
MA 341: Notes on Finite Fields

1 The Ring Zp[x]
Let p be a prime. Recall that we write Zp[x] for the ring of polynomials with coefficients in Zp.
Concretely, the addition and multiplication is given by the usual operations, but coefficients are
considered mod p. We have some example calculations:

p = 3 : (x2 + 2x+ 2) + (2x3 + x2 + x) = 2x3 + 2x2 + 3x+ 2 ≡ 2x3 + 2x2 + 2 mod 3

p = 5 : (4x2 + 2) · (3x+ 1) = 12x3 + 4x2 + 6x+ 2 ≡ 2x3 + 4x2 + x+ 2 mod 5.

So we would say that (x2 + 2x + 2) + (2x3 + x2 + x) = 2x3 + 2x2 + 2 in the ring Z3[x] and
(4x2 + 2) · (3x+ 1) = 2x3 + 4x2 + x+ 2 in the ring Z5[x]. This is analogous to saying that 3 + 4 = 2
in the ring Z5. (Equality in Z5 means congruence in Z.)

The ring Zp[x] has many features in common with Z. In particular, it has a division algorithm,
and hence a unique factorization theorem.

Theorem 1. Let f(x), g(x) ∈ Zp[x] with g(x) 6= 0 (the zero polynomial). Then there exist
q(x), r(x) ∈ Zp[x] with deg(r(x)) < deg(g(x)) or r(x) = 0 such that

f(x) = g(x)q(x) + r(x).

Proof. Let f(x) = anx
n+an−1x

n−1+ · · ·+a0 and g(x) = bmx
m+bm−1x

m−1+ · · ·+b0, with an, bm 6= 0
and ai, bj ∈ Zp. If deg(g(x)) > deg(f(x)), we can take q(x) = 0 and r(x) = f(x).

Otherwise, let q1(x) = (an · b−1m )xm−n, where an · b−1m is computed in Zp. This is possible since
bm 6= 0, so it must be a unit, i.e. have an inverse in Zp. Then

f(x)− q(x)g(x) = (anx
n + . . . a0)− (an · b−1m xn−m)(bmx

m + · · ·+ b0),

and we see the leading terms cancel. Iterate this process replacing f(x) with f(x)− q(x)g(x) until
the degree drops below that of g(x), or you get the zero polynomial.

(Small remark: we usually don’t assign a degree to the zero polynomial which is why it’s
considered a separate case above.)

In practice, this is just performing polynomial long division, but with Zp coefficients. It still
works! Let’s try out an example in Z3[x] (so all coefficient arithmetic happens mod 3):
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x2 + 2x

x+ 1|x3 + 2x+ 1

−(x3 + x2)

2x2 + 2x+ 1

− (2x2 + 2x)

1

So we get that x3 + 2x + 1 = (x2 + 2x)(x + 1) + 1 in Z3[x]. If we multiply out the right, we
get x3 + x2 + 2x2 + 2x + 1, whose coefficients are congruent mod 3 to those of x3 + 2x + 1 after
collecting like terms.

As we’ve seen a few times now, once we have a division algorithm, we can go through the same
arguments as before to get a unique factorization theorem. In this ring, the “primes” should be
polynomials f(x) ∈ Zp[x] such that f(x) = g(x)h(x) implies g(x) or h(x) is a unit. By degree
considerations, it’s easy to see the units in this ring are exactly the nonzero constant polynomials
(i.e. u(x) · v(x) = 1 implies deg(u(x)) = 0). So saying f(x) is a “prime” in this ring is usually
referred to as saying f(x) is irreducible.

Theorem 2. Let f(x) ∈ Zp[x] be nonzero. Then f(x) admits a unique factorization into irreducible
polynomials:

f(x) = u(x)q1(x) · · · qm(x)

with u(x) a constant polynomial and qi(x) irreducible.
By unique, we mean if v(x)q′1(x) · · · q′n(x) is another such factorization, then n = m and up to

reordering q′i(x) = ui(x)qi(x) for some ui(x) a constant (i.e. q′i(x) is an associate of qi(x)).

The proof is very similar to the others we’ve seen, so we’ll skip it for now. But let’s see how
some of the computations we’re used to work in Zp[x].

