MA775-Fall 2017 Homework 2 - Due October 3rd
Problem 1: Consider the ODE

$$
\begin{align*}
x^{\prime} & =-x+x y \\
y^{\prime} & =x-x^{3} \tag{0.1}
\end{align*}
$$

Find an Euler multiplier and determine the phase portrait (be careful with the sign for $x>0$ and $x<0)$. Note here that x factors out of the vector field on the right hand-side. Locate periodic orbits, equilibria, and determine the omega-limit set for all initial conditions. Note it is alright to characterize some trajectories using an implicit equation (i.e. something like $f(x, y)=c$) and just draw their shapes.
Problem 2: Set $x^{\prime}=A x$, with $A=\left(\begin{array}{cc}a & 0 \\ 0 & -b\end{array}\right)$ and $x \in \mathbb{R}^{2}$, with $a, b>0$.
(a)Derive an equation for the "projectivized flow". That is write $x=\theta|x|$ and derive an equation for $\theta \in S^{1}$.
(b)What are the equilibria of this flow? What are their eigenvalues and stability properties?
(c): Do the same for $A=\left(\begin{array}{ll}0 & 1 \\ \mu & 0\end{array}\right)$ for all $\mu \in \mathbb{R}$. Discuss how this approach helps qualitatively "unfold" or determine the dynamics near $\mu=0$.
The linear flow induces a flow on the space of linear subspaces, i.e. the Grassmanian (useful in many settings such as heteroclinic bifurcation theory and geometric singular perturbation theory).
Problem 3(Perko 1.8.6(3)): Find the Jordan canonical form of the matrix $A=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 4\end{array}\right)$
Problem 4(From Prof. Scheel's class): Consider an ODE $u^{\prime}=f(u)$ with flow Φ_{t} and suppose $u=0$ is an asymptotically stable equilibrium. Define the basin of attachtion

$$
B=\left\{u_{0} ; \lim _{t \rightarrow \infty} \Phi_{t}\left(u_{0}\right)=0\right\} .
$$

(a) Show that B is open and invariant.
(b) Show that the basin boundary ∂B is invariant.
(c): Define $\delta:=\operatorname{dist}(0, \partial B)=\inf _{y \in \partial B}|y|$ and explain why δ measures robustness of the equilibrium with respect to noisy time-dependent perturbations. Might be useful to consider a simple ODE such as $x^{\prime}=x-x^{3}$ and the basins of the equilibria $x= \pm 1$.
These sets can in general be be incredibly complicated (i.e. look up riddled basin boundaries).

