Week 8 Exercises - Selected Solutions

(3) (a) We have a smooth pair (X, \mathbb{P}^{m+1}) of codimension 1. By the Gysin sequence, we have

$$\cdots \to H^{r-2}(X, \Lambda(-1)) \to H^r(\mathbb{P}^{m+1}, \Lambda) \to H^r(U, \Lambda) \to H^{r-1}(X, \Lambda(-1)) \to \ldots$$

for all $r \geq 2$. As U is affine of dimension m + 1, we have $H^r(U, \Lambda) = 0$ when r > m + 1. This gives us the isomorphism in question from the long exact sequence, and a surjection when r = m. The statement for the degree m cohomology is just the usual decomposition for a morphism of vector spaces: $f: V \to W$ gives $V \cong \ker(f) \oplus W$. (Note: This holds for Λ *p*-torsion, so that these are actually vector spaces.)

(b) By Poincaré duality, we get that $H^{m+r}(X, \Lambda) \cong H^{m-r}(X, \Lambda(-r))$. For r > 0, we have $H^{m+r} \cong H^{m+r+2}(\mathbb{P}^{m+1}, \Lambda(1))$, so putting these all together along with the middle degree m isomorphism above gives the correct statement.

(4) Given $U = X \setminus Z$, $j : U \to X$, we have that $\mathcal{F}^!(V) = \ker(\mathcal{F}(V) \to \mathcal{F}(\varphi^{-1}(U)))$ for $\varphi : V \to X$ an étale open of X by definition. But $j_*j^*\mathcal{F}(V) = j^*\mathcal{F}(j^{-1}(V \times_X U)) = \mathcal{F}(\varphi^{-1}(U))$ (the notation is a bit weird since the pushforward is basically defined so this will work.)