
Week 4 Exercises - Selected Solutions

(1) (Angus) We will demonstrate the zero object, kernels and cokernels, and
the isomorphism between co-image and image of a morphism.

First, to say a short exact sequence of functors

0 −→ F −→ G −→ H −→ 0

is exact is to say

0 −→ F(U) −→ G(U) −→ H(U) −→ 0

is exact in Ab for all U ∈ C.
We note that the zero object is the functor 0(U) = 0.
Let α : F → G be a morphism.
We construct kerα by setting (kerα)(U) to be the object such that

0 −→ (kerα)(U) −→ F(U)
α−−→ G(U)

is exact. Cokernels similarly.
We have co-imα = coker(kerα → F and imα = ker(G → cokerα). We

get a morphism
β : co-imα −→ imα.

However, we see that for each U ∈ C, we have

β(U) : (co-imα)(U) = co-im(α(U)) −→ (imα)(U) = im(α(U)),

which is an isomorphism since Ab is abelian. Thus by the exactness criterion
above, β is an isomorphism, as required.

(2) (Angus) We wish to show P ′ is a sheaf. Thus, given an open U and an
open cover (Ui → U)i∈I , we must show

P ′(U)→
∏
i∈I

P ′(Ui) ⇒
∏

(i,j)∈I2

P ′(Ui ×U Uj)

is an equalizer. We will denote the maps by restriction.
Assume we have (si) ∈

∏
i∈I P ′(Ui) such that si|Ui×UUj

= sj|Ui×UUj
for

all (i, j) ∈ I2. Since F is a sheaf, we have an element s ∈ F(U) such that
s|Ui

= si.
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By the definition of P ′, for each Ui we have a cover (Vi,k → Ui)k∈K
such that si|Vi,k ∈ P(Vi,k). By composition, we get a cover (Vi,k → Ui →
U)(i,k)∈I×K of U .

Thus we have an element s ∈ F(U) and a cover (Vi,k → Ui → U)(i,k)∈I×K
of U such that si|Vi,k ∈ P(Vi,k), so by the definition of P ′, we have s ∈ P ′(U),
as required.

(3) (Ricky) We will use Milne’s definitions for exactness using Hom sets, i.e.
0→ A→ B → C is exact iff

0→ Hom(T,A)→ Hom(T,B)→ Hom(T,C)

is exact for all objects T .

(a) Let R be a functor admitting a left adjoint L, and suppose 0 → A →
B → C is exact. We want to show that 0→ R(A)→ R(B)→ R(C) is exact.
This is equivalent, by definition, to 0→ Hom(T,R(A))→ Hom(T,R(B))→
Hom(T,R(C)) being exact. But this sequence is the same as

0→ Hom(L(T ), A)→ Hom(L(T ), B)→ Hom(L(T ), C)

which is exact by definition of 0→ A→ B → C being exact. �

(b) Follows immediately from (a) by duality (see (e)).

(c) Let R be a functor with an exact left adjoint L. Let I be an injec-
tive object; we show that R(I) is as well. This means we must show that
Hom(−, R(I)) is an exact functor. Let 0 → A → B → C → 0 be a short
exact sequence. Then by assumption, 0 → L(A) → L(B) → L(C) → 0 is
also exact. As I is injective, we have

0→ Hom(L(C), I)→ Hom(L(B), I)→ Hom(L(A), I)→ 0

exact, i.e.

0→ Hom(C,R(I))→ Hom(B,R(I))→ Hom(A,R(I))→ 0

is exact, so R(I) is injective. �

(d) (“Right Adjoints Preserve Limits”) By the hint, we need only show that
our functor R with left adjoint L preserves products and equalizers. Consider
P :=

∏
i∈I Pi a product of objects Pi. We want to show that R(P ) =
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∏
i∈I R(Pi). Consider the functor of points of R(P ). For any test object

T we have

Hom(T,R(P )) = Hom(L(T ), P )

=
∏
i

Hom(L(T ), Pi)

=
∏
i

Hom(T,R(Pi))

= Hom(T,
∏
i

R(Pi))

where we use the universal mapping property of the product on the second
line and again on the last line. Hence R(P ) and

∏
R(Pi) have the same

functor of points, so by Yoneda they are the same.
The argument for preservation of equalizers is similar (ask if you’d like

to see it). �

(e) The corresponding statements that follow by duality are: left adjoints are
right exact, a functor that admits an exact right adjoint preserves projective
objects, and a functor admitting a right adjoint preserves colimits.

(4) (Ricky) Let F : Sets → Top be defined by F (S) = (S, PS), where PS is
the power set of S (i.e. F (S) is S with the discrete topology). We want to
show that Hom(F (X), Y ) = Hom(X, i(Y )) for a set X and topological space
Y . This is clear from the fact that any morphism of sets out of a discrete
topological space is automatically continuous, and every continuous map of
topological spaces is determined by its map of underlying sets. In other
words, given a map F (X)→ Y we get the corresponding map on underlying
sets X → i(Y ), and given X → i(Y ), it is automatically a continuous map
for F (X)→ Y .