Example. Suppose we want to solve the LDE a(x)(x3 + 1) + b(x)(x2 + 1) = 1 in Z7[x]. Then
we do the Euclidean algorithm using long division like above, computing coefficients mod 7:

x3 + 1 = x(x2 + 1) + (6x+ 1)

x2 + 1 = (6x+ 6)(6x+ 1) + 2.

We stop when the remainder is a unit (i.e. the constant polynomial 2). Then we back substitute:

2 = (x2 + 1)− (6x+ 6)(6x+ 1)

= (x2 + 1)− (6x+ 6)((x3 + 1)− x(x2 + 1))

= (1 + x(6x+ 6))(x2 + 1)− (6x+ 6)(x3 + 1)

= (6x2 + 6x+ 1)(x2 + 1) + (x+ 1)(x3 + 1).

Multiply through by 2−1 ≡ 4 mod 7 to get

1 = (3x2 + 3x+ 4)(x2 + 1) + (4x+ 4)(x3 + 1)

so a(x) = 4x+ 4 and b(x) = 3x2 + 3x+ 4 work.
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Example. Let’s look at x3 + 10 ∈ Z11[x]. Then x3 + 10 ≡ x3 − 1 mod 11, and this factors via
the difference of cubes as x3 − 1 = (x− 1)(x2 + x+ 1). Now if x2 + x+ 1 factors into a product of
nonunits a(x) · b(x), then we must have deg(a(x)) = 1 and deg(b(x)) = 1. But if a polynomial f(x)
has a linear factor, then it must have a root. (Check this! If the factor looks like ax + b, then the
root is −b/a mod 11.)

Looking at x2 + x+ 1, we know it has a root if and only if the discriminant is a perfect square.
Its discriminant is −3, and

(−3
11

)
= −1 tells us that the polynomial has no root. Hence x2 +x+ 1 is

irreducible, and x3 +10 = (x+10)(x2 +x+1) is the unique factorization of x3 +10 into irreducibles
in Z11[x].

The ring Zp[x] also has a very important similarity to Z when it comes to studying congruences.
We can study congruences between elements of Zp[x] in the same way as for Z: a(x) ≡ b(x) mod f(x)
if f(x) | (a(x)− b(x)), i.e. if f(x) · g(x) = a(x)− b(x) for some g(x) ∈ Zp[x].

Example. Using the division algorithm in Z5[x], we get that x4 + 3x+ 2 ≡ 3x+ 1 mod (x2 + 3),
as x4 + 3x+ 2 = (x2 + 2)(x2 + 3) + (3x+ 1). (All coefficients work mod 5 here!)

Example. Using the division algorithm in Z3[x], we get that x7 + 2 ≡ 2x2 + 1 mod (x3 +x+ 1),
as x7 + 2 = (x4 + 2x2 + 2x+ 1)(x3 + x+ 1) + (2x2 + 1). (All coefficients work mod 3 here!)

In this way, we can start to do algebra in Zp[x] mod f(x) for some polynomial f(x). This may
seem a little strange as the coefficients of elements in Zp[x] already have a “congruence flavor” to
them, but it turns out this type of construction is very, very useful for many applications.

So we define the ring Zp[x]f(x) analogous to the way we defined Zm: it’s the set of polynomials
with Zp coefficients identified when they are congruent mod f(x). Before, we would think of the
elements of Zm as {0, 1, . . . ,m− 1} since everything in Z was congruent to exactly one element of
this nice set. Similarly, we can write elements of Zp[x]f(x) in a “nice” way.

Example. Consider f(x) = x2 + x + 1 ∈ Z2[x]. Then if a(x) ∈ Z2[x], we can always divide
a(x) by x2 + x + 1 to get something with remainder in the form ax + b for a, b ∈ Z2. But also, if
ax+ b ≡ cx+ d mod f(x), then f(x) | ((a− c)x+ (b− d) would imply (a− c)x+ (b− d) is the zero
polynomial (since all other multiples of f(x) have degree at least 2). Hence ax+ b = cx+ d in this
case, and so every choice of coefficient from Z2 gives a new element.

In other words, Z2[x]x2+x+1 = {0, 1, x, x+ 1}.

In fact, we have the following generalization. (Compare with the analogous theorem in Z: every
element of Zm is congruent to exactly one integer between 0 and m− 1, and two such integers are
never congruent mod m.)

