MA775 - Fall 2023 Homework 4 - Due December 5th

Problem 1(*Teschl 8.13*): Consider $L(v,q) = \frac{1}{2}v^T M v - U(q)$ in \mathbb{R}^3 with $M = mI_3, m > 0$ and suppose the potential U(q) = U(|q|) is rotation invariant. Show that the angular momentum $l = x \wedge p := x \times p$ is conserved in this case.

Problem 2 (Teschl 8.18): Consider the Hamiltonian $H(p,q) = \sum_{j=1}^{n} \frac{p_j^2}{2m} + U_0(q_{j+1} - q_j)$ with interaction potential function $U_0(x) = \frac{k}{2}(x^2 + \alpha x^3)$, and $q_0 = q_{n+1} = 0$, setting m = k = 1. Compute the eigenvalues and eigenvectors of the linear hamiltonian system with $\alpha = 0$. Set $N = 32, \alpha = 1/6$ and choose an initial condition in an eigenspace and numerically compute the time evolution. Investigate how the state is distributed with respect to the eigenvectors as a function of t (here, you can measure this by tracking the quantities $c_j(t) = X(t) \cdot V_j$ of the solution vector $X(t) = (q(t), p(t))^T$ with each eigenvector V_j as time evolves. Please reach out to me if you need some help solving this ODE numerically!

Problem 3(Guckenheimer & Holmes 4.3.2): Study the following systems using averaging methods:

$$x' = \epsilon(x - x^2) \sin^2 t,$$
 $x' = \epsilon(x \sin^2 t - x^2/2)$

Problem 4(Chicone Ex. 1.76) Let $G : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. A Gradient System takes the form

$$x' = -\nabla G(x).$$

Show that gradient systems can't have periodic orbits. Also show that if $x_* \in \mathbb{R}^n$ is an isolated minimum of G then x_* is an asymptotically stable equilibrium.