Week 2 Exercises

- 1. Compute $\pi_1^{\text{ét}}(X)$ for the schemes below relative to any basepoint:
 - (a) $X = \operatorname{Spec}(k)$ for k a field.
 - (b) $X = \operatorname{Spec}(\mathbb{Z}).$
 - (c) $X = \mathbb{A}^1_k$.
 - (d) $X = \mathbb{G}_m$ over a field.
 - (e) X = A an abelian variety with a polarization $\lambda : A \to A^{\vee}$. (Hint: Try when A = E is an elliptic curve as a warm-up.)
 - (f) X = C a smooth affine curve over a finite field \mathbb{F}_q .
- 2. Let K be a global field, and S a finite set of places of K. Compute $\pi_1(\operatorname{Spec}(\mathcal{O}_{K,S}))^{ab}$, where $\mathcal{O}_{K,S}$ is the ring of S-units in K.
- 3. Let X be a connected variety over k which remains connected after extending to k^{sep} . Then show we have an exact sequence

$$1 \to \pi_1(X_{k^{\operatorname{sep}}}, \overline{x}) \to \pi_1(X, \overline{x}) \to G_k \to 1.$$

(Apply to $X = \mathbb{P}^1_{\mathbb{Q}} - \{0, 1, \infty\}$ to get an interesting relation to dessins....)

- 4. Prove Proposition 4.13: if A is a local ring, then $A^h = \lim B$ where (B, \mathfrak{q}) is an étale A-algebra with $\mathfrak{q} \cap A = \mathfrak{m}_A$ and $A/\mathfrak{m} \to B/\mathfrak{q}$ is an isomorphism.
- 5. Prove Puiseux's theorem: if K is an algebraically closed field of characteristic zero, then the only finite extensions of K((T)) are of the form $K((T^{1/n}))$. In particular, $\pi_1(\operatorname{Spec}(K((T)))) = \widehat{\mathbb{Z}}$. (Hint: Use Hensel's lemma on K[T].)
- Compute the strictly local ring of A¹ over an algebraically closed field of characteristic zero at the origin.
- 7. Show that the functor $B \mapsto B/\mathfrak{m}_A B$ is an equivalence of categories between finite étale A-algebras and finite étale A/\mathfrak{m}_A -algebras for A a local Henselian ring. (In particular, if $k_A = A/\mathfrak{m}_A$, then $\pi_1(\operatorname{Spec}(A)) = \pi_1(\operatorname{Spec}(k_A))$.)