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1 Introduction

1.1 Fix a variety X over C. The Riemann-Hilbert correspondence identifies the category of perverse sheaves
on X(C) with the (abelian) category of regular holonomic D-modules on X. This is a remarkable and
deep theorem in the theory of linear partial differential equations. In this note we will investigate this
correspondence in simple examples, exploring the topological and algebraic sides as well as their connection
through analysis.

1.2 Let us define the abelian category of D-modules on a smooth variety X. First, the sheaf of differential
operators DX is the quasicoherent sheaf of associative algebras defined inductively as follows. The differential
operators of order 0 make up the structure sheaf OX . A local section D ∈ E ndC(OX) is a differential operator
of order ≤ 1 provided that [D, f ] ∈ OX ⊂ E ndC(OX) for any f ∈ OX . We say that D is a differential operator
of order ≤ n if [D, f ] is a differential operator of order ≤ n−1 for any f ∈ OX , and DX consists of differential
operators of all orders. In particular DX has a canonical filtration, and the associated graded sheaf of algebras
is SymOX

TX .
A sheaf of left DX -modules M is called a D-module on X if M is quasicoherent as an OX -module. A

D-module is called coherent if it is locally finitely generated as an DX -module. A coherent D-module M is
known to admit a filtration compatible with the filtration on DX , so one obtains a module over SymOX

TX .
The support of this module does not depend on the chosen filtration and is called the characteristic variety
or singular support Sing(M ): it is a closed subvariety of the cotangent bundle T ∗X which is conical, i.e.
stable under the Gm-action. One can prove that dim Sing(M ) ≥ dimX, and we call M holonomic provided
that dim Sing(M ) = dimX, i.e. the characteristic variety has minimal possible dimension.

In order to state the Riemann-Hilbert correspondence one has to define what it means for a holonomic
D-module to have regular singularities. Roughly speaking, this means that the solutions of a corresponding
system of differential equations have moderate (i.e. at most polynomial) growth. Rather than give a
precise definition, we give an example of a D-module which does not have regular singularities. The global
differential operators on A1 are identified with the Weyl algebra W1, which is the free noncommutative
algebra on the symbols x and ∂ modulo the relation x∂−∂x = 1. The exponential D-module exp, defined by
Γ(A1, exp) = W1/W1(∂ − 1), does not have regular singularities because its solutions do not have moderate
growth at infinity.

1.3 Before proceeding further, we will state the theorem in greater generality. On one side we consider the
full subcategory D rs

hol(X) of the bounded derived category of DX -modules on X consisting of complexes whose
cohomologies are holonomic with regular singularities. On the other is the full subcategory Db

c(X) of the
bounded derived category of sheaves of C-vector spaces on X(C) consisting of complexes whose cohomologies
are constructible with respect to some algebraic stratification of X.

For simplicity, let us assume that X is smooth. Given a complex of D-modules M ∈ D(X), one defines
the solution complex as

Sol(M ) := RH omDXan (M an,OXan).

A theorem of Kashiwara ensures that if M is cohomologically bounded with holonomic cohomology sheaves,
then Sol(M ) ∈ Db

c(X). It is so named because if X is affine and I ⊂ DX is a left ideal, generated by
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some differential operators D1, · · · , Dn, then H0 Sol(DX) is the sheaf of holomorphic functions f ∈ OXan

satisfying the differential equations
D1f = · · · = Dnf = 0.

Theorem 1.3.1 (Riemann-Hilbert correspondence). The functor Sol restricts to an equivalence

D rs
hol(X)op−̃→Db

c(X).

To obtain a covariant equivalence one can compose with Verdier duality, and the resulting functor agrees
with the analytic de Rham complex, which is therefore an equivalence also.

1.4 Both sides of the equivalence in Theorem 1.3.1 are equipped with natural t-structures, since they are
categories of complexes. However, the functor is not compatible with these t-structures, not even up to
shift. To get an equivalence of categories with t-structures, and hence an equivalence between their abelian
hearts, one uses the perverse t-structure on Db

c(X). Rather than give a definition, we remark that this
t-structure is determined by the equivalence Sol and the natural t-structure on D rs

hol(X), and in particular
the abelian category of perverse sheaves can be defined as the essential image of the abelian category of
regular holonomic D-modules under the functor Sol (or better, Sol[dimX]).

