
MA775 - Fall 2023 Midterm 2 - Due December 12th (no late penalty for turn-in through Dec.

15th)

You must work on these problems on your own. You’re welcome to use references but must cite

whatever you use. Of course, please reach out if you have any questions.

Problem 1(Chicone 2.134/2.137) Consider the following ODE in polar coordinates.

r′ = r(1− r), θ′ = r.

Set S = {θ = 0, r ≥ 0} to be the section and compute the associated Poincare map. Determine the

eigenvalue of the linearization of this map at the fixed point r = 1. Also, for each p in the periodic

orbit, compute the sets in the plane which have the same asymptotic phase as the solution starting

at p.

Problem 2 Consider a system of the form

x′ = λ1x+ o(|x|+ |y|)
y′ = λ2y + o(|x|+ |y|),

with λ1 = 2λ2. Determine the normal form up to second order.

Problem 3(Degenerate Pitchfork): Determine the bifurcation diagram of the equation:

x′ = µ1x+ µ2x
3 − x5.

That is, for all (µ1, µ2) ∈ R2, find all equilibria and determine their stability.

Problem 4: Consider the following system with parameter α ∈ R.

x′ = y,

y′ = x− x2 + αy3

(i) Find and classify all equilibria for various α ∈ R

(ii) Find a change of coordinates which diagonalizes the linearized system about the origin.

(iii) Write the full nonlinear system in the coordinates from part (ii) and find a fourth-order

approximation for the stable and unstable manifolds W s(0),W u(0), respectively.

(iv) Using the calculations from part (c), another argument, or numerical investigation, find an

approximate α value such that these manifolds intersect away from the origin. This gives an

approximate value for the existence of a homoclinic orbit.

Problem 5(Compactification and asymptotics)[Credit to Tasso Kaper for this problem!]: Consider

Airy’s equation
d2x

dt2
− tx = 0.

We wish to use a compactification/desingularization technique to understand the dynamics of

solutions as t → +∞.
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(a): Write the system as a first-order (non-autonomous) system, and introduce the variable β =

(t)−1/2. Derive an autonomous 3D-system of equations for x, y := x′, and β. The equilibrium

(x, y, β) = (0, 0, 0) represents the behavior near (x, y) = (0, 0) at t → +∞ and represents a

compactification of the point t = ∞.

(b) Desingularize by scaling x = β−αx̃, y = β−γ ỹ, d
dt = β−ν d

dτ so that the vector field is smooth in

the new variables (that is find suitable α, γ, and ν so that the new vector field is smooth) and the

leading order linear system when β = 0 for (x̃, ỹ) is x̃τ = ỹ, ỹτ = x̃.

(c) Linearize about the origin in the new 3D-system you found, find the expansion for the center-

stable manifold up to order 4 and derive an equation for the dynamics on this manifold. Shortcut:

you could write the center-stable manifold as a graph ỹ = h(x̃, β), with h(0, 0) = 0 and ∂x̃h(0, 0) =

−1 (tangency with stable subspace). Further hint: The center equation/dynamics should just be

the β equation, and the dynamics of the other coordinate give the exponentially attracting behavior.

(d) The equation you get for the stable dynamics should take the leading order form

x̃τ = (−1− c1β
3)x̃

for appropriate constant c1. Plug in the explicit form of β(τ) to this equation and solve for x̃.

Unwind your scalings to derive an expansion for x(t) as t → +∞. This should be the well-known

asymptotics of the Airy function.

Do one of the following two problems:

Problem 6(a)(Hopf persistence proof)[Iooss& Adelmayer] :

As in class, consider x′ = F (z, µ), x ∈ Rn, µ ∈ R, F (0, 0) = 0 such that L := DxF (0, 0) has simple

eigenvalues ±iω, ω > 0 with eigenvectors e0, e0 and with spec(L) ∩ iR = {±iω}. As discussed in

class, a center manifold reduction on the center subspace E0 = {ze0+ze0}z∈C, along with a normal

form reduction, gives the reduced system

z′ = iωz + zg(|z|2, µ) + o(|z|2k+2),

z̄′ = −iωz̄ + z̄g(|z|2, µ) + o(|z|2k+2),

with g a complex polynomial of order less or than equal to k in |z|2, such that g(0, 0) = 0.

Introducing polar coordinates z = reiϕt we find

r′ = rgr(r
2, µ) +Rr

ϕ′ = ω + gϕ(r
2, µ) +Rϕ

with gr = (g + ḡ)/2 :=
∑k

j=0 aj(µ)r
2j , gϕ = (g − ḡ)/2 :=

∑k
j=0 bj(µ)r

2j and Rr = o(r2k+2), Rϕ =

o(r2k+1).

