument and depen-
dent only on the bulk wavenumber k2 = k2

x + k2
y due to the

rotational invariance of the homogeneous system. The range
of k values for which stripes exist and are stable is determined
by the Busse balloon (Ref. 18). To study quenched fronts, we
once again move into the co-moving frame ξ = x− ct,

ut =−(1+∂
2
ξ
+∂

2
y )

2u+ c∂ξ u+µχ(ξ )u−u3. (18)

Previous works (Ref. 5, 8, and 19) have studied front solutions
of this equation of the form uf(ξ ,kyy+ωt), periodic in the
second variable ζ = kyy+ωt, which satisfy

0 =−(1+∂
2
ξ
+ k2

y∂
2
ζ
)2uf +(c∂ξ −ω∂ζ )uf +µχ(ξ )uf −u3

f ,

(19)

0 = lim
ξ→−∞

uf(ξ ,ζ ), 0 = lim
ξ→−∞

uf(ξ ,ζ )−up(kxξ +ζ ;k),

uf(ξ ,ζ ) = uf(ξ ,ζ +2π). (20)

We note that in this co-moving, co-rotating frame, under the
1:1 resonance condition ω = ckx, stripe equilibria up become
2π-periodic in ζ , with kxx + kyy = kxξ + ζ . As in (2), the
horizontal wavenumber kx,f of quenched front solutions, uf, is
generically selected by parameters (c,ky) and can be written
locally as a graph over these two variables. We note the works
(Refs. 5 and 8) gave a near complete numerical description of

the moduli space of patterns using a far-field core numerical
continuation approach. See Figure 7 for depictions of select
wavenumber selection curves for c fixed and ky varying, and
vice-versa.

As before, since we shall fix c > 0, we denote these fronts
as uf(ξ ,ζ ;ky), and the corresponding selected wavenumber as
kx,f(ky). The work (Ref. 19) showed the existence of parallel
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(b)
0 1 2 3 4
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0.98

1
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1.08

(c)

FIG. 7. Swift-Hohenberg wavenumber selection curves for µ = 1,
depicting kx,f(c,ky) for (a) c fixed, and ky varied, and (b) ky = 0 fixed
and c varied; (c): Example front solution profiles uf(ξ ,ζ ;ky) with
c = 3.5 and ky = 0.123,0.9779; µ = 1 throughout.

stripes with ky = 0 for 0< µ ≪ 1 and in the fast quench regime
where c <∼ clin using center manifold techniques. It also used
functional analytic techniques to prove that for any c∈ (0,clin)
fixed, parallel striped fronts perturb smoothly in ky ∼ 0, and
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the horizontal wavenumber satisfies the expansion

kx,f(ky) = kx,f(0)+β2k2
y +O(k4

y), (21)

β2 =
1
c ⟨2∂ 2

ζ
(1+∂ 2

ξ
)uf(·, ·;0) ,e∗⟩L2

η
, (22)

where ⟨v1,v2⟩L2
η

=
∫
R×[0,2π) e2η |ξ |v1v̄2dξ dζ denotes the

exponentially-weighted L2 inner product, and e∗ spans the
kernel of the L2

η -adjoint, L∗, of the linearization of (19) about
the front

Lv :=−ωvζ + cvξ − (1+∂ 2
ξ
)2v+µχv−3(uf(·, ·;0))2v.

We now briefly discuss how the parameters λ ′′
lin(0) and ω ′′

f (0)
can be computed. The derivation of the modulation equation
follows a similar line as for CGL, which is described in Ap-
pendix A.

