
Basic Computation with Modular Forms

Ricky Magner

This tutorial will assume you either have Sage installed or have an account
to use it online.

Let’s start with the basic objects: spaces of modular forms.

sage: M = ModularForms(1,12)
sage: M
Modular Forms space of dimension 2 for Modular
Group SL(2,Z) of weight 12 over Rational Field

The first line establishes M as the space of modular forms of level 1 and
weight 12. In Sage, once an object is defined, you can type it and then hit
Enter to see a short description of it. Doing this for M gives the information
on the third line, where we learn the dimension ofM (as a C-vector space) and
also the weight. But what else can we get from M? As usual in programming,
when you have an object you can access certain variables describing it using
a period, then some function. A function will end with parentheses, which
is where you would put an argument into the function if desired/supported.

sage: M.dimension()
2
sage: M.basis()
[
q - 24*qˆ2 + 252*qˆ3 - 1472*qˆ4 + 4830*qˆ5 +
O(qˆ6),
1 + 65520/691*q + 134250480/691*qˆ2 +
11606736960/691*qˆ3 + 274945048560/691*qˆ4 +
3199218815520/691*qˆ5 + O(qˆ6)
]

1

The first command is straightforward and should work for any kind of
vector space object. The second is when things begin to get interesting.
Sage can compute a basis of modular forms for our given level and weight
instantly. So how do we start using them?

You can tell by the brackets that M.basis() returns a list of elements
separated by a comma. We can access these elements by going back to M
and using the command .gen(n) for the nth element, or just M.n. (Remember
to start counting at 0 always!!) Let’s try getting that cusp form out of there,
while also showing off some more functions.

sage: S = CuspForms(1,12); S
Cuspidal subspace of dimension 1 of Modular Forms
space of dimension 2 for Modular Group SL(2,Z) of
weight 12 over Rational Field
sage: S.basis()
[
q - 24*qˆ2 + 252*qˆ3 - 1472*qˆ4 + 4830*qˆ5 +
O(qˆ6)
]
sage: Delta = S.0
sage: Delta
q - 24*qˆ2 + 252*qˆ3 - 1472*qˆ4 + 4830*qˆ5 +
O(qˆ6)

Note on the first line we performed two commands at once (defining S and
checking out its flavor text) by inserting a semicolon. You might have been
tempted to use a command like “Delta = S.basis()” but that would have
defined Delta as a list containing the function we want - which is totally
different (obvious to anyone who knows the difference between a number and
the singleton set containing that number).

Now that we’ve got the Delta function, what can we do with it? There
are plenty of functions we can apply which can be found using a neat Sage
feature. If we know we want to do something to Delta specifically, we can
write “Delta.” which looks like the start of a command. Maybe we’re curious
to see which begin with the letter c. Type “Delta.c” and hit the Tab key to
see a full list of commands that begin with this string.

2

sage: Delta.c
Delta.cartesian_product Delta.character
Delta.cuspform_lseries
Delta.category Delta.coefficients

Delta.coefficients looks interesting, but what does it do? It’s a function
based on the period placement syntax, so we can get a small description by
typing it without parentheses (which is what you’d type to run the function).

sage: Delta.coefficients
<bound method CuspidalSubmodule_level1_Q_with
_category.element_class.coefficients of q -
24*qˆ2 + 252*qˆ3 - 1472*qˆ4 + 4830*qˆ5 + O(qˆ6)>

Still seems mysterious, so you could try reading the documentation online
about this function to try to see some examples. Or try it out yourself.

Speaking of coefficients, let’s see more of the Delta function. We can do
this in multiple ways. The first is to change the precision of all elements of
our cuspform space S (which only has one element for us) to see as many
coefficients as we’d like. This will then automatically set the precision of
all elements. Alternatively, we can do this manually using a few commands.
Here we used the qexp command which will print the q-expansion of our form,
but takes precision as an argument. Note this is temporary and reverts to
the precision defined in S after.

sage: S.set_precision(3)
sage: Delta
q - 24*qˆ2 + O(qˆ3)
sage: Delta.qexp(8)
q - 24*qˆ2 + 252*qˆ3 - 1472*qˆ4 + 4830*qˆ5 -
6048*qˆ6 - 16744*qˆ7 + O(qˆ8)
sage: Delta
q - 24*qˆ2 + O(qˆ3)

If you want to find specific coefficients without looking through a q-
expension, just use brackets with the coefficient number to retrieve the value.
Here we compute τ(17).

