Week 1 Exercises - Selected Solutions

(1) Let $\varphi : \mathbb{A}^1 \to \mathbb{A}^1$ be given by f(T). Then the Jacobian criterion implies f'(T) is nonvanishing on \mathbb{A}^1 , i.e. f'(T) = c for some $c \in k^{\times}$. As $\operatorname{char}(k) = 0$, this implies f(T) = cT + a for some $a \in k$, i.e. φ is an isomorphism.

Note the condition $\operatorname{char}(k) = 0$ is necessary, as $T \mapsto T^p - T$ is étale but not an isomorphism when $\operatorname{char}(k) = p$.

(2) We compute the Jacobian to be

$$\left|\begin{array}{cc} 2y & x\\ 2x & y \end{array}\right| = 2(y^2 - x^2).$$

Thus if $\operatorname{char}(k) = 2$, then the map is nowhere étale. Otherwise, it is étale as long as $y^2 - x^2 \neq 0$, i.e. away from the diagonals.

(4) By exercise (3), $X \to Y$ is unramified only if the quasicoherent sheaf $\Omega^1_{X/Y}$ vanishes at every point of X. But the vanishing of a quasicoherent sheaf can be checked on closed points (as the vanishing of a module can be checked at maximal ideals).

(7) Let $\varphi : X \to Y$ be étale and $y \in Y$ a point. Then the scheme theoretic fiber is $X_y := X \times_Y y$. Because étale morphisms are preserved by base change, we have $X_y \to \text{Spec}(k(y))$ is étale. Hence X_y is a finite union of separable extensions of k(y) by (5), and the underlying topological space is finite. \Box

(Note: It's possible to prove (7) with fewer assumptions. It's already true that an unramified morphism of schemes is quasi-finite.)

(8) If $i : Z \to X$ is an étale closed immersion, then the image of Z is both open and closed, i.e. it is all of X. Because X is reduced, this determines the scheme theoretic image of Z, and i is an isomorphism in the category of schemes (as opposed to just on underlying topological spaces).

(9) The natural map $\varphi : \operatorname{Spec}(\mathcal{O}_L) \to \operatorname{Spec}(\mathcal{O}_K)$ is generically étale as L/K is finite separable. Thus φ is étale on an open dense subset of $\operatorname{Spec}(\mathcal{O}_L)$, i.e. at all but finitely many points. If \mathfrak{q} is a prime of \mathcal{O}_L lying over \mathfrak{p} in \mathcal{O}_K , then φ is unramified at \mathfrak{q} if and only if $\mathcal{O}_{L,\mathfrak{q}}/\mathfrak{p}\mathcal{O}_{L,\mathfrak{q}} \cong \mathcal{O}_L/\mathfrak{q}^e$ is a finite separable extension of $\mathcal{O}_K/\mathfrak{p}$. This clearly only holds if $e(\mathfrak{q}/\mathfrak{p}) = 1$, so all but finitely many primes in \mathcal{O}_L are unramified. \Box