A. Nonlinear Burgers parameter

For ω ′′
f (0), we use the 1:1 resonance condition and the ky

expansion (21) above to obtain

ωf(ky) = ckx,f(ky) = c
(
kx,f(0)+β2k2

y +O(k4
y)
)
. (23)

This readily gives

ω
′
f(0) = 0, ω

′′
f (0) = 2β2c (24)

We note that this quantity could also be obtained by differ-
entiating the front equation twice in ky, evaluating at ky = 0

and then projecting onto the adjoint kernel element e∗ defined
above. In practice, we calculate ω ′′

f (0) by once again perform-
ing a quadratic fit of the numerical continuation data (Fig. 7a)
for the curve kx,f(ky) for ky ∼ 0, obtaining a numerical predic-
tion of the quadratic coefficient β2. Numerical computations
of these curves (see Fig. 7 as well as Refs. 8 and 20) indicate
that ω ′′

f (0) < 0 for a wide range of c values except possibly
for 0 < c ≪ 1.

B. Effective Diffusivity

The effective diffusivity, λ ′′
lin(0), for y perturbations of par-

allel striped fronts just behind the quenching line can be ob-
tained using a Fourier-Bloch wave analysis (Refs. 18 and 19).
To summarize, one sets ky = 0 and linearizes (18) about the
front uf. Since the far-field state at ξ = +∞ is exponentially
stable, it suffices to consider the linearization at ξ =−∞, that
is linearizing about the asymptotic roll state up(kxξ + ζ ;kx)
with χ ≡ µ ,

Lpw :=−(1+∆)2w+µw+ cx∂ξ w

−3u2
p(kxξ +ζ ;kx)w−ω∂ζ w. (25)

The L2 spectrum of this operator can be studied using the
Floquet-Fourier-Bloch ansatz

w(ξ ,y, t) = eimτ einyeνξ b(kxξ +ζ ;m,n,ν), (26)
m ∈ Z,n ∈ R,ν ∈ i[0,2π/kx).

for b(z;m,n,ν) a 2π-periodic function in z. Inserting this into
Lpw= λw, and using the fact that ω = ckx, we obtain a family
of eigenvalue problems

λb = B(m,n,ν)b :=−(1+(kx∂z +ν)2 −n2)2b+µb+(cxν −ωim)b−3up(z;kx)
2b. (27)

Evaluating (27) at m = 0,n = 0,ν = 0, we find that b = ∂zup
is an eigenfunction with eigenvalue λ = 0. A perturbative ap-
proach then gives a family of eigenvalue-eigenfunction pairs
(λlin(ν),wlin(ν)) emanating from (0,∂zup). Since B(0,0,0)
is L2([0,2π))-self-adjoint with kerB(0,0,0) = span∂zup, we
also have that ∂zup ∈ RgB(0,0,0)⊥. Letting b∗ be a scalar
multiple of ∂zup so that ⟨b∗,b∗⟩L2(0,2π) = 1, and differentiat-
ing the eigenvalue equation (27) in ν , we obtain

λ
′′
lin(0) = ⟨4(1+(kx∂z)

2)∂zup,b∗⟩L2(T2π )
. (28)

To obtain a numerical discretization of the kernel element b∗,
we computed this inner product numerically using Newton’s
method to solve a finite difference discretization of the peri-
odic boundary value problem 0=−(1+k2∂ 2

θ
)2up+µup−u2,

and an iterative linear solver.

C. Slowly-varying transverse modulations

We are now able to provide a modulational description of
transverse wavenumber dynamics in (18). We shall once again
focus on parallel striped fronts. Fix a c > 0 where paral-
lel striped fronts uf(ξ ,ωt;kx) exist, and are diffusively sta-
ble. Fixing ξ = ξ0 < 0 just behind the quenching line, we
consider a modulation of the traveling front solution through
the ansatz, uf(ξ ,Φ(Y,T )+ωt;δΦY (Y,T ))+δ 2w1(ξ ,Y,T ;δ ).
Inserting and expanding in δ , we once again obtain a viscous
Burgers’ modulation equation (9) for the transverse wavenum-
ber Ψ with the coefficients λ ′′

lin(0) and ω ′′
f (0) found above. In

all numerical simulations of (9) discussed below, we use the
numerical approximations of these coefficients as described
above.