2 Local systems on the punctured affine line

2.1 Recall that a local system is a locally constant sheaf of finite-dimensional C-vector spaces. Perverse
sheaves, at least on a smooth variety, are supposed to be generalized local systems which are allowed to be
“singular” along some stratification. In order to understand general perverse sheaves we should first study
lisse perverse sheaves, which come from local systems. We will do this now in the case X = A1 \ {0}, so
X(C) = C×.

A local system on C× corresponds to a finite-dimensional representation of the fundamental group
π1(C×, 1) = Z, i.e. a finite-dimensional vector space V equipped with a linear automorphism ϕ. This
automorphism is called the monodromy of the local system. The locally constant sheaf corresponding to
(V, ϕ) is the sheaf of sections of the space (C×V )/Z, where Z acts diagonally, by translations on C and by ϕ
on V . In other words, if we view the universal cover C→ C× given by x 7→ e2πix as a Z-bundle, the desired
local system is the sheaf with fiber V associated with the Z-representation (V, ϕ). Isomorphism classes of
pairs (V, ϕ) are classified by Jordan normal forms modulo permutation of the Jordan blocks. In particular,
the simple objects Lµ are parameterized by µ ∈ C×.

2.2 Which D-module corresponds to the lisse perverse sheaf Lµ? The global differential operators on
A1 \ {0} are W1[x−1] (see Section 1 for the definition of the Weyl algebra W1). Because A1 \ {0} is affine,
D-modules are just W1[x−1]-modules, and for any λ ∈ C we have the D-module

xλ := W1[x−1]/W1[x−1](x∂ − λ).

Notice that the C[x, x−1]-module underlying xλ is free of rank one, i.e. the trivial line bundle, and the
D-module structure is the flat connection determined by

∇ · 1 =
λ

x
.

Under the Riemann-Hilbert correspondence xλ is sent to Lµ, where µ = e2πiλ.
To see why, choose a connected and simply connected open set U ⊂ C× and a branch log : U → C of the

complex logarithm. One checks that all solutions on U of the differential equation

f ′(x) =
λ

x
f(x)

are scalar multiples of f(x) = eλ log x, and in particular the D-module xλ corresponds to a local system of
rank 1. To compute the monodromy, fix p ∈ U and a loop γ based at p which winds once around the origin
counterclockwise. Parallel transport along γ adds 2πi to log, so f(x) is sent to

eλ(2πi+log x) = e2πiλf(x).
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3 Perverse sheaves on the projective line

3.1 Now we study the situation on a curve where we allow sheaves to be singular at a single point. We
may as well take X = P1, so that X(C) is the Riemann sphere, and allow singularities only at ∞. That
is, we consider the category Perv∞(P1) of perverse sheaves on P1 whose restriction to A1 is lisse (here and
elsewhere we abuse notation and ignore the distinction between X(C) and X). Since A1 is simply connected,
local systems and hence lisse perverse sheaves on A1 are all trivial. Thus Perv∞(P1) is determined by the
local geometry around ∞. As with any category of perverse sheaves Perv∞(P1) is Artinian, meaning every
object admits a finite filtration with simple subquotients. We will see that there are two simple objects and
five indecomposable objects.

3.2 The two simple objects in Perv∞(P1) are the IC (intersection cohomology) sheaf ICP1 , which comes from
the trivial local system, and the delta sheaf δ∞. Letting j : A1 → P1 be the inclusion, we have pushforward
functors j∗ and j!, and in particular we can consider j∗ ICA1 and j! ICA1 . These sheaves are indecomposable,
and fit into short exact sequences

0 −→ ICP1 −→ j∗ ICA1 −→ δ∞ −→ 0

and
0 −→ δ∞ −→ j! ICA1 −→ ICP1 −→ 0.

There is still another indecomposable object P∞ in Perv∞(P1), which is not immediately accessible
via the usual six functors formalism. The sheaf P∞ is sometimes called the big projective because it is
projective and it is the longest indecomposable object. The easiest way to characterize the big projective is
as follows: a simple object of an Artinian category with enough projectives receives an epimorphism from
an indecomposable projective object, unique up to non-unique isomorphism, called its projective cover. The
projective cover of δ∞ is P∞. Dually, in an Artinian category with enough injectives simple objects have
injective hulls, and P∞ is also the injective hull of δ∞. Thus P∞ contains δ∞ as both a subobject and a
quotient. In fact there is a filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 = P∞

where F1
∼= δ∞, F2/F1

∼= ICP1 , and P∞/F2
∼= δ∞.

