MA775-Fall 2023 Homework 4 - Due December 5th
Problem 1(Teschl 8.13): Consider $L(v, q)=\frac{1}{2} v^{T} M v-U(q)$ in $\mathbb{R}^{3}$ with $M=m I_{3}, m>0$ and suppose the potential $U(q)=U(|q|)$ is rotation invariant. Show that the angular momentum $l=x \wedge p:=x \times p$ is conserved in this case.
Problem 2 (Teschl 8.18): Consider the Hamiltonian $H(p, q)=\sum_{j=1}^{n} \frac{p_{j}^{2}}{2 m}+U_{0}\left(q_{j+1}-q_{j}\right)$ with interaction potential function $U_{0}(x)=\frac{k}{2}\left(x^{2}+\alpha x^{3}\right)$, and $q_{0}=q_{n+1}=0$, setting $m=k=1$. Compute the eigenvalues and eigenvectors of the linear hamiltonian system with $\alpha=0$. Set $N=32, \alpha=1 / 6$ and choose an initial condition in an eigenspace and numerically compute the time evolution. Investigate how the state is distributed with respect to the eigenvectors as a function of $t$ (here, you can measure this by tracking the quantities $c_{j}(t)=X(t) \cdot V_{j}$ of the solution vector $X(t)=(q(t), p(t))^{T}$ with each eigenvector $V_{j}$ as time evolves. Please reach out to me if you need some help solving this ODE numerically!
Problem 3(Guckenheimer $\mathcal{G}$ Holmes 4.3.2): Study the following systems using averaging methods:

$$
x^{\prime}=\epsilon\left(x-x^{2}\right) \sin ^{2} t, \quad x^{\prime}=\epsilon\left(x \sin ^{2} t-x^{2} / 2\right) .
$$

Problem 4(Chicone Ex. 1.76) Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. A Gradient System takes the form

$$
x^{\prime}=-\nabla G(x)
$$

Show that gradient systems can't have periodic orbits. Also show that if $x_{*} \in \mathbb{R}^{n}$ is an isolated minimum of $G$ then $x_{*}$ is an asymptotically stable equilibrium.