Using this modulation equation, we obtain accurate predic-
tions for the transverse wavenumber evolution. In Figure 8 we
consider a localized phase perturbation of a weakly oblique
stripe of the same form as in (16). To measure the transverse
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wavenumber we use the Hilbert transform

H [u](y) := F−1 [−i sign(ℓ)F [u](ℓ)] (y),

where F [u](ℓ) denotes the Fourier transform in y and ℓ
the Fourier wavenumber variable, to construct a complex
signal v(y) = u(y) + iH [u](y). For oscillatory functions
u(y) ≈ cos(φ(y)), this can be differentiated to obtain a local
wavenumber ψ(y, t) = Im∂yv/v. As the Hilbert transform in-
duces spurious oscillations in the measured wavenumber, we
use the iterative transform approach of (Ref. 21) to reduce,
though not eliminate, the occurrence and magnitude of such
oscillations. We found 15-20 iterations of this approach gave
sufficient convergence, with little no significant improvement
for more iterations. Once again using a scaled version of the
initial wavenumber, δ−1ψ(Y/δ ,0), as the initial data for the
Burgers’ equation (9), we find good agreement between the
predicted and measured wavenumbers, with errors behaving
similarly as those in CGL.

In Figure 9 we consider a pair of symmetric grain boundary
defects which connect weakly oblique stripes of the opposite
wavenumber ky =±δ , with one grain boundary convex to the
quench line and the other concave. This solution was initial-
ized with initial data similar to (12) with discontinous trans-
verse wavenumber. The convex grain, located in the middle
of the computational domain, has left wavenumber ky,− =−δ

and right wavenumber ky,+ =+δ . Since, ω ′′
f (0)< 0, this de-

fect behaves as a shock-like sink in the transverse direction,
with speed c∗ = ω ′′(0)(ky,− + ky,−)/2 = 0 and wavenumber
interface which remains sharply localized. The concave grain,
located near the boundary of the periodic computational do-
main, has “left" wavenumber ky,− = δ and “right" wavenum-
ber ky,+ = −δ . Thus the corresponding solution to the Burg-
ers’ equation has outward pointing characteristics and thus be-
haves like a rarefaction wave.

We remark here that wavenumber measurements using
the Hilbert transform (which in MATLAB uses the discrete
Fourier transform) induce Gibbs-type oscillations due to the
sharp viscous shock profile in the wavenumber, leading to
larger errors in the part of the domain where the shock re-
sides. We remark that we also studied an asymmetric grain
boundary in (18) with moving shock and rarefaction wave as
studied in CGL and depicted in Figure 3 above. While not
depicted, we obtained accurate shock speed predictions from
the viscous Burgers modulational approximation.

IV. CONCLUSION AND DISCUSSION

To summarize, we derived a one-dimensional viscous Burg-
ers’ modulation equation to describe small-amplitude trans-
verse wavenumber dynamics of asymptotically-stable striped
patterns in the wake of a rigidly propagating directional
quench. Of most interest, we found that the nonlinear flux
coefficient, ω ′′

f (0), is determined through the wavenumber se-
lection properties of the directional quench. Somewhat less
surprisingly, the viscosity coefficient, λ ′′

lin(0), in the mod-
ulation equation is determined by the transverse diffusivity
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FIG. 8. Localized phase perturbation in equation (18) of a striped
front with (kx,ky) = (0.993,0.1); Initial condition u(ξ ,y,0) =√

4µ/3cos(kxx + kyy + φ0(δy))h(−ξ ) (similar to (16)), with c =
3,µ = 1; the Burger’s parameters were computed numerically as
λ ′′

lin(0) = 0.3202..., ω ′′
f (0) = −2.67471...; (a): solution profile

u(ξ ,y, t = 200), (b): Transverse wavenumber dynamics at ξ = ξ0 =
−1 fixed (solid) plotted against the rescaled viscous Burgers’ solu-
tion (9) at times t = 100(blue),200(orange),300(purple),400(red);
(c): plot of absolute error between measured and predicted
wavenumber profiles.

