MA775-Fall 2017 Homework 5 - Due December 7th
Problem 1 (Chicone Ex. 1.76) Show that gradient systems can't have periodic orbits.
Problem 2(Degenerate Pitchfork, Prof. Scheel's class): Determine the bifurcation diagram of the equation:

$$
x^{\prime}=\mu_{1} x+\mu_{2} x^{3}-x^{5}+x \mathcal{O}\left(x^{6}+|\mu| x^{4}\right) .
$$

That is, for all $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$, find all equilibria determine their stability.
Problem 3(Hopf persistence proof)[Ioossध Adelmayer] As in class, consider $x^{\prime}=F(z, \mu), x \in$ $\mathbb{R}^{n}, \mu \in \mathbb{R}, F(0,0)=0$ such that $L:=D_{x} F(0,0)$ has simple eigenvalues $\pm \mathrm{i} \omega, \omega>0$ with eigenvectors $e_{0}, \overline{e_{0}}$ and with $\operatorname{spec}(L) \cap i \mathbb{R}=\{ \pm \mathrm{i} \omega\}$. As discussed in class, a center manifold reduction on the center subspace $E_{0}=\left\{z e_{0}+\overline{z e_{0}}\right\}_{z \in \mathbb{C}}$, along with a normal form reduction, gives the reduced system

$$
\begin{aligned}
& z^{\prime}=\mathrm{i} \omega z+z g\left(|z|^{2}, \mu\right)+o\left(|A|^{2 k+2}\right), \\
& \bar{z}^{\prime}=-\mathrm{i} \omega \bar{z}+\bar{z} \overline{g\left(|z|^{2}, \mu\right)}+o\left(|z|^{2 k+2}\right),
\end{aligned}
$$

with g a complex polynomial of order less or than equal to k in $|z|^{2}$, such that $g(0,0)=0$. Introducing polar coordinates $z=r \mathrm{e}^{\mathrm{i} \phi t}$ we find

$$
\begin{aligned}
r^{\prime} & =r g_{r}\left(r^{2}, \mu\right)+R_{r} \\
\phi^{\prime} & =\omega+g_{\phi}\left(r^{2}, \mu\right)+R_{\phi}
\end{aligned}
$$

with $g_{r}=(g+\bar{g}) / 2:=\sum_{r=0}^{k} a_{j}(\mu) r^{2 j}, \quad g_{\phi}=(g-\bar{g}) / 2:=\sum_{r=0}^{k} b_{j}(\mu) r^{2 j}$ and $R_{r}=o\left(r^{2 k+2}\right), R_{\phi}=$ $o\left(r^{2 k+1}\right)$.
(a): Show that the system, truncated at order $2 k+1$, undergoes a pitchfork bifurcation with direction determined by the leading order coefficients in g_{r}. You should find for $a:=\frac{a_{0}^{\prime}(0)}{a_{1}(0)}<0$ the bifurcating solution takes the form, for $\mu>0$,

$$
\left.r_{*}(\mu)=\sqrt{-a \mu}+o(|\mu|)\right), \quad \omega_{*}(\mu)=\omega+\left(b_{0}^{\prime}(0)-b_{1}(0) a\right) \mu+o(|\mu|) .
$$

(b): Show that, for all (r, ϕ, μ) near zero, any solution must have $\frac{d \phi}{d t}>0$. Use this to eliminate time, considering r as a function of ϕ, and derive a new ODE

$$
\frac{d r}{d \phi}=\tilde{f}(r, \phi, \mu)
$$

with $\tilde{f}, 2 \pi$-periodic in ϕ.
(c): Let $r(0, \rho, \mu)=\rho$ be the initial data of solutions to this new ODE. Define a Poincare map, $(\rho, \mu) \mapsto P(\rho, \mu):=r(2 \pi ; \rho, \mu)$. Show that P can be factored $P(\rho, \mu)=\rho \tilde{P}(\rho, \mu)$ with smooth \tilde{P} near $\rho, \mu \sim 0$ so that non-trivial fixed points of P are found by solving $\tilde{P}(\rho, \mu)=1$.
(d): Show that $\tilde{P}(0,0)=1$ and use the implicit function theorem to solve $0=\tilde{F}(\rho, \mu):=\tilde{P}(\rho, \mu)-1$ for μ (in terms of ρ) near $(0,0)$. Conclude the existence of a periodic orbit.
Hint: show that the function $\phi \mapsto \frac{\partial r}{\partial \rho}(\phi ; 0, \mu)$ satisfies the $\operatorname{ODE} \partial_{\phi}\left(\frac{\partial r}{\partial \rho}(\phi ; 0, \mu)\right)=\frac{a_{0}(\mu)}{\omega+b_{0}(\mu)} \frac{\partial r}{\partial \rho}(\phi ; 0, \mu)$ and conclude that $\partial_{\rho} r(\phi ; 0, \mu)=\mathrm{e}^{\left(\frac{a_{0}(\mu)}{\omega+b_{0}(\mu)}\right) \phi}$.
Problem 4(Bogdanov-Takens Normal form/The double-zero eigenvalue

