Week 9 Exercises

The notation in the exercises comes from Milne's Lectures on Etale Cohomology (v2.21)...

- 1. Verify the following statements:
 - (a) A finite morphism of schemes is proper.
 - (b) A k-variety X is complete if and only if the map $X \to \operatorname{Spec}(k)$ is proper.
- 2. Each of these examples shows the necessity of one hypothesis in the statement of Corollary 17.8 (which one?).
 - (a) Let $P = \text{Spec}(\mathbb{Q})$ and let \mathcal{F} be the constant sheaf $\underline{\mathbb{Z}/2\mathbb{Z}}$. Check that $H^1(P; \mathcal{F})$ is not finite.
 - (b) Take $X = \mathbb{A}^1$ over k separably closed of characteristic $p \neq 0$ and let \mathcal{F} be the constant sheaf $\mathbb{Z}/p\mathbb{Z}$. Check that statement (b) does not hold for this example.
- 3. In topology, given a locally compact topological space U and a sheaf \mathcal{F} on U, one defines the cohomology groups with compact support by setting

$$\Gamma_c(U,\mathcal{F}) = \lim_{\substack{\longrightarrow\\z}} \Gamma_Z(U,\mathcal{F})$$

where Z runs over the compact subsets of U, and defining $H_c^r(U, -) = R^r \Gamma_c(U, -)$.

This suggest using the analogous definition in algebraic geometry, where now U is an algebraic variety, \mathcal{F} is a sheaf on $U_{\text{'et}}$, and Z runs over the complete subvarieties Z of U.

Convince yourself that this is not the right definition by considering the example where U is any nonsingular affine curve over an algebraically closed field k and \mathcal{F} is the constant sheaf $\mathbb{Z}/n\mathbb{Z}$ for some n coprime to char(k).