of pure stripes. This modulation equation accurately pre-
dicted finite-time dynamics of small amplitude wavenumber
defects just behind the quenching line, including source-sink
pairs and localized phase-slip defects, in both the complex
Ginzburg-Landau and Swift-Hohenberg equations. While we
only considered examples of coherent defects, we expect the
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FIG. 9. Grain boundary defect in equation (18) with c = 3,µ = 1, and Burger’s parameters as in Fig. 8; (a): snapshot of grain boundary type
solution of (18) with µ = 1, c = 3, and transverse wavenumbers ky =±0.1, plotted at t = 400, with convex grain boundary at center of domain
y ∼ 0, and concave grain boundary at the boundary of the (periodic) computational domain. Center: space-time diagram of corresponding
rescaled Burgers’ solution δΨ(δy,δ 2t) of (9); Right: spacetime diagram of absolute error between measured and predicted wavenumbers.

modulation equation to give accurate predictions for arbi-
trary wavenumber modulations which are smooth and small-
amplitude. Furthermore, we expect this modulational analysis
to accurately predict the dynamics of directionally quenched
stripes in general dissipative systems where the underlying
asymptotic pattern is diffusively stable and the quench selects
wavenumbers. That is, for a fixed quenched speed c and trans-
verse wavenumber ky, the horizontal wavenumber kx is locally
unique. A few examples include reaction-diffusion systems
such as the CDIMA system mentioned above (Ref. 4), bio-
logically motivated systems arising in morphogenesis, tissue,
and digit patterning (see Ref. 22 and references therein), and
ramped convection rolls (Ref. 1). It would also be interest-
ing to investigate the suitability of this analysis to quenched
patterns in phase separative systems where mass conservation
can play a role (see for example Ref. 23–26).

There are several areas of further study to extend from this
work. The first and most natural next step would be to con-
sider the far-field dynamics by deriving a two-dimensional
modulational equation for the striped phase or wavenumber
in the half-plane to the left of the quenching line at x = ct,
with vertical boundary condition along the y-axis. One would
seek to derive a Hamilton-Jacobi equation (Ref. 27) or Cross-
Newell phase diffusion equation (Refs. 28 and 29) for the
phase dynamics, possibly through an intermediate Newell-
Whitehead-Segel amplitude equation (Ref. 30). Of most in-
terest would be to determine a suitable boundary condition for
the phase to represent the quenching line.

In the limit of slow quenching speed, the work (Ref. 31)
used a linear phase-diffusion equation ϕt = ∆ϕ + cϕx, with
nonlinear boundary condition ϕx = g(ϕ), (x,y) ∈ {0}×R
on the vertical axis, to describe the dynamics of the phase ϕ .
Here the nonlinear boundary condition is determined by an
object known as the strain-displacement relation of station-
ary quenched stripes, a curve which parameterizes the set of
possible wavenumbers selected by the quench in terms of the
asymptotic phase. For the phase dynamics observed above, a
linear equation of this form will not accurately represent shock
dynamics in the far-field where gradients may become sharp.
Moreover, we do not expect such a model to be valid for inter-

mediate or fast growth where phases are rapidly shed from the
quenching line and are also dependent on the local transverse
wavenumber. To our knowledge, an appropriate boundary
condition has not been derived for these regimes. Such a phase
description would allow one to understand the precise far-field
behavior of the defects observed above. For example, they
would allow one to describe how the Swift-Hohenberg grain-
boundary formed in Figure 9 relaxes or evolves as x →−∞.

Furthermore, in the context of the CGL equation, one could
derive a nonlinear anisotropic phase diffusion equation by
slowly modulating a pure horizontal stripe of wavenumber
kx,f(0) in (2) in both the ξ and y directions. In particular,
one could restrict to x ≤ 0 so that χ ≡ 1 and modulate the se-
lected horizontal striped phase (instead of the front Atf) with
an ansatz of the form,

A = Aph = (r+δR)exp [i(kx,f(0)ξ −ωt +ϕ(X ,Y,T ))] ,
(29)

with (X ,Y,T ) = δ (ξ ,y,δ t). This yields,

ϕT = (1+αγ)∆X ,Y ϕ +D||ϕXX+

+(2kx,f(0)(γ −α)+ c)ϕX +(γ −α)|∇X ,Y ϕ|2 (30)

with D|| =− 2kx,f(0)2(1+γ2)

