MA775 - Fall 2017 Homework 5 - Due December 7th

Problem 1(Chicone Ex. 1.76) Show that gradient systems can't have periodic orbits.

Problem 2(Degenerate Pitchfork, Prof. Scheel's class): Determine the bifurcation diagram of the equation:

$$x' = \mu_1 x + \mu_2 x^3 - x^5 + x \mathcal{O}(x^6 + |\mu| x^4).$$

That is, for all $(\mu_1, \mu_2) \in \mathbb{R}^2$, find all equilibria determine their stability.

Problem 3(Hopf persistence proof)[Iooss& Adelmayer] As in class, consider $x' = F(z, \mu), x \in \mathbb{R}^n, \mu \in \mathbb{R}, F(0,0) = 0$ such that $L := D_x F(0,0)$ has simple eigenvalues $\pm i\omega, \omega > 0$ with eigenvectors $e_0, \overline{e_0}$ and with spec $(L) \cap i\mathbb{R} = \{\pm i\omega\}$. As discussed in class, a center manifold reduction on the center subspace $E_0 = \{ze_0 + \overline{ze_0}\}_{z \in \mathbb{C}}$, along with a normal form reduction, gives the reduced system

$$z' = i\omega z + zg(|z|^2, \mu) + o(|A|^{2k+2}),$$

$$\bar{z}' = -i\omega \bar{z} + \bar{z}\overline{g(|z|^2, \mu)} + o(|z|^{2k+2}),$$

with g a complex polynomial of order less or than equal to k in $|z|^2$, such that g(0,0) = 0. Introducing polar coordinates $z = r e^{i\phi t}$ we find

$$r' = rg_r(r^2, \mu) + R_r$$

$$\phi' = \omega + g_\phi(r^2, \mu) + R_d$$

with $g_r = (g + \bar{g})/2 := \sum_{r=0}^k a_j(\mu) r^{2j}$, $g_\phi = (g - \bar{g})/2 := \sum_{r=0}^k b_j(\mu) r^{2j}$ and $R_r = o(r^{2k+2})$, $R_\phi = o(r^{2k+1})$.

(a): Show that the system, truncated at order 2k + 1, undergoes a pitchfork bifurcation with direction determined by the leading order coefficients in g_r . You should find for $a := \frac{a'_0(0)}{a_1(0)} < 0$ the bifurcating solution takes the form, for $\mu > 0$,

$$r_*(\mu) = \sqrt{-a\mu} + o(|\mu|)), \quad \omega_*(\mu) = \omega + (b'_0(0) - b_1(0)a)\mu + o(|\mu|).$$

(b): Show that, for all (r, ϕ, μ) near zero, any solution must have $\frac{d\phi}{dt} > 0$. Use this to eliminate time, considering r as a function of ϕ , and derive a new ODE

$$\frac{dr}{d\phi} = \tilde{f}(r,\phi,\mu)$$

with \tilde{f} , 2π -periodic in ϕ .

(c): Let $r(0, \rho, \mu) = \rho$ be the initial data of solutions to this new ODE. Define a Poincare map, $(\rho, \mu) \mapsto P(\rho, \mu) := r(2\pi; \rho, \mu)$. Show that P can be factored $P(\rho, \mu) = \rho \tilde{P}(\rho, \mu)$ with smooth \tilde{P} near $\rho, \mu \sim 0$ so that non-trivial fixed points of P are found by solving $\tilde{P}(\rho, \mu) = 1$.

(d): Show that $\tilde{P}(0,0) = 1$ and use the implicit function theorem to solve $0 = \tilde{F}(\rho,\mu) := \tilde{P}(\rho,\mu) - 1$ for μ (in terms of ρ) near (0,0). Conclude the existence of a periodic orbit.