Consider the following system near $\underline{x}:=(x, y)=(0,0)$, with small parameters $\mu \sim 0$:

$$
\begin{aligned}
& \dot{x}=y+\mathcal{O}\left(|\mu|+|\underline{x}|^{2}\right) \\
& \dot{y}=0+\mathcal{O}\left(|\mu|+|\underline{x}|^{2}\right) .
\end{aligned}
$$

(a): First study the normal form, up to second order, for $\mu=0$, showing the above system can be transformed into the system

$$
\begin{align*}
\dot{x} & =y \\
\dot{y} & =-x^{2}+x y+\mathcal{O}\left(|\underline{x}|^{3}\right) . \tag{0.1}
\end{align*}
$$

(Hint: One can proceed systematically as in [Guckenheimer \& Holmes $\S 3.3$], studying the range of the homological operator.)
(b): (Unfolding) It can be found that the parameter dependent unfolding

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=\mu_{1}+\mu_{2} y-x^{2}+x y+\mathcal{O}\left(|\underline{x}|^{3}\right), \quad \mu_{1}, \mu_{2} \in \mathbb{R}
\end{aligned}
$$

is a versal deformation of the vector-field. That is there exists a C^{0}-conjugacy between the linear part of this system and any small perturbation of the system (0.1) in a neighborhood of the origin (See [Arnold, Geometric Methods...] for more detail). Omitting the $\mathcal{O}(3)$-terms, study the stability properties of the equilibria $(x, y)=\left(0, \pm \sqrt{\mu_{1}}\right)$, in the parameter plane $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$ and locate any curves in this plane where bifurcations occur. As much as you can, sketch the phase-portraits of the vector fields in each of the main parameter regions.
(c): There exists another bifurcation curve corresponding to a global bifurcation where the limit cycle vanishes along a homoclinic orbit. To study this, we wish to scale around this area: $\mu_{1} \sim \mu_{2}^{2}$. That is scale as following: $x=\tilde{x} \epsilon^{2}, \quad y=\tilde{y} \epsilon^{3}, \quad \mu_{2}=-\epsilon^{2} \nu_{2}, \mu_{1}=\nu \epsilon^{4}, \frac{d}{d \tau}=\frac{d}{d t} \epsilon$, so that

$$
\begin{align*}
\tilde{x}^{\prime} & =y, \\
\tilde{y}^{\prime} & =\nu-\epsilon \nu_{2} \tilde{y}+\epsilon \tilde{x} \tilde{y}-\tilde{x}^{2} . \tag{0.2}
\end{align*}
$$

For $\epsilon=0$ one obtains the "anharmonic" oscillator (dropping tilde's)

$$
\begin{align*}
x^{\prime} & =y, \\
y^{\prime} & =\nu-x^{2}, \tag{0.3}
\end{align*}
$$

Find the Hamiltonian for this system. For $\nu=1$, the system has a homoclinic orbit explicitly given by

$$
(x(t), y(t))=\left(3 \operatorname{sech}^{2}(t / \sqrt{2})-1,-3 \sqrt{2} \operatorname{sech}^{2}(t / \sqrt{2}) \tanh (t / \sqrt{2})\right) .
$$

Use the method of Melnikov to approximately find the parameter curve for which the homoclinic persists under the perturbation $\epsilon\left(0,-\nu_{2} \tilde{y}+\tilde{x} \tilde{y}\right)$. Hint: One should approximately find $\nu_{2}=7 / 5$ and thus $\mu_{1}=\left(5 \mu_{2} / 7\right)^{2}$ for $\mu_{2}<0$.
See [Guckenheimer \& Holmes], [Kuznetsov], [Takens 1974], or [Bogdanov 1975] for more detail.