1−kx,f(0)2 ; see for example (Ref. 32–36).
To represent the effect of the quench in this 2D phase

equation, we propose a phenomenological nonlinear bound-
ary condition at X = 0 which uses the selected wavenum-
ber function, kx,f, to connect the local horizontal and vertical
wavenumbers, δϕX and δϕY respectively,

δϕX = kx,f(δϕY )− kx,f(0), X = 0. (31)

For 0 < δ ≪ 1, we can then use the expansion of kx,f to reduce
to the quadratic approximation

ϕX =
k′′x,f(0)

2
δ (ϕY )

2, X = 0. (32)

Figure 10 provides the results of a preliminary numeri-
cal simulation of (30) on the domain (X ,Y ) ∈ δ [−Lx/2,0]×
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δ [−Ly/2,Ly/2]. The quadratic approximation (32) of the non-
linear boundary condition was used on the right boundary at
X = 0, a Neumann boundary condition, ΦX = 0, on the left
boundary at X =−δLx/2, and shifted periodic boundary con-
ditions

ϕ(X ,−δLy/2) = ϕ(X ,δLy/2)+2πm, (33)

on the top and bottom boundaries. This condition allows the
phase ϕ to wind across the vertical domain, where m is some
integer chosen to fit the given initial condition. This simula-
tion uses the scaled phase-slip defect of (16), ϕ(X ,Y,0) = 1+
πerf(Y ). In order to implement the nonlinear boundary con-
dition on the right-side, centered 2nd-order finite differences
were used in space with Nx = 27 and Ny = 210 grid points.
Implicit-explicit Crank-Nicolson time-stepping was used with
dT = δ 2dt. Note the plotted solutions are scaled back onto the
CGL domain (ξ ,y) = (X ,Y )/δ . Figure 10 compares A(ξ ,y, t)
against the predicted modulated phase δϕ(δξ ,δy,δ 2t). Fig-
ure 10(b) gives the reconstructed phase Aph from (29) using
the modulated phase δϕ , while 10(c) and (d) give the rescaled
wavenumber perturbations δϕX and δϕY respectively. We
point out how the transverse defect starting at Y = 0 induces,
through the nonlinear boundary condition at X = 0, a horizon-
tal wavenumber perturbation which then convects and spreads
vertically and leftward. As the proposed nonlinear boundary
condition is only heuristic, we leave more quantitative analy-
sis and comparison to future work.

We also mention that one can heuristically obtain the trans-
verse modulation equation (9) used throughout this work by
adding (k′′x,f(0)/2)k2

y to the phase ϕ in (30), substituting ky ∼
ϕY and restricting only to Y -dependent terms. After obtain-
ing such a two-dimensional approximation, it would also be
of interest to obtain rigorous approximation results, as given
in (Ref. 14), between the modulation equation and the full
system.

Other avenues of subsequent study include extending this
analysis to three spatial dimensions (x,y,z)∈R3 with a planar
quench propagating in the x-direction and a modulation equa-
tion for the two-dimensional transverse dynamics in (y,z). Fi-
nally, it would be of interest to derive transverse modulation
equations for non-directional quenching where the interface
bounding the pattern-forming regime is not a hyperplane, but
an evolving curve or sub-manifold.
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Appendix A: Derivation of transverse modulation equation

Below we provide the derivation of the transverse modu-
lation equation (9) for the quenched CGL equation (2). An
analogous approach gives the same modulation equation for
the quenched SH equation (18).

We seek to modulate the traveling wave solutions
A∗(ξ ,y, t;ky) := ei(kyy−ωt)Af(ξ ;ky) of (2) described above,
where Af is a solution of the traveling wave equation (5). We
write the latter equation in the condensed form

0 = L(ky)A+N(A, Ā), (A1)

L(ky) = (1+ iα)(∂ 2
ξ
− k2

y)+ c∂ξ +χ − iωf(ky),

N(A, Ā) =−(1+ iγ)A2Ā =−(1+ iγ)A|A|2,

where we recall that ωf(ky) is the selected frequency of the
quenched front determined by ky.

