Week 4 Exercises

- 1. Let \mathcal{C} be a small category. Show the category of (contravariant) functors $\mathcal{F} : \mathcal{C} \to \underline{Ab}$ is an abelian category.
- 2. Let \mathcal{P} be a subpresheaf of a sheaf \mathcal{F} . Define a presheaf \mathcal{P}' by

 $\mathcal{P}'(U) = \{ s \in \mathcal{F}(U) \mid \exists (U_i \to U) \text{ a covering such that } s|_{U_i} \in \mathcal{P}(U_i) \}.$

Show \mathcal{P}' is a subsheaf of \mathcal{F} .

- 3. Show that:
 - (a) A functor that admits a left adjoint is left exact.
 - (b) A functor that admits a right adjoint is right exact.
 - (c) (Ricky) A functor that admits an exact left adjoint preserves injectives.
 - (d) (Ricky) A functor that admits a left adjoint preserves (categorical) limits. (Hint: Limits are always a composition of products and equalizers.)
 - (e) (Ricky) Note/deduce the dual statements about functors that admit a right adjoint.
- 4. (Ricky) Show that the forgetful functor $i : \underline{Top} \to \underline{Sets}$ has a left adjoint, but $i : Sch/X \to \underline{Sets}$ does not. (If we think of a left adjoint to a forgetful functor as defining a sort of "free object" on a set, then this is saying there's a natural "free" topological space structure on any set, but not a natural scheme structure. If the "free" analogy doesn't make sense, figure out what the left adjoint for $i : \underline{Groups} \to \underline{Sets}$ should be.)
- 5. This exercise gives an alternate proof that the category $Sh(X_{\acute{e}t})$ is abelian.
 - (a) Show sheafification is left exact (hence exact).
 - (b) Prove the following:

Lemma. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}, \mathcal{G} : \mathcal{D} \to \mathcal{C}$ be functors such that:

• C is additive

- \mathcal{D} is abelian
- \mathcal{F}, \mathcal{G} are additive
- \mathcal{G} is left exact
- \mathcal{F} is right adjoint to \mathcal{G}
- $\mathcal{G} \circ \mathcal{F} \cong \mathrm{id}_{\mathcal{C}}$

Then C is abelian.

- (c) Show $\mathcal{F} : \operatorname{Sh}(X_{\acute{e}t}) \to \operatorname{PreSh}(X_{\acute{e}t})$ and $\mathcal{G} : \operatorname{PreSh}(X_{\acute{e}t}) \to \operatorname{Sh}(X_{\acute{e}t})$ being inclusion and sheafification satisfy the conditions of the lemma, and thus $\operatorname{Sh}(X_{\acute{e}t})$ is abelian.
- 6. (Ricky) Show that if char(k) $\nmid n$, then $0 \to \mu_n \to \mathbb{G}_m \to \mathbb{G}_m \to 0$ is exact for X a variety over k, where the second map is $t \mapsto t^n$.
- 7. Given $\pi: Y \to X$, show the following.
 - (a) The pushforward functor π_* : $\operatorname{PreSh}(Y_{\text{ét}}) \to \operatorname{PreSh}(X_{\text{ét}})$ is exact.
 - (b) The pushforward functor $\pi_* : \operatorname{Sh}(Y_{\text{ét}}) \to \operatorname{Sh}(X_{\text{ét}})$ is left exact.
- 8. (Ricky) (Extension by Zero) Let $j : U \to X$ be an open immersion. For \mathcal{F} a sheaf on U_{et} , define $j_!\mathcal{F}$ to be the sheafification of the presheaf:

$$(\varphi: V \to U) \mapsto \begin{cases} \mathcal{F}(V), \text{ if } \varphi(V) \subseteq U, \\ 0, \text{ else} \end{cases}$$

for $\varphi: V \to U \in U_{et}$.

- (a) Show that $j_!$ is left adjoint to $j^* : \operatorname{Sh}(X_{et}) \to \operatorname{Sh}(U_{et})$. (Hint: The pullback is just restriction to U.)
- (b) Show that the stalks of $j_! \mathcal{F}$ are 0 outside of U (and the usual stalks otherwise). (This explains the name.)
- (c) Deduce that $j_{!}$ is exact, so that j^{*} preserves injectives (having an exact left adjoint).
- (d) Let $j_!j^*\mathcal{F} \to \mathcal{F}$ be the canonical map corresponding to the identity in $\operatorname{Hom}(j^*\mathcal{F}, j^*\mathcal{F}) \cong \operatorname{Hom}(j_!j^*\mathcal{F}, \mathcal{F})$. Similarly for $\mathcal{F} \to i_*i^*\mathcal{F}$ where $i : Z = X \setminus U \hookrightarrow X$ is the inclusion of the complement. Show that the sequence

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

is exact.