Proposition 3. Let f(x) ∈ Zp[x] with degree d. Then |Zp[x]f (x)| = pd. In fact, every element of
Zp[x]f(x) is congruent to exactly one polynomial of degree less than d (or the zero polynomial), and
two distinct such polynomials are never congruent mod f(x).

Proof. Let g(x) ∈ Zp[x]. Then write g(x) = q(x)f(x) + r(x), with deg(r(x)) < deg(f(x)) = d or
r(x) = 0. Then f(x) | (g(x) − r(x)), so g(x) ≡ r(x) mod f(x), and r(x) has degree less than d by
construction.

Now suppose a(x), b(x) ∈ Zp[x] with deg(a(x)), deg(b(x)) < d and a(x) ≡ b(x) mod f(x). Then
deg(a(x)− b(x)) < d but a(x)− b(x) is a multiple of f(x). Since every nonzero multiple of f(x) has
degree at least d, we see that a(x)− b(x) = 0, i.e. a(x) = b(x).
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Example. A similar line of reasoning as above shows that

Z3[x]x2+1 = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

Doing arithmetic in this ring is actually quite easy. Here, we have the relation x2+1 ≡ 0 mod (x2+1),
so x2 ≡ −1 mod (x2 + 1). So to multiply (ax + b) by (cx + d), we just replace any instance of x2

with −1: (ax+ b)(cx+ d) = (ad+ bc)x+ (bd− ac). In this way, x in this ring acts a lot like i does
in the usual complex numbers. We’ll return to this idea in a little bit.
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2 Finite Fields

The rings Zp[x]q(x) when q(x) is irreducible have a very special structure similar to that of Zp itself.
They provide examples of finite fields.

Recall that a ring R is a set with addition and multiplication satisfying the usual properties like
commutativity, associativity, the distributive law, etc. The definition of a unit makes sense in any
ring, i.e. a ∈ R is a unit if there exists b ∈ R such that a · b = 1. This abstracts the notion of being
able to “divide” by a. A ring in which every nonzero element is a unit is called a field. You should
think of these as rings where it’s always legal to divide by nonzero elements.

Example. Q is a field, as every nonzero element has a multiplicative inverse (existence of
a−1 = 1/a as a fraction means b = 1/a works for a · b = 1).

Example. R is a field, as is C, as division makes sense for every nonzero element.

Example. Zp is a field for p prime, since every nonzero element is a unit.

A field which has finitely many elements is called a finite field. So Zp for p prime gives a
first example. Compare the following proposition and proof with the analogous statement that all
nonzero elements of Zp are units.

Proposition 4. The ring Zp[x]q(x) for q(x) irreducible is a finite field.

Proof. We showed above the set is finite, so we need to show every nonzero element is a unit. Let
a(x) ∈ Zp[x]q(x) be nonzero. Then since q(x) - a(x), we can perform the Euclidean algorithm in
Zp[x] with q(x) and a(x) to solve

a(x)f(x) + q(x)g(x) = 1

for some f(x), g(x) ∈ Zp[x]. Reducing this mod q(x) gives

a(x) · f(x) ≡ 1 mod q(x)

so a(x) is a unit.

Just as with Zp, the proof demonstrates exactly how to find a(x)−1 in Zp[x]q(x): use the Euclidean
algorithm the same way you would compute for example 5−1 mod 101.

Example. Suppose we want to find the inverse of x + 1 in Z5[x]x2+2. We do the Euclidean
algorithm with x2 + 2 and x + 1 (with mod 5 coefficients!) to get 1 = 2(x2 + 2) + (3x + 2)(x + 1)
in Z5[x]. Then reducing mod x2 + 2 gives 1 ≡ (3x+ 2)(x+ 1), so (x+ 1)−1 = 3x+ 2 in Z5[x]x2+2.

Finite fields arise in other ways too. If π ∈ Z[i] is a Gaussian prime, then Z[i]π will be a finite
field as well (you can prove this as an exercise).