Note, to obtain a smooth equation, we consider A and Ā in-
dependently, and hence must also consider the complex con-
jugate of (A1). Taken together, denoting U = (A, Ā)T , we thus
consider(

0
0

)
= F (U ;ky) := L (ky)U +N (U), (A2)

L (ky) :=
(

L(ky) 0
0 L̄(ky)

)
, N =

(
N(U)
N̄(U)

)
. (A3)

1. Transverse wavenumber dependence and stability of CGL
front

Before performing the modulation expansion, we consider
some properties of (A2), its dependence on ky, and its lin-
earization. To begin, we evaluate the equation on the front,
0 = F (Uf(·;ky);ky) and differentiate in ky to first and second
order, obtaining

0 = [L (ky)+DN (Uf)]∂kyUf(ky)+∂kyL (ky)Uf(ky), (A4)

0 = [L (ky)+DN (Uf)]∂
2
ky

Uf(ky)+2∂kyL (ky)∂kyUf(ky)

+D2N (Uf)
[
∂kyUf(ky),∂kyUf(ky)

]
. (A5)

with Jacobian

DN

(
A
Ā

)
=−

(
2(1+ iγ)AĀ (1+ iγ)A2

(1− iγ)Ā2 2(1− iγ)AĀ

)
,
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(a) (b) (c) (d)

FIG. 10. (a): Solution of (2) with initial data (16), c = 2.5,α = 3,γ = 1 and δ = 0.1, numerical time step dt = 0.0025 with Nx = 28,Ny =

210, Lx = 30π, Ly = 60π , and other numerical details as in Sec. II B 1; (b): Reconstructed signal Aph defined in (29) using the rescaled solution
ϕ(δξ ,δy,δ 2t) of the phase diffusion equation (30) ; (c): horizontal derivative of rescaled solution δϕX (δξ ,δy,δ 2t) of (30) ; (d): vertical
derivative of rescaled solution δϕY (δξ ,δy,δ 2t) of (30);

and vector-valued quadratic term

D2N (Uf) [U,V ] :=
(
D2N(Uf) [U,V ] ,D2N̄(Uf) [U,V ]

)T

with Hessian quadratic forms

D2N(Uf) [U,V ] =−2(1+ iγ)UT
(

Āf Af
Af 0

)
V

D2N̄(Uf) [U,V ] =−2(1− iγ)UT
(

0 Āf
Āf Af

)
V.

Evaluating at ky = 0 and recalling from (7) above that
∂kyω(0) = 0, we have that ∂kyL (0) = 0 and

∂ 2
ky

L (0) =
(

−2(1+ iα) 0
0 −2(1− iα)

)
+∂ 2

ky
ωf(0)

(
−i 0
0 i

)
.

Next, the gauge action (A, Ā) 7→ (eiθ A,e−iθ Ā), induces a 0-
eigenvalue with eigenfunction U0 := (iAf,−iAf)

T of the lin-
earization

L := L (0)+DN (Uf(0))

of F at (U,ky) =(Uf(·; 0),0), defined in an exponentially
weighted function space with growing weights at ξ = ±∞.
Due to the lack of ξ -translational invariance caused by the
inhomogeneous quenching term, we find kerL = span{U0}.
One also can define the formal adjoint of L as

Lad :=
(

L(0)ad 0
0 L(0)ad

)
+DN (Uf)

∗,

where L(0)ad = (1 − iα)∂ 2
ξ
− c∂ξ + χ − iωf and ∗ denotes

the complex-conjugate transpose of a matrix. We also
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let Uad denote the element spanning kerL∗ which satisfies〈
Uad,U0

〉
L2(R)2 = 1.