(a): Show that the system, truncated at order 2k + 1, undergoes a pitchfork bifurcation with

direction determined by the leading order coefficients in gr. You should find for a :=
a′0(0)
a1(0)

< 0 the

bifurcating solution takes the form, for µ > 0,

r∗(µ) =
√
−aµ+ o(|µ|)), ω∗(µ) = ω + (b′0(0)− b1(0)a)µ+ o(|µ|).
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(b): Show that, for all (r, ϕ, µ) near zero, any solution must have dϕ
dt > 0. Use this to eliminate

time, considering r as a function of ϕ, and derive a new ODE

dr

dϕ
= f̃(r, ϕ, µ)

with f̃ , 2π-periodic in ϕ.

(c): Let r(0, ρ, µ) = ρ be the initial data of solutions to this new ODE. Define a Poincare map,

(ρ, µ) 7→ P (ρ, µ) := r(2π; ρ, µ). Show that P can be factored P (ρ, µ) = ρP̃ (ρ, µ) with smooth P̃

near ρ, µ ∼ 0 so that non-trivial fixed points of P are found by solving P̃ (ρ, µ) = 1.

(d): Show that P̃ (0, 0) = 1 and use the implicit function theorem to solve 0 = F̃ (ρ, µ) := P̃ (ρ, µ)−1

for µ (in terms of ρ) near (0, 0). Conclude the existence of a periodic orbit.

Hint: show that the function ϕ 7→ ∂r
∂ρ(ϕ; 0, µ) satisfies the ODE ∂ϕ(

∂r
∂ρ(ϕ; 0, µ)) =

a0(µ)
ω+b0(µ)

∂r
∂ρ(ϕ; 0, µ)

and conclude that ∂ρr(ϕ; 0, µ) = e
(

a0(µ)
ω+b0(µ)

)ϕ
.

Problem 6(b)(Bogdanov-Takens Normal form/The double-zero eigenvalue):

Consider the following system near x := (x, y) = (0, 0), with small parameters µ ∼ 0 :

ẋ = y +O(|µ|+ |x|2)
ẏ = 0 +O(|µ|+ |x|2). ,

(a): First study the normal form, up to second order, for µ = 0, showing the above system can be

transformed into the system

ẋ = y

ẏ = −x2 + xy +O(|x|3). , (0.1) e:sys1

(Hint: One can proceed systematically as in [Guckenheimer & Holmes §3.3], studying the range of

the homological operator. )

(b): (Unfolding) It can be found that the parameter dependent unfolding

ẋ = y

ẏ = µ1 + µ2y − x2 + xy +O(|x|3), µ1, µ2 ∈ R,

is a versal deformation of the vector-field. That is there exists a C0-conjugacy between the linear

part of this system and any small perturbation of the system (0.1) in a neighborhood of the origin

(See [Arnold, Geometric Methods...] for more detail). Omitting the O(3)-terms, study the stability

properties of the equilibria (x, y) = (±√
µ1, 0), in the parameter plane (µ1, µ2) ∈ R2 and locate any

curves in this plane where bifurcations occur. As much as you can, sketch the phase-portraits of

the vector fields in each of the main parameter regions.

(c): There exists another bifurcation curve corresponding to a global bifurcation where the limit

cycle vanishes along a homoclinic orbit. To study this, we wish to scale around this area: µ1 ∼ µ2
2.

That is scale as following: x = x̃ϵ2, y = ỹϵ3, µ2 = −ϵ2ν2, µ1 = νϵ4, d
dτ = d

dtϵ, so that

x̃′ = y,

ỹ′ = ν − ϵν2ỹ + ϵx̃ỹ − x̃2. (0.2)
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For ϵ = 0 one obtains the “anharmonic” oscillator (dropping tilde’s)

x′ = y,

y′ = ν − x2, (0.3)

Find the Hamiltonian for this system. For ν = 1, the system has a homoclinic orbit explicitly given

by

(x(t), y(t)) = (3sech2(t/
√
2)− 1,−3

√
2sech2(t/

√
2)tanh(t/

√
2)).

Use the method of Melnikov to approximately find the parameter curve for which the homoclinic

persists under the perturbation ϵ(0,−ν2ỹ + x̃ỹ). Hint: One should approximately find ν2 = 7/5

and thus µ1 = (5µ2/7)
2 for µ2 < 0.

See [Guckenheimer & Holmes], [Kuznetsov], [Takens 1974], or [Bogdanov 1975] for more detail.
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