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Constructing Unramified Extensions of Q(µp)

Ribet’s Converse to Herbrand

Notation

Fix a prime p. Let A be the class group of Q(µp). Set
C = A/Ap.

Let ∆ = Gal(Q(µp)/Q), and let χ : Gal(Q/Q)→ ∆→ F×p
be the mod p cyclotomic character.

Then C decomposes as ⊕iC (χi) where C (χi) is the
χi -isotypic component of C as a Galois module.

Let Bk be the kth Bernoulli number, e.g. Bk = −kζ(1− k).
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Ribet’s Converse to Herbrand

The Theorem

Let 2 ≤ k ≤ p − 3 be even.

Theorem (Ribet-Herbrand)

p | Bk if and only if C (χ1−k) 6= 0.

The “if” direction is due to Herbrand; follows from
Stickelberger’s theorem.

The “only if” direction is a corollary to Vandiver’s conjecture
that p does not divide the class number of Q(µp)+, but Ribet
gives an unconditional proof.
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Ribet’s Converse to Herbrand

CFT Translation

The goal: if p | Bk , then C (χ1−k) 6= 0. By CFT, this is
equivalent to showing:

Theorem (1.2)

Suppose p | Bk . Then there exists a Galois extension E/Q with
group G with the properties:

a E/Q(µp) is unramified abelian with group H of type (p, . . . , p),
i.e. killed by p.

b For σ ∈ G , τ ∈ H,
στσ−1 = χ(σ)1−kτ.

Let Q(µ
⊗(1−k)
p ) be the unique subfield of Q(µp) of degree

(p − 1)/(p − 1, k − 1) over Q. Ribet shows a stronger version
of (1.2) with this field in place of Q(µp).
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Ribet’s Converse to Herbrand

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic
theorem.

Theorem (1.3)

If p | Bk , then there exists F/Fp finite and a continuous

ρ : Gal(Q/Q)→ GL2(F)

such that

i ρ is unramified for ` 6= p;

ii ρ is an extension of χk−1 by 1 (im ≈ upper triangular);

iii im(ρ) has order divisible by p, so ρ is not diagonalizable;

iv for D a decomposition group for p in Gal(Q/Q), ρ|D is
diagonalizable, i.e. im(ρ|D) is not divisible by p.
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Ribet’s Converse to Herbrand

(1.3) =⇒ (1.2)

Let ρ be as in (1.3) and set E = Qker ρ
, so E/Q is Galois with

group im(ρ) of type (p, . . . , p) over Q(µ
⊗(1−k)
p ).

By (i), E/Q is unramified away from p, and by (iii),

E/Q(µ
⊗(1−k)
p ) is nontrivial. By (iv), this extension is

unramified at p, so it is unramified everywhere.

The conjugation formula follows from (ii) and an analogous
formula on the level of upper triangular matrices, used to
represent the image of ρ.
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Anatomy of the Paper

Section 1: Introduction

Section 2: Lemma (2.1) on mod p representations

Section 3: Creating a cuspform f with specific congruence
conditions

Section 4: Construction of ρ from f
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Overview of the Proof

Divisibility of Bk

Let Ek = −Bk/2k +
∑
σk−1(n)qn be the Eisenstein series of

weight k .

The inspiration of this bridge from p | Bk to creating ρ comes
from observing that under this assumption, Ek looks like a
cuspform mod p.

Then one may hope that Ek ≡ f mod p for some genuine
cuspform f that lifts and produces a Galois representation
with the desired properties since the Fourier coefficients of Ek

match the values traces of Frobenius on 1⊕ χk−1.
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Overview of the Proof

The Cuspform

To create ρ as in Theorem (1.3), Ribet creates a Hecke
eigenform and produces from it an associated Galois
representation.

Theorem (3.7)

There exists f =
∑

anq
n a normalized cuspidal eigenform of

weight 2 and level Γ1(p) of type ε satisfying

a` ≡ σk−1(`) = 1 + `k−1 ≡ 1 + ε(`)` mod p

where p divides p in K , the field generated by the an’s.
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Overview of the Proof

The Residual Representation

From f as above, Ribet creates ρf , a p-adic representation of
Gal(Q/Q).

The congruences above then imply the reduction mod p is an
extension of χk−1 by 1, and the representation is unramified
away from p since it arises from a modular form for Γ1(p).
This establishes (1.3) (i) and (ii) for ρf .

(1.3)(iii) follows from (2.1) and simplicity of ρf .

(1.3)(iv) comes from a geometric argument involving
Raynaud’s classification of group schemes of type (p, . . . , p).
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More on ρf

Setup

Let f ,K , p be as in (3.7), so f =
∑

anq
n, K = Q({an}), and

f ≡ Ek mod p.

Let Kp be the completion of K at p, with ring of integers Op.
Let π be a uniformizer of Op.

Write F for Op/p.
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More on ρf

Shimura’s Construction

Shimura showed there exists an abelian variety A = Af /Q
associated to f , with the following properties:

1 dim(A) = [K : Q], and K ⊆ End0(AQ), so

Vp := Vp(A)⊗K⊗Qp Kp

is a 2-dimensional Kp vector space with a Gal(Q/Q)-action.

2 A arises as a quotient of J1(p), so Vp is unramified at ` 6= p.

3 (Eichler-Shimura) The trace of a Frobenius element for `
acting on Vp is a` and the determinant is ε(`)`.

Write ρf : Gal(Q/Q)→ GL(Vp) = GL2(Kp) for this
representation.
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More on ρf

Irreducibility

For desirable properties of the reduction, we need:

Proposition (4.1)

ρf is irreducible.

Proof.