Evaluating (A4) at ky = 0 we find that ∂kyUf, if it is non-
trivial, must lie in kerL. Evaluating (A5) at ky = 0 and moving
the term involving ∂ 2

ky
L (0) over to one side, we obtain

∂ 2
ky

L (0)Uf =−
[
(L (0)+DN (Uf))∂ 2

ky
Uf

+D2N (Uf)[∂kyUf,∂kyUf]
]
. (A6)

Taking the L2(R) inner product with Uad, we then obtain

−∂
2
ky

ωf(0) =
〈

Uad,−∂
2
ky

ω(0)U0

〉
= 2

〈
Uad,

(
(1+ iα)Af
(1− iα)Āf

)〉
−
〈

Uad,D2N (Uf)[∂kyUf,∂kyUf]
〉
.

(A7)

In principle, one could numerically approximate the inner
products on the right hand side. As described in the main
body of the text, we numerically continue front-wavenumber
pairs (Af,kx,f) in ky. This allows us to estimate derivatives of
the curve kx,f and thus compute ω ′′

f (0).
To obtain the viscosity parameter of the modulation

equation, we also need to consider the linearized dynam-
ics of transverse perturbations of the parallel-striped front
near the interface. To begin, we consider transversely
modulated perturbations of the parallel striped front A =
eiωt (Af(ξ ;0)+a(ξ , t)eνy) , ν ∈ iR in equation (2), and obtain
at the linear level in a and ā, after including the complex con-
jugate equation, the system

Vt = L̃(ν)V, (A8)

V = (a, ā)T , L̃(ν) =
(

L̃(ν) 0
0 L̃(ν)

)
+DN (Uf),

where L̃(ν) = (1+ iα)(∂ 2
ξ
+ν2)+c∂ξ +χ − iωf(0) (compare

to the operator L(ky) in (A1)). We then consider transversely
modulated eigenvalues

L̃(ν)V (ν) = λlin(ν)V (ν),

where V (0) = U0 gives the gauge-action eigenfunction with
eigenvalue λlin(0) = 0 discussed above. In a similar manner
to the ky dependence of the front in Section A 1, we twice-
differentiate the eigenvalue equation with respect to ν , evalu-
ate at ν = 0, use the fact that ∂ν L̃(0) = 0, and take the inner
product with Uad to obtain

λ
′′
lin(0) = 2

〈(
i(1+ iα)A0
−i(1− iα)A0

)
,Uad

〉
. (A9)

We approximate λ ′′
lin(0) by considering transverse per-

turbations of a pure parallel-stripe. Following (Ref.
10), we perturb stripes with the ansatz A(x,y, t) =

eiωt
[
rfeikfx +a+eλ t+νy +a−eλ̄ t−νy

]
in (2), collecting O(a±)

terms, solving for λ , and expanding in ν ∼ 0 to obtain

λlin(ν) = (1+αγ)ν2 − α2

2
(1+ γ

2)ν4 +O(ν6), ν ∈ iR.
(A10)

Importantly, our assumption that the selected asymptotic
waves are Benjamin-Feir stable, 1+αγ > 0, gives λ ′′

lin(0)> 0.

2. Modulational ansatz and expansion

As described above, we consider the modulational ansatz

A(ξ ,y, t) = ei(Φ−ωt) (Af(x;δΦY )+δ
2w1(ξ ,Y,T ;δ )

)
,

with Φ=Φ(Y,T ) a long-wavenlength phase modulation func-
tion of the variables Y = δy and T = δ 2t and a higher order
correction term w1, for 0 < δ ≪ 1. We then expand

Af(ξ ;δΦY ) = Af(ξ ;0)+δΦY ∂ky Af(ξ ;0)

+
δ 2

2
Φ

2
Y ∂

2
ky

Af(ξ ;0)+O(δ 3).