Hint: show that the function $\phi \mapsto \frac{\partial r}{\partial \rho}(\phi; 0, \mu)$ satisfies the ODE $\partial_{\phi}(\frac{\partial r}{\partial \rho}(\phi; 0, \mu)) = \frac{a_0(\mu)}{\omega + b_0(\mu)} \frac{\partial r}{\partial \rho}(\phi; 0, \mu)$ and conclude that $\partial_{\rho} r(\phi; 0, \mu) = e^{(\frac{a_0(\mu)}{\omega + b_0(\mu)})\phi}$.

Problem 4(Bogdanov-Takens Normal form/The double-zero eigenvalue

Consider the following system near $\underline{x} := (x, y) = (0, 0)$, with small parameters $\mu \sim 0$:

$$\dot{x} = y + \mathcal{O}(|\mu| + |\underline{x}|^2)$$
$$\dot{y} = 0 + \mathcal{O}(|\mu| + |\underline{x}|^2).$$

(a): First study the normal form, up to second order, for $\mu = 0$, showing the above system can be transformed into the system

$$\begin{split} \dot{x} &= y \\ \dot{y} &= -x^2 + xy + \mathcal{O}(|\underline{x}|^3). \quad , \end{split} \tag{0.1} \quad \boxed{\texttt{e:sys1}}$$

(Hint: One can proceed systematically as in [Guckenheimer & Holmes $\S3.3$], studying the range of the homological operator.)

(b): (Unfolding) It can be found that the parameter dependent unfolding

$$\dot{x} = y$$

 $\dot{y} = \mu_1 + \mu_2 y - x^2 + xy + \mathcal{O}(|\underline{x}|^3), \quad \mu_1, \mu_2 \in \mathbb{R},$

is a versal deformation of the vector-field. That is there exists a C^0 -conjugacy between the linear part of this system and any small perturbation of the system (0.1) in a neighborhood of the origin (See [Arnold, Geometric Methods...] for more detail). Omitting the $\mathcal{O}(3)$ -terms, study the stability properties of the equilibria $(x, y) = (0, \pm \sqrt{\mu_1})$, in the parameter plane $(\mu_1, \mu_2) \in \mathbb{R}^2$ and locate any curves in this plane where bifurcations occur. As much as you can, sketch the phase-portraits of the vector fields in each of the main parameter regions.

(c): There exists another bifurcation curve corresponding to a global bifurcation where the limit cycle vanishes along a homoclinic orbit. To study this, we wish to scale around this area: $\mu_1 \sim \mu_2^2$. That is scale as following: $x = \tilde{x}\epsilon^2$, $y = \tilde{y}\epsilon^3$, $\mu_2 = -\epsilon^2\nu_2$, $\mu_1 = \nu\epsilon^4$, $\frac{d}{d\tau} = \frac{d}{dt}\epsilon$, so that

$$\tilde{x}' = y,$$

$$\tilde{y}' = \nu - \epsilon \nu_2 \tilde{y} + \epsilon \tilde{x} \tilde{y} - \tilde{x}^2.$$
(0.2)

For $\epsilon = 0$ one obtains the "anharmonic" oscillator (dropping tilde's)

$$x' = y,$$

 $y' = \nu - x^2,$ (0.3)

Find the Hamiltonian for this system. For $\nu = 1$, the system has a homoclinic orbit explicitly given by

$$(x(t), y(t)) = (3 \mathrm{sech}^2(t/\sqrt{2}) - 1, -3\sqrt{2} \mathrm{sech}^2(t/\sqrt{2}) \mathrm{tanh}(t/\sqrt{2}))$$

Use the method of Melnikov to approximately find the parameter curve for which the homoclinic persists under the perturbation $\epsilon(0, -\nu_2 \tilde{y} + \tilde{x}\tilde{y})$. Hint: One should approximately find $\nu_2 = 7/5$ and thus $\mu_1 = (5\mu_2/7)^2$ for $\mu_2 < 0$.

See [Guckenheimer & Holmes], [Kuznetsov], [Takens 1974], or [Bogdanov 1975] for more detail.