There are many more characterizations of P∞, which is easily the most interesting object of Perv∞(P1).
Here is one more. Letting i : {∞} → P1 be the inclusion, there are two pullback functors i! and i∗, which
take values in complexes of vector spaces. For example, i! ICP1 = C[−1] and i∗ ICP1 = C[1]. An object F
of Perv∞(P1) is called tilting if both i!F and i∗F have cohomology concentrated in degree zero. Thus δ∞
is tilting because i!δ∞ = C = i∗δ∞, whereas ICP1 is not. One checks that i!P∞ = C = i∗P∞, so the big
projective is tilting. In fact, P∞ is the unique indecomposable tilting sheaf which restricts to ICA1 . This
follows from the calculations i∗j∗ ICA1 = C⊕C[1] and i!j! ICA1 = C⊕C[−1] (the base change formula implies
that i!j∗ = 0 = i∗j!).

3.3 Having described the indecomposable objects of Perv∞(P1) and computed the relevant local invariants
(namely !- and ∗-fibers at ∞), we now calculate global invariants of these sheaves. More precisely, writing
p : P1 → pt, there is a pushforward functor p∗ = p! which takes values in complexes of vector spaces.
Unsurprisingly p∗δ∞ = p∗i∗C = C. We have p∗j∗ ICA1 = C[1] because, up to the shift that appears
because ICA1 [−1] is the constant sheaf, this complex computes the cohomology of A1(C) = C. Similarly
p∗ ICP1 = C[1] ⊕ C[−1] computes the cohomology of P1(C) shifted by 1. The complex p∗j! ICA1 = C[−1]
computes the homology of A1, up to the shift that appears because ICA1 [1] is the dualizing sheaf.

We expect a more interesting answer for P∞, and in fact p∗P∞ = 0. In order to prove this we
need Verdier duality, which is an endofunctor D of Perv∞(P1) with the property that D ◦ D is canonically
isomorphic to the identity functor. For example, Dδ∞ = δ∞ and D ICP1 = ICP1 . Since Dj∗ = j!D, we have
Dj∗ ICA1 = j! ICA1 and Dj! ICA1 = j∗ ICA1 . Now because D is an equivalence DP∞ must be indecomposable
of length three, which means there is an isomorphism DP∞ ∼= P∞. We have p∗D = Dp∗ because p is proper,
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so p∗P∞ is self-dual as well (in the derived category of vector spaces). The aforementioned filtration on
P∞ yields an exact sequence

0 −→ δ∞ −→P∞ −→ j∗ ICA1 −→ 0,

and after applying p∗ we obtain an exact triangle

C −→ p∗P∞ −→ C[1].

Thus either p∗P∞ = 0 or p∗P∞ ∼= C⊕ C[1], and self-duality rules out the latter possibility.

4 D-modules on the projective line

4.1 Now we discuss regular holonomic D-modules on P1 which are lisse away from ∞, this category being
equivalent to Perv∞(P1) under the Riemann-Hilbert correspondence. The following remarkable fact allows
us to work with these objects very explicitly.

Proposition 4.1.1. The functor of global sections factors through a t-exact equivalence

D(P1) −→ Γ(P1,DP1)-mod,

which therefore induces an equivalence of the hearts on each side.

One says that P1 is D-affine, which is equivalent to the assertion that DP1 is a projective generator of
the abelian category D(P1)♥. This may be surprising, because the corresponding claim for coherent sheaves
on any projective variety (of nonzero dimension) is very far from true. Nonetheless, any partial flag variety,
and in particular any projective space, is D-affine.

4.2 We would therefore like an explicit description of the associative algebra Γ(P1,DP1). As preparation,
let us first consider the Lie algebra Γ(P1,TP1). The standard Euler sequence shows that TP1 is canonically
isomorphic to OP1(2), whose global sections are three-dimensional, but we also want to compute the Lie
bracket. The vector fields x ∂

∂x , y
∂
∂x , x

∂
∂y , and y ∂

∂y (we omit the pushforward from A2\{0} from the notation)

span Γ(P1,TP1), subject to the relation x ∂
∂x + y ∂

∂y = 0. The bracket is determined by the usual rules of
differentiation, but this Lie algebra has an even simpler and more familiar realization.

