Week 5 Exercises

The notation in the exercises comes from Milne's Lectures on Etale Cohomology (v2.21)...

- 1. Let $L = L_2 \circ L_1$ where L_1 and L_2 are both left exact functors from abelian categories with enough injectives. If L_1 preserves injectives and $(R^r L_1)(X) = 0$ for some object X, then $(R^r L)(X) = (R^r L_2)(L_1 X)$.
- 2. Prove Theorem 9.7 on Milne's *Lectures on Etale Cohomology (v2.21)* (i.e. the Excision theorem).
- 3. Prove that $C^{\bullet}(\mathcal{U}, \mathcal{P})$ is a complex.
- 4. Let \mathcal{U} be the covering of X consisting of a single Galois covering $Y \to X$ with Galois group G. Let \mathcal{P} be a presheaf on X carrying disjoint unions to products.
 - (a) Show that the complex

$$\mathcal{P}(X) \to \mathcal{P}(Y) \to \mathcal{P}(Y \times_X Y) \to \mathcal{P}(Y \times_X Y \times_X Y) \to \cdots$$

is isomorphic to the complex of inhomogeneous cochains for G acting on $\mathcal{P}(Y)$ (see Milne's CFT p62). Each map in the complex is the alternating sum of the maps given by the various projection maps.

(b) Deduce that

 $\check{H}^r(\mathcal{U}, \mathcal{P}) = H^r(G; \mathcal{P}(Y))$ (group cohomology).

5. Show that the given a refinement \mathcal{V} of an etale covering \mathcal{U} of X, the induced map on Čech cohomology groups

$$\rho(\mathcal{V},\mathcal{U}): \check{H}^r(\mathcal{U},\mathcal{P}) \to \check{H}^r(\mathcal{V},\mathcal{P})$$

is independent of all choices.

- 6. Prove that $\check{H}^r(X,\mathcal{I}) = 0$ for all r > 0, for all injective sheaves \mathcal{I} .
- 7. Give an example of a quasi-compact scheme X such that there exists a finite subset of X which is not contained in any open affine subset.
- 8. Compute the following cohomology groups:
 - (a) $H^q((\mathbb{A}^1_{\mathbb{C}} \{0\})_{\acute{e}t}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}$ if q = 1, or 0 if q > 1.
 - (b) $H^q((\mathbb{A}^1_{\mathbb{C}})_{\acute{e}t}, \mathbb{Z}/n\mathbb{Z}) = 0$ for $q \ge 1$.
 - (c) $H^2((\mathbb{P}^1_{\mathbb{C}})_{\acute{e}t}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}$. [Hint: use parts (a) and (b).]
- 9. Use the spectral sequence

$$\check{H}^{r}(X_{\acute{e}t},\mathcal{H}^{s}(\mathcal{F})) \Rightarrow H^{r+s}(X_{\acute{e}t},\mathcal{F})$$

to deduce

- (a) $\check{H}^1(X_{\acute{e}t},\mathcal{F}) \simeq H^1(X_{\acute{e}t},\mathcal{F}).$
- (b) There is an exact sequence

$$0 \to \check{H}^2(X_{\acute{e}t}, \mathcal{F}) \to H^2(X_{\acute{e}t}, \mathcal{F}) \to \check{H}^1(X_{\acute{e}t}, \mathcal{H}^1(\mathcal{F})) \to, \check{H}^3(X_{\acute{e}t}, \mathcal{F}) \to H^3(X_{\acute{e}t}, \mathcal{F}).$$

- 10. Prove Theorem 10.8 (Mayer-Vietoris sequence) on Milne's Lectures on Etale Cohomology (v2.21). [Hint: Use the spectral sequence $\check{H}^r(\mathcal{U}, \mathcal{H}^s(\mathcal{F})) \Rightarrow H^{r+s}(X_{\acute{e}t}, \mathcal{F})$ for the étale covering $\mathcal{U} = (U_0 \to X, U_1 \to X)$.]
- 11. Solve exercise III.3.17 in Milne's Etale Cohomology (1980).
- 12. (Ricky) Show the category of presheaves $\operatorname{PreSh}(X_{et})$ has enough injectives. (Does it follow from some formal nonsense or do you need to recreate the other proof?)