Example. Let’s look at Z[i]3. Note that a+bi ≡ c+di mod 3 if and only if 3 | (a−c)+(b−d)i,
i.e. a ≡ c mod 3 and b ≡ d mod 3. So we can write Z[i]3 = {0, 1, 2, i, i+1, i+2, 2i, 2i+1, 2i+2} using
all possible coefficients of a+ bi mod 3. We add and multiply the same as with complex numbers,
but always reduce real and imaginary parts mod 3: e.g. (1 + 2i)(2 + i) ≡ 2 + 4i+ i− 2 ≡ 2i mod 3.

The last example might give you a feeling of deja vu: the computations feel a lot like those in the
field Z3[x]x2+1 that we saw above. In fact, if we replace i with x, all additions and multiplications
basically behave “the same.”

5



There is a way to make this mathematically precise, which we won’t go into detail here. We
would say that the fields Z[i]3 and Z3[x]x2+1 are isomorphic. That’s a fancy name to capture the
idea that the arithmetic in each field feels exactly the same under some kind of substitution like
i↔ x.

The important fact for us is that every finite field is “isomorphic” to Zp[x]q(x) for some p prime
and q(x) ∈ Zp[x] irreducible.1 This means if we want to understand the arithmetic of finite fields
in general, it’s enough to just study Zp[x]q(x). So let’s do that a bit. Going forward, we will talk
about finite fields as if they’re given as Zp[x]q(x). Whenever we write Zp[x]q(x), we will assume q(x)
is irreducible so that this is a finite field.

Finite fields in general have a lot of similarities with Zp, the special case we’ve studied quite
a bit already. For example, we have the following analogues of Fermat’s Little Theorem and the
Primitive Root Theorem.

Theorem 5. Let a(x) ∈ Zp[x]q(x) be nonzero, deg(q(x)) = d. Then (a(x))p
d−1 ≡ 1 mod q(x).

Equivalently, (a(x))p
d ≡ a(x) mod q(x) for all a(x).

You will essentially prove this on the homework, but the proof is very similar to the one for Zp.
It really only uses the fact that the set of units is finite, and everything nonzero is a unit.

Theorem 6. The set of units in Zp[x]q(x) has a generator g(x) in the following sense: every nonzero
a(x) ∈ Zp[x]q(x) can be written as

a(x) ≡ g(x)k mod q(x)

for some k ≥ 1.

The proof of this theorem is also the same as for Up. The lemmas used for that case work just
as well here, but we won’t go through the proof.

1In fact, a bit more than this is true. If two finite fields have the same size, then they are also isomorphic. This
motivates people to write Fq or GF (q) for “the” field with q many elements in it, but we won’t use this notation or
this fact. It turns out that there exists a finite field for every q = pk, p prime, so the notation makes sense whenever
q is a prime power.
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3 Application: Elliptic Curve Cryptography

In this section we will talk about an important application of finite fields to something called elliptic
curve cryptography. Before we get there, let’s discuss what an elliptic curve is.

3.1 Elliptic Curves

Elliptic curves are a special type of curve. Despite the name, they are not ellipses.2 They can be
defined via an equation.

Definition 7. An elliptic curve E is the set of points in R2 (the plane) satisfying the equation

E : y2 = x3 + Ax+B

for some A,B ∈ R with ∆ := 4A3 + 27B2 6= 0.

Example. E : y2 = x3−x is an elliptic curve with A = 0, B = −1, as ∆ = 4(0)3 +27(−1)2 6= 0.

The condition on ∆ is a technical one: it means that when you draw a picture of the set of points
of E, it looks smooth (i.e. no sharp corners, etc.). It may not seem important, but for theoretical
reasons it makes a big difference.

Elliptic curves have a plethora of very interesting properties that have led mathematicians to
study them for centuries. One interesting number theoretic question one can ask about them is: do
they have any points with are integers? Or even rational numbers? There is still active research
today on finding answers to these questions. We were able to use properties of Z[i] to resolve the
simple case that E : y2 = x3 − 1 has only one integer solution: (1,0). In general, those techniques
don’t quite work.

One of the key features elliptic curves have is that you can “add” their points together in a funny
way to get another point on the curve. This is different from just adding the respective coordinates
of the two points. Instead it comes from a geometric process:

Given P,Q ∈ E, take a line passing through P and Q. Then it will intersect E at another point
R. Reflect R over the y-axis. This new point is then the definition of P +Q.