Recall that the Lie algebra sl2 has a standard basis given by

h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, and f =

[
0 0
1 0

]
.

Proposition 4.2.1. The action of SL2 on P1 induces an isomorphism

sl2−̃→Γ(P1,TP1),

which sends
h 7→ x ∂

∂x − y
∂
∂y , e 7→ x ∂

∂y , and f 7→ y ∂
∂x .

Thus the Lie algebra morphism sl2 = Γ(P1,TP1)→ Γ(P1,DP1) induces a functor

D(P1)−̃→Γ(P1,DP1)-mod −→ Rep(sl2).

In fact, the image of sl2 generates Γ(P1,DP1) as an associative algebra, so this functor is fully faithful. Thus
we can view D-modules on P1 as certain, generally infinite-dimensional, representations of sl2.

Now we describe the essential image of this functor, i.e. which representations of sl2 arise from D-
modules on P1. Recall that the center of the enveloping algebra U(sl2) is generated by the Casimir element
h2 + 2ef + 2fe. It is not hard to check by direct calculation that the morphism U(sl2)→ Γ(P1,DP1) induced
by the isomorphism of Proposition 4.2.1 sends the Casimir element to zero, and in fact we have the following.
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Theorem 4.2.2. The morphism U(sl2) → Γ(P1,DP1) is surjective with kernel generated by the Casimir
element, and in particular induces an isomorphism

U(sl2)0 := U(sl2)/U(sl2)(h2 + 2ef + 2fe).

Thus the functor
D(P1) −→ Rep(sl2)

is an equivalence onto the full subcategory of representations of sl2 with trivial infinitesimal character, mean-
ing h2 + 2ef + 2fe acts by zero.

4.3 Now we turn to the task of identifying the representations of sl2 which correspond to the five inde-
composable perverse sheaves from Section 3. The D-module corresponding to ICP1 is just OP1 with the
tautological action of DP1 , and Γ(P1,OP1) = C with the trivial sl2-action.

The next easiest representation to construct is actually the one corresponding to j! ICA1 . Let b ⊂ sl2 be
the Lie subalgebra of upper triangular matrices, so we can form the Verma module

M0 := U(sl2)⊗U(b) C0,

where C0 has the trivial action of b. The highest weight vector in M0 is v0 := 1 ⊗ 1. For n ≥ 0 put
v−2n := fn ·v0. Then v0, v−2, · · · is an eigenbasis for M0 with respect to h, and h ·v−2n = −2nv−2n. Thus v0
is called the highest weight vector because it has the greatest eigenvalue among eigenvectors of h. Obviously
f · v−2n = v−2n−2, and

e · v−2n = [e, fn] · v0 = (nfn−1h− n(n− 1)fn−1)v0 = −n(n− 1)v−2n+2.

Notice that M0 is not irreducible: the vectors v−2n for n ≥ 1 span a subrepresentation generated by its
own highest weight vector v−2. In fact, this subrepresentation is isomorphic to the Verma module

M−2 := U(sl2)⊗U(b) C−2,

where C−2 has the b-action determined by e · 1 = 0 and h · 1 = −2. We have a (nonsplit) exact sequence

0 −→M−2 −→M0 −→ C −→ 0,

so the irreducible representation M−2 corresponds to δ∞.
The sheaf j∗ ICA1 corresponds to the dual Verma module M∨0 , which has an eigenbasis v∨0 , v

∨
−2, · · ·

with respect to h satisfying h · v∨−2n = −2nv∨−2n, e · v∨−2n = −v∨−2n+2 (where v−2n = 0 for n < 0), and
f · v∨−2n = n(n+ 1)v∨−2n−2. As expected, it fits into an exact sequence

0 −→ C −→M∨0 −→M−2 −→ 0.

Finally, we give an explicit description of the representation P−2 corresponding to P∞. The vector space
P−2 has a basis v0, v−2, · · · , w−2, w−4, · · · consisting of eigenvectors for h, where h · v−2n = −2nv−2n and
h · w−2n = −2nw−2n. The rest of the action is given by e · v−2n = −n(n− 1)v−2n+2, e · w−2n = −w−2n+2,
f · v−2n = v−2n−2, and f · w−2n = n(n+ 1)w2n−2. There is an evident nonsplit exact sequence

0 −→M0 −→ P−2 −→M−2 −→ 0.
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