MA775-Fall 2017 Homework 3 - Due October 24th
Problem 1(Perko pg. 251) Let

$$
\begin{array}{r}
x^{\prime}=-y+x\left(\left(x^{2}+y^{2}\right)^{2}-3\left(x^{2}+y^{2}\right)+1\right) \\
y^{\prime}=x+y\left(\left(x^{2}+y^{2}\right)^{2}-3\left(x^{2}+y^{2}\right)+1\right)
\end{array}
$$

Show there exists one periodic orbit in each annuli $A_{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: 1<|\mathbf{x}|<2\right\}$ and $A_{1}=$ $\left\{\mathbf{x} \in \mathbb{R}^{2}: 0<|\mathbf{x}|<1\right\}$ and determine the stability properties of the periodic orbits. Note, polar coordinates may help.

Problem 2(Chicone Exc. 1.129: Construct an example of a differential equation, defined on all of \mathbb{R}^{3} that has a periodic orbit, but no rest points.
Problem 3(Prof. Scheel's Class) Let

$$
x^{\prime}=-x+a y^{2}, \quad y^{\prime}=-2 y+b x^{2} .
$$

(a) Draw the phase portrait of the linearization about the origin, and express trajectories as graphs $x=h(y)$ or $y=h(x)$.
(b) Find the Taylor expansion of the (smooth) strong stable manifold $x=h_{s s}(y)$ for the nonlinear system up to order 2.
(c) Try to find a one-dimensional "weak-stable" manifold tangent to $\{y=0\}$, corresponding to the weak-stable eigenvalue $\lambda=-1$, by calculating a quadratic taylor expansion. What goes wrong?
(d) Set $a=0$ and compute solutions explicitly and show there exist manifolds $y=h_{s}(x)$, but none is C^{2} because of terms of the form $x^{2} \log x$.
Problem 4: Let

$$
x^{\prime}=\mu-x^{2}+2 y^{2}, \quad y^{\prime}=-y+x+\mu-x^{2}
$$

Study the parameter dependent center manifold at the equilibrium $(x, y ; \mu)=(0,0, \mu)$ for $\mu \sim 0$. In particular add an additional equation, $\mu^{\prime}=0$, and apply the center manifold theorem to obtain a second-order expansion of the center manifold. Calculate the leading order (i.e. the 2nd-order truncation) equation on the center manifold, and determine its qualitative dynamics for $\mu \sim 0$.