At least, that’s the general idea. Unfortunately, this won’t work for all pairs of points P,Q ∈ E.
There are two special cases. The first is if P = Q. Then instead of taking a line between P and Q,
we should take the tangent line of E at P , and that will intersect E at a unique point R. (Here is
actually where we need the condition ∆ 6= 0). Then reflect R as before to get P + P .

The other special case isn’t so easily fixed. This happens if P and Q are vertically above each
other, i.e. their x-coordinates are equal. Then the line connecting them is vertical, and won’t
intersect E at a third point R. To fix this, we actually add another point “at infinity” to E,
denoted O. In this special case when P and Q have the same x-coordinate, we define P +Q = O.
We extend the addition rule to include O by P +O = P for all P ∈ E.

If we use geometry (and a little calculus) to write out equations for the process above, we get
the following theorem.

2The reason for the weird name is historical: study of these curves was motivated by trying to compute measure-
ments of arclength of ellipses, e.g. like the length of the paths of planetary objects. Centuries later mathematicians
have found applications of these curves to many things not involving ellipses in the slightest.
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Theorem 8. Let P = (x1, y1), Q = (x2, y2) ∈ E. If x1 = x2 with y1 6= y2, then P + Q = O.
Otherwise, we have the following formula for (x3, y3) = P +Q:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

where λ is either

λ =
y2 − y1
x2 − x1

if P 6= Q or
3x21 + A

2y1
if P = Q.

By looking at the formulas, we see that if A,B defining E actually lie in Q, then whenever P
and Q have rational coordinates, so does P + Q (as then so will λ - check this!). This observation
is crucial for studying rational points on E.

3.2 Elliptic Curves over Finite Fields

The real fun begins when we try to enact a similar story over a finite field F = Zp[x]q(x).

Definition 9. An elliptic curve E over F is the set of points (x, y) with x, y ∈ F such that

E : y2 = x3 + Ax+B

with A,B ∈ F and ∆ := (4A3 + 27B2) 6= 0 in F .3

Note that the equality happening above is equality in F . So in practice, it may look like a
type of congruence. Sometimes we may write E(F ) to describe the points of E over F when the
equation written doesn’t obviously have coefficients in F (i.e. may be mistaken for integers instead
of elements of Zp).

Example. E : y2 = x3 + 2x + 4 is an elliptic curve over F = Z5 since ∆ = 4(2)3 + 27(2)2 ≡
4 6≡ 0 mod 5. We can describe its set of points by just checking which pairs of x, y ∈ Z5 fit into the
above equation (which is really congruence mod 5). We find that

E(Z5) = {(0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4)}.
The amazing thing is that the algebraic formulas above still work for adding points even over

a finite field, as long as we add an extra point O to E again playing the same role. This means
we might actually write E(Z5) = {O, (0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4)} to include the point at
infinity.

Example. With E as above over Z5, let P = (0, 2), Q = (4, 1). Then λ = −1
4
≡ 1 mod 5. So

using the formulas in the theorem, we get x3 = 12−4−0 ≡ 2 mod 5 and y3 ≡ 1(0−2)−2 ≡ 1 mod 5.
So P +Q = (2, 1).

Example. Using the same E, let P = (4, 1). Then to compute P + P , we use λ = (3 · 42 +
2)/(2 · 1) ≡ 0 mod 5. So x3 ≡ 0− 4− 4 ≡ 2 mod 5 and y3 ≡ −1 ≡ 4 mod 5. Hence P + P = (2, 4).

Example. It’s important that we be able to do similar computations not just when F = Zp,
but when F is a finite field like the ones we studied more generally above. For example,

E : y2 = x3 + x+ T

3A slight remark: This definition is good except when F = Z2[x]q(x) or Z3[x]q(x), i.e. when 1+1 = 0 or 1+1+1 = 0
in F . In these cases, the equations should be modified slightly, but we’ll ignore this subtlety for our purposes.
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is an elliptic curve over F = Z5[T ]T 2−2 (here we use the variable T instead of x to avoid confusion
with the x appearing in the equation for E). We can see that ∆ = 4 + 27T 2 = 4 + 2 · 2 = 3 6= 0 in
F , so it fits the definition. We can find points on E by listing all 25 elements of F out and plugging
them in to the right side, and seeing if they have square roots.