If not, then ρssf = ρ1 ⊕ ρ2. A theorem of Serre implies ρi = χniεi
where εi has finite order ramified only at p. We get equations for
` 6= p:

`n1+n2ε1(`)ε2(`) = `ε(`), and a` = ε1(`)`n1 + ε2(`)`n2 .

As n1 + n2 = 1, the second equation gives |a`| ≥ `− 1,
contradicting RH |a`| ≤ 2

√
` for `� 0.
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More on ρf

Reducing ρf

To get good reduction properties, we need a fact about
representations over p-adic fields.

Proposition (2.1)

Let L/Qp be finite, V a 2-dimensional L vector space. Suppose a
compact group G acts continuously via ρ on V so that V is a
simple G -module, but its reductions are reducible.
Then there is a G -stable lattice L ⊂ V on whose reduction G acts
by upper triangular matrices but not semi-simply.

The proof involves matrix computations and using the p-adic
topology.
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More on ρf

Finally ρf

From the above, we get

Proposition (4.2)

There exists an Op lattice L ⊂ Vp stable under Gal(Q/Q) whose
residual representation ρf is an extension of χk−1 by 1 which is not
semi-simple.

Proof.

By Eichler-Shimura and Chebotarev density, the trace and
determinant of ρf agree with χk−1 ⊕ 1, so its semi-simplification is
isomorphic to this sum. In particular, ρf is reducible. The claim
follows from Prop (2.1).

This gives (1.3)(i),(ii), & (iii).
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More on f , or “Cuspstruction”

Some Eisenstein Series

To construct f , we need some Eisenstein series. The following
are Hecke eigenforms:

For ε : (Z/pZ)× → µp−1 a nontrivial even character,

G2,ε := L(−1, ε) +
∑
n≥1

∑
d |n

ε(d)dqn.

For ε odd,

G1,ε := L(0, ε) +
∑
n≥1

∑
d |n

ε(d)qn.

Fix p | p in Q(µp−1). Let ω : (Z/pZ)× → µp−1 so that
ω(d) ≡ d mod p.
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More on f , or “Cuspstruction”

Relation to Ek

These new Eisenstein series are congruent to the old ones.

Lemma (3.1)

Let k be even with 2 ≤ k ≤ p − 3. Then G2,ωk−2 and G1,ωk−1 have
p-integral expansions in Q(µp−1) and are congruent to Ek mod p.

This can be used now to create a modular form g of weight 2,
type ωk−2 with p-integral q-expansion with constant term 1.
(Theorem 3.3)

The proof involves various bounds on cyclotomic field class
numbers and special values of L-functions.
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More on f , or “Cuspstruction”

Creating f

Set ε = ωk−2 and f ′ = G2,ε − cg where c is the constant term
of G2,ε. By construction, f ′ is a “semi-cuspform” i.e. it
vanishes at the cusp ∞ (but perhaps not the other cusp for
Γ1(p)).

Since p | c (since we’ve assumed p | Bk ...!), we have

f ′ ≡ G2,ε ≡ Ek mod p.

Since f ′ is a cuspform mod p, a lifting argument of
Deligne-Serre gives a semi-cuspform f whose Hecke
eigenvalues satisfy

a`(f ) ≡ 1 + ε(`)` mod q

for some q | p in Q(µp, {an}).
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More on f , or “Cuspstruction”

Finishing (3.7)

Ribet shows f is cuspidal by ruling out the explicit
semi-cuspform which is not cuspidal:

s2,ε =
∑
n≥1

∑
d |n

ε(n/d)dqn.

One checks by comparing eigenvalues that if f = s2,ε, then

ε(`) + ` ≡ 1 + ε(`)` mod p.

This is not possible since ε is nontrivial.

Altogether, we get Theorem (3.7): there exists f of weight 2
type ε such that a`(f ) ≡ 1 + `k−1 mod p for some ideal p in
K , generated by the a`.
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Summary

Recap

C = A/Ap for A the class group of Q(µp). We want to show
p | Bk implies C (χ1−k) 6= 0. By CFT, we need to create a
special Galois representation ρ to build a special unramified
extension of Q(µp).

The assumption p | Bk suggests that the Eisenstein series Ek

will be cuspidal mod p. With some work, we can show the
existence of a nice cuspform f ≡ Ek modulo a certain prime
ideal in a bigger field.

Using the Tate module of a modular Jacobian, we can attach
a representation ρf of the Galois group to f whose values on
Frobenius elements relate to the Hecke eigenvalues of f .
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Summary

Recap (2)

Taking a particular reduction of ρf yields the desired ρ in
(1.3): the congruence f ≡ Ek means it will be an extension of
χk−1 by 1 but not diagonalizable, and have the other
properties we wanted.

Then ker ρ creates the unramified abelian extension of Q(µp)
corresponding to C (χ1−k) 6= 0.



Constructing Unramified Extensions of Q(µp)

Summary

Recap (2)

Taking a particular reduction of ρf yields the desired ρ in
(1.3): the congruence f ≡ Ek means it will be an extension of
χk−1 by 1 but not diagonalizable, and have the other
properties we wanted.

Then ker ρ creates the unramified abelian extension of Q(µp)
corresponding to C (χ1−k) 6= 0.



Constructing Unramified Extensions of Q(µp)

Summary

Bonus!

What about (1.3)(iv), namely the condition that ρ|D be
diagonalizable for D a decomposition group for p?

Let M be the space for ρ. To show p does not divide the size
of the image of D under ρ, restrict to the subgroup
Gal(Q/Q(µp)+) since p - [Q(µp)+ : Q]. Let F be the
completion of Q(µp)+ with respect to the prime above p.

One shows M is the “Galois module of a finite flat group
scheme M of type (p, . . . , p) over OF .”

Using an argument with the connected-étale sequence for M,
one creates two distinct lines in M preserved by D. Any
element of order p would preserve a unique line however.
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