To see that a similar left adjoint cannot exist for the category of X-
schemes, we will show the forgetful functor i : Sch/X → Sets does not
preserve limits (see (3)). We will do the case X = Spec(Z) (e.g. Sch/X =
Sch) and leave the general case as an easy tweak.

As taking fiber products of Spec(Z) with itself leaves it unchanged, we
have

∏
Spec(Z) ∼= Spec(Z). But then if the product is uncountable, we have

i(
∏

Spec(Z)) 6=
∏

i(Spec(Z))
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as the left side is countable while the right side is uncountable.
(If you don’t like the countability argument because you’re worried about

infinite tensor products (as I am now a bit unsure about), an easier version
for R-schemes goes like this: take the product of Spec(C) with itself (as an
R-scheme), which is Spec(C2). This has two points, but the product of two
points in the category of sets is just another point. So the forgetful functor
doesn’t preserve products here either.) �

(5) (Angus)
(a) We in fact know that sheafification is right exact by Q3(b), since it admits
a right adjoint in the forgetful inclusion i : Sh(Xét)→ PreSh(Xét). If we show
it preserve monomorphisms, it will then be exact.

Consider a monomorphism α : P → F of presheaves and the associated
morphism aα : aP → aF of sheaves.

To show this is a monomorphism is to show the morphism of stalks
aαx : aPx → aFx is injective in Ab for each x → X. However, the stalks
of the sheafification are isomorphic to the stalks of the original presheaf,
so the above is equal to αx : Px → Fx, which is injective. Thus aα is a
monomorphism, and thus sheafification is in fact exact.
(b)

Proof. First note that since G admits a right adjoint, it is in fact exact.
Further, since G ◦ F = idC, every object and morphism in C in the image of
G, so it is sufficient to work with objects of the form G(X) and morphisms
G(φ), for X an object in D and φ : A→ B a morphism in D.

Thus by exactness of G we can construct kerG(φ) = G(kerφ) and cokerG(φ) =
G(cokerφ).
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Finally we have

co-imG(φ) ∼= coker(kerG(φ)→ G(A))
∼= coker(G(kerφ)→ G(A))
∼= coker(G(kerφ→ A))
∼= G(coker(kerφ→ A))
∼= G(ker(B → cokerφ))
∼= ker(G(B → cokerφ))
∼= ker(G(B)→ G(cokerφ))
∼= ker(G(B)→ cokerG(φ))
∼= imG(φ),

(using functoriality and exactness of G, as well as the fact that D is abelian)
as required.

(c) We know Sh(Xét) is additive, and PreSh(Xét) is abelian. Further, the
forgetful inclusion i and sheafification a are each additive functors. The
inclusion is right adjoint to sheafification and sheafification is left exact.

Finally a ◦ i = idSh(Xét), since the sheafification of a sheaf is itself.
Thus the conditions of the lemma are satisfied, and Sh(Xét) is an abelian

category.

(6) (Ricky) We check that the sequence is exact at stalks. Let A = OX,x
be the strictly local ring of X at x. Then for a sheaf arising from a group
scheme G we have Gx = G(A). In other words, we need to verify that

0→ µn(A)→ A× → A× → 0

is exact for any strict henselian ring A when char(k) - n. This is clear
everywhere except at the surjectivity of the nth power map. Given a ∈ A×,
consider the polynomial T n − a ∈ A[T ]. Then since A/m is separably closed
and (nT n−1, T n− a) = 1 in A/m[T ], it splits over the residue field. But then
the henselian property lifts a root to a root over A, i.e. a is an nth power.
(Note: The fact that char(k) - n was crucial so that we knew the derivative
of T n − a didn’t vanish so we could lift a root. This is only an issue in the
étale topology which only allows unramified covers, but is not an issue for
the flat topology, where the sequence is still exact even if char(k) | n.) �
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(7) (Angus)
(a) Consider an exact sequence of presheaves

0 −→ F −→ G −→ H −→ 0,

so in particular

0 −→ F(U) −→ G(U) −→ H(U) −→ 0

is exact for all U → Y etale (recall the exactness criterion as in Q1).
To show

0 −→ π∗F −→ π∗G −→ π∗H −→ 0

is exact we need to show

0 −→ π∗F(V ) −→ π∗G(V ) −→ π∗H(V ) −→ 0

is exact for all V → X etale. However, this sequence just equals

0 −→ F(V ×X Y ) −→ G(V ×X Y ) −→ H(V ×X Y ) −→ 0,

which is exact by assumption.
(b) Sh(Xét) is a full subcategory of PreSh(Xét), which maps into it via the
left exact forgetful inclusion i : Sh(Xét) → PreSh(Xét). So a sequence of
sheaves of the form

0 −→ F −→ G −→ H
is exact in Sh(Xét) if and only if

0 −→ iF −→ iG −→ iH

is exact in PreSh(Xét).
So to show

0 −→ π∗F −→ π∗G −→ π∗H
is exact in Sh(Xét) we consider

0 −→ iπ∗F −→ iπ∗G −→ iπ∗H

in PreSh(Xét). However, this just equals

0 −→ π∗iF −→ π∗iG −→ π∗iH,

which is exact by Q7(a).
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