Similar to when we studied Up, we can define the order of P ∈ E(F ) to be the smallest positive
integer n such that nP := P + P + · · ·+ P (n-times) = O, the “neutral” element for E(F ) relative
to this funny addition. This satisfies many properties similar to the order for elements of Up. For
example, the order of any point P always divides #E(F ). (Compare with the order of k ∈ Um
always divides ϕ(m) = #Um.)

3.3 Crytography

We’ve set up enough theory to be able to show a simple application to crytography. Recall the
normal Diffie-Hellman key exchange. The goal is for Alice and Bob to obtain a shared secret number
(called a key) k even in the presence of an eavesdropper Eve. To do this, we had Alice and Bob
decide on a large prime p with a generator g of Up. Then Alice and Bob pick secret numbers a and
b respectively.

Alice sends Bob A = ga mod p and Bob sends Alice B = gb mod p. Then each of them compute
Ab = Ba = gab mod p. This is their shared key k.

The neat thing is that we can take this model and tweak it a little to make a better version of
the Diffie-Hellman key exchange, called the Elliptic Curve Diffie-Hellman key exchange, or ECDH.

The ECDH Protocol:
Public: An elliptic curve E over a finite field F ; a point P on E with large order.
Private: Alice picks a > 0 secretly; Bob picks b > 0 secretly.
The Exchange: Alice sends A = aP = P + P + · · ·+ P (a-times) to Bob. Bob sends B = bP =

P + P + · · ·+ P to Alice.
The Key: Alice computes aB and Bob computes bA. Each equal k = (ab)P , so this is their

shared secret.

How could Eve possibly recover k? Well, of course if she could figure out either a or b, then she
can compute k using the public information A or B. The problem of figuring out a given A is called
the Elliptic Curve Discrete Log Problem, or ECDLP, by analogy with the discrete log problem of
determining a given ga for Up. The ECDLP is generally believed to be at least as difficult as solving
the usual discrete log problem.

For example, when trying to solve the usual discrete log problem for Up, there is a method
known as “index calculus” which is one reasonable attack on the classic DH key exchange if the
numbers involved as too small. However, for the ECDLP, there is no known analogue of this attack.
Hence it’s believed that one can actually use smaller numbers for ECDH to achieve the same degree
of security, since one doesn’t need to defend against this kind of attack. This makes the ECDH
protocol a much more efficient version of the usual Diffie-Hellman key exchange when it comes to
computational resources. In fact, the ECDH is used today in practice in a variety of situations,
including when connecting securely to some webpages.

One important thing to be aware of with this protocol is that if #E(F ) is a product of small
primes, then there are actually efficient ways to solve the ECDLP. That’s bad news for Alice and
Bob, so they should be careful about choosing their E and F to avoid this.
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How many points should E generally have over a finite field? It can only have at most q2 + 1 if
F has q elements (including our “point at infinity”), but in fact we can do much better.

Theorem 10. Let E be an elliptic curve over a finite field with q elements. Then 4

|#E(F )− (q + 1)| ≤ 2
√
q.

Example. If E is an elliptic curve over Z5, then (5 + 1) − 2
√

5 ≤ #E(Z5) ≤ (5 + 1) + 2
√

5,
or 2 ≤ #E(Z5) ≤ 10. This is much better than our naive estimate that 1 ≤ E(Z5) ≤ 26. (!) Note
that the lower bound actually says something interesting here: that there’s a “genuine” solution to
y2 ≡ x3 + Ax+B mod 5 (given ∆ 6= 0 mod 5) that isn’t just O. This too is also very not obvious.

There exist some sophisticated techniques today to be able to compute #E(F ) very quickly for
F a finite field, without actually listing out every point of E(F ). This is important for ruling out
some bad choices for E and F , and #E(F ) is also used in some other algorithms in cryptography.

4Here’s a neat fact about this amazing theorem, for fans of analytic number theory. There is actually a way to
associate a type of zeta function ZE(s) to an elliptic curve E over F a finite field. It turns out the zeroes of this zeta
function satisfy a regularity very similar to that conjectured to hold for the zeroes of ζ(s), the Riemann zeta function.
This analogue of the Riemann hypothesis for ZE(s) turns out to be equivalent to this theorem, but it’s much easier
to prove than the classical one which is still unproven! However, this equivalence suggests that the theorem is not in
any sense trivial and actually involves a bit of work to prove.
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