
Week 6 Exercises - Selected Solutions

(4) When X = Spec(k), we have H1(Xet,Z/`Z) = hom(π1(X),Z/`Z) =
hom(Gk,Z/`Z). (Note this is the same as the usual Galois cohomology
H1(Gk,Z/`Z) since Gk acts trivially on Z/`Z.)

When X = A an abelian variety, we know that π1(A) = T (A), the full
Tate module, so H1(Xet,Z/`Z) = hom(T (A),Z/`Z) = A[`] by topological
considerations (the hom’s are continuous).

When X = Spec(OK), we have H1(Xet,Z/`Z) = hom(π1(X),Z/`Z) =
hom(Cl(K),Z/`Z) ∼= Cl(K)[`], the `-torsion in the class group of K. This
follows from the fact that π1(X) classifies unramified extensions of K, and
that hom(G,Z/`Z) is isomorphic to the `-torsion in G for any abelian group
G. �

(5) Using computations similar to (4), we get H1(Aet,Z`) = hom(T (A),Z`) ∼=
hom(T`(A),Z`) =: T`(A)∨ for A an abelian variety again for topological rea-
sons. We haveH1(k,Z`) = hom(Gk,Z`), andH1(OK ,Z`) = lim hom(Cl(K),Z/`nZ) ∼=
lim Cl(K)[`n], which is the Sylow `-subgroup of Cl(K). �

(6) (a) One can use any classical proof using the comparison to Galois co-
homology, but the easiest method using the tools available is to note that
H1(Spec(k),Gm) classifies line bundles on Spec(k), all of which must be triv-
ial as the underlying topological space is a single point.

(b) We use the Hochschild-Serre spectral sequence (the derivation from the
Grothendieck spectral sequence can be read read on pg 96 of the notes, or
elsewhere). Specifically, we have a spectral sequence

Ep,q
2 = Hp(Gk, H

q(Xks ,Gm)) =⇒ Hp+q(X,Gm)

where Xks denotes the base change of X to a separable closure. The five term
exact sequence, which holds for any E2 spectral sequence, is in this case:

0→ E1,0
2 → H1(X,Gm)→ E0,1

2 → E2,0
2 → H2(X,Gm).

We will compute each term individually.

• E1,0
2 := H1(Gk, H

0(Xks ,Gm)) = H1(Gk, (k
s)×). (This is because X is

projective, so OX(Xks) = ks, and thus O×X(Xs
k) = (ks)×.) But this

cohomology group vanishes by Hilbert 90, i.e. E1,0
2 = 0.
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• H1(X,Gm) = Pic(X), by comparison with Cech cohomology.

• E0,1
2 := H0(Gk, H

1(Xks ,Gm)) = Pic(Xks)
Gk , using the same compari-

son, and definition of Galois cohomology in degree 0.

• The last two are not needed, but for completion sake we note that
E2,0

2 := H2(Gk, H
0(Xks ,Gm)) = H2(Gk, (k

s)×) = Br(k) by similar
reasoning as before, and a standard fact from Galois cohomology. Also,
H2(X,Gm) is often called the cohomological Brauer group of X by
analogy; it need not equal Br(X) (defined more naturally using division
algebra ideas)! (But Br(X) ↪→ H2(X,Gm) I think.)

Thus the first part of our sequence reads

0→ 0→ Pic(X)→ Pic(Xks)
Gk

which gives us what we want. (Note: Not all line bundles on Xks which are
Galois invariant need descend to a line bundle on X; the difference seems to
be measured by the Brauer group of k!)

(c) (There should be a way to modify the above argument for flat cohomology,
as we know H1(Gm) is still the Picard group for this topology, but I don’t
remember how at the moment. The problem is we cannot use the Galois
group if k is not perfect, so we need to use a composition of other functors,
or another method entirely. Regardless, the result is still true.) �

(7) (a) We use the Leray spectral sequence. In particular, we have

Hr(Xet, R
sπ∗F) =⇒ Hr+s(Yet,F).

Because π is finite, we know that π∗ : Sh(Yet) → Sh(Xet) is exact, so
Rsπ∗F = 0 for s > 0. This means our spectral sequence is all zero’s ex-
cept along the r-axis, i.e. it degenerates on page 2 with Hr(Xet, R

0π∗F) =
Hr+0(Yet,F), or Hr(Xet, π∗F) = Hr(Yet,F). �

(b) This is the same proof as for (a), noting that if π is affine, then the stalks
of Rsπ∗F are a limit over quasicoherent cohomology of affine schemes, which
is zero by classical algebraic geometry. �
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