3

sage: Delta[17]
-6905934

We have enough information about Sage to start verifying some claims
made in class regarding relationships between modular forms. Let’s get our
tools prepared.

sage: M.set_precision(5)
sage: G12 = M.1; G12
1 + 65520/691*q + 134250480/691*qˆ2 +
11606736960/691*qˆ3 + 274945048560/691*qˆ4 +
O(qˆ5)
sage: N = CuspForms(11,2)
sage: N.dimension()
1
sage: f11 = N.0; f11
q - 2*qˆ2 - qˆ3 + 2*qˆ4 + qˆ5 + O(qˆ6)

The first thing we’ll do is renormalize our Eisenstein series of weight 12
so that the coefficient of q is 1. The syntax below might look strange if you
don’t have experience programming, but it means “assign the right value to
the left variable.”

sage: G12 = 691*G12/65520
sage: G12
691/65520 + q + 2049*qˆ2 + 177148*qˆ3 +
4196353*qˆ4 + O(qˆ5)

Now we can start comparing coefficients and see what relations hold.
Letting a(n) be the coefficients of f11, we said that a(n) ≡ τ(n) mod 11, or
“f11 ≡ ∆ mod 11.” Unfortunately it’s not as easy in Sage to type something
like “Delta mod 11” to get something we could compare to “f11 mod 11.”
However, here’s some code we can use to verify the statement for the first
twenty coefficients. (When writing code in Sage, end each statement with a
colon, then hit Enter for the next line. Also, we use % for mod.)

sage: for i in range(1,20):
....: (f11[i]-Delta[i])%11

4

After running you should see a stream of 0’s fly up the screen, which
means a(n) ≡ τ(n) mod 11 for all 1 ≤ n ≤ 20. Of course, if you want
to run this for say n up to 100, you’d probably prefer to not have to see
100 zeros on the screen. If you have experience programming you can easily
modify the code in whatever way will convince you that the statement is
true without having to deal with junk on screen (i.e. something like an
if statement notifying you if there was a counterexample). Sage’s native
language for coding is Python so if you have experience with that it won’t
be hard to come up with something yourself.

Another claim was that τ(n) ≡ σ11(n) mod 691, i.e. “∆ ≡ G12 mod 691.”
In this case, G12 and ∆ belong to the same space, so we can take their dif-
ference and just look at the coefficient of that form mod 691. But wait,
why didn’t we do that before? We know we can subtract Fourier series just
fine. But f11 came from CuspForms(11,2) and ∆ came from CuspForms(1,12)
which is a subspace of ModularForms(1,12), so from Sage’s perspective they
live in different worlds - you cannot subtract them. We would have gotten
an error if we tried.

sage: h = Delta-G12
sage: h
-691/65520 - 2073*qˆ2 - 176896*qˆ3 - 4197825*qˆ4
+ O(qˆ5)
sage: for i in range(1,20):
....: h[i]%691

Zeros all the way through!
Lastly, there was a mysterious connection between f11 and a certain el-

liptic curve. Let’s try to verify the claims made.

sage: E11 = EllipticCurve([0,-1,1,0,0]); E11
Elliptic Curve defined by yˆ2 + y = xˆ3 - xˆ2
over Rational Field

We use the function Np(p) to count the number of points on E11 mod p.

5

sage: E11.Np(3)
5
sage: E11.Np(11)
11

Recall the trace of Frobenius is defined by a` = `+ 1−#E(F`). We can
make a table (you might make it look fancier with better code) comparing
this value to a(`), the `th coefficient of f11, for the first 10 primes.

sage: for i in primes_first_n(10):
....: print(i, f11[i], i+1-E11.Np(i))
....:
(2, -2, -2)
(3, -1, -1)
(5, 1, 1)
(7, -2, -2)
(11, 1, 1)
(13, 4, 4)
(17, -2, -2)
(19, 0, 0)
(23, -1, -1)
(29, 0, 0)

It seems like a` = a(`) ! If they are equal for all `, then their L-functions
must be equal. Let’s use Sage to compare their L-function values at s = 1.
Unfortunately, trying to run the command “f11.lseries()” causes an error, but
the message is helpful. It suggests “using a newform constructor” instead,
so let’s try grabbing f11 from a newform vector space.

sage: A = Newforms(11,2); A
[q - 2*qˆ2 - qˆ3 + 2*qˆ4 + qˆ5 + O(qˆ6)]
sage: f11 = A[0]; f11
q - 2*qˆ2 - qˆ3 + 2*qˆ4 + qˆ5 + O(qˆ6)

Here our space A didn’t have a .gen function associated to it. In fact,
using Tab to look at the functions, it seems like A was just a plain old list! So

6

to access its elements, we used brackets as shown above. Now let’s compute
the L-series and compare.

sage: Lf = f11.lseries(); LE = E11.lseries()
sage: Lf(1)
0.253841860855911
sage: LE(1)
0.253841860855911

The two functions seem to agree at 1. Checking other random values
seems to suggest they are the same! Also, because L(E, 1) 6= 0, shouldn’t
E(Q) be finite?...

sage: E11.rank()
0

Everything seems to work! But then looking at the documentation for
how Sage computes the rank of elliptic curves, we see “IMPLEMENTATION:
Uses L-functions, mwrank, and databases,” so we can’t be sure this confirms
our L-function value was reasonable if that’s used to prove the rank of E11

is 0.

7