Note, to ease notational burden, we let A0 = Af,A1 = ∂kyAf,

A2 = ∂ 2
ky

Af, and we also set U j = (A j, Ā j)
T for j = 1,2. Before

inserting this expansion into (2), we calculate several deriva-
tives of the expanded ansatz ei(Φ−ωt)(Af(ξ ;δΦY )+δ 2w1):

∂tA(ξ ,y, t) =−iωA0 −δ iωΦY A1

+δ
2
(

iΦT A0 − iω(
Φ2

Y
2

A2 +w1)

)
+O(δ 3),

∂
2
y A(ξ ,y, t) = δ

2 (iΦYY A0 −Φ
2
Y A0

)
+O(δ 3).

The cubic nonlinearity expands as

A2Ā = A2
0Ā0 +δ

(
2A0Ā0A1ΦY +A2

0Ā1ΦY
)

+δ 2
(

A0Ā0(A2Φ2
Y+2w1)+A2

0(Ā2
Φ2

Y
2 +w1)

+Ā0A2
1Φ2

Y +2A0Φ2
Y A1Ā1

)
+O(δ 3), (A11)

while the expansion for AĀ2 is obtained by taking complex
conjugates. Inserting the expanded ansatz into the full PDE
(2) and separating out orders of δ , we obtain at O(1) the trav-
eling wave equation (A2) for ky = 0. At O(δ ) we obtain

0 = L(ΦYU1) = ΦYLU1,

as ΦY is independent of x. Note this is consistent with (A4)
above. Finally, at O(δ 2) we obtain
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iΦT A0 −
ω

2
Φ

2
Y A2 = L (0)w1 +(1+ iα)

(
Φ2

Y
2

∂
2
x A2 +(iΦYY −Φ

2
Y )A0

)
+(c∂x +χ)

Φ2
y

2
A2

− (1+ iγ)
(

A0Ā0(A2Φ
2
Y+2w1)+A2

0(Ā2
Φ2

Y
2

+w1)+
Φ2

Y
2

(2Ā0A2
1 +4A0A1Ā1)

)
(A12)

as well as its complex conjugate equation. Rearranging and using (A6) we then find

L
(

w1
w̄1

)
=−

(
iA0

(
ΦT − (1+ iα)(ΦYY + iΦ2

Y )
)

−iA0
(
ΦT − (1− iα)(ΦYY − iΦ2

Y )
) )

+
Φ2

Y
2

LU2 +
Φ2

Y
2

D2N (A0, Ā0) [U1,U1]

=−
(

iA0
(
ΦT − (1+ iα)(ΦYY + iΦ2

Y )
)

−iA0
(
ΦT − (1− iα)(ΦYY − iΦ2

Y )
) )

− Φ2
Y

2
∂

2
ky

L (0)
(

A0
Ā0

)
=−

(
iA0

(
ΦT − (1+ iα)(ΦYY + iΦ2

Y )
)

−iA0
(
ΦT − (1− iα)(ΦYY − iΦ2

Y )
) )

+
Φ2

Y
2

(
2(1+ iα)A0
−2(1− iα)Ā0

)
+

Φ2
Y

2
∂

2
ky

ωf(0)
(

iA0
−iA0

)
. (A13)

Using (A9), this can then be simplified to obtain

L
(

w1
w̄1

)
=−

(
iA0 (ΦT − (1+ iα)ΦYY )

−iA0 (ΦT − (1− iα)ΦYY ))

)
+

Φ2
Y

2
∂

2
ky

ωf(0)
(

iA0
−iA0

)
. (A14)

To solve for (w1, w̄1), the right hand side of must be perpen-
dicular to the adjoint kernel, spanned by Uad. Taking the inner
product of the right hand side of (A14) with Uad and using the
fact that U0 = (iA0,−iA0)

T we then obtain

ΦT =

〈(
i(1+ iα)A0
−i(1− iα)A0

)
,Uad

〉
ΦYY +

∂ 2
ky

ωf(0)

2
Φ

2
Y .

(A15)

Combining this with the computation in (A9), we obtain from
(A15) the desired leading order phase modulation equation,

ΦT =
λ ′′

lin(0)
2

ΦYY +
ω ′′

f (0)
2

Φ
2
Y , (A16)

which can be readily differentiated in Y to obtain the equation
for the wavenumber modulation given in (9) above.
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