Ricky Magner

October 29, 2020

- 2 Overview of the Proof
- 3 More on ρ_f
- 4 More on *f*, or "Cuspstruction"

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

5 Summary

Ribet's Converse to Herbrand

Table of Contents

1 Ribet's Converse to Herbrand

- 2 Overview of the Proof
- 3 More on ρ_f
- 4 More on *f*, or "Cuspstruction"

5 Summary

Ribet's Converse to Herbrand

Notation

■ Fix a prime p. Let A be the class group of Q(µ_p). Set C = A/A^p.

Ribet's Converse to Herbrand

Notation

- Fix a prime *p*. Let *A* be the class group of $\mathbb{Q}(\mu_p)$. Set $C = A/A^p$.
- Let Δ = Gal(Q(μ_p)/Q), and let χ : Gal(Q/Q) → Δ → F[×]_p be the mod p cyclotomic character.

Ribet's Converse to Herbrand

Notation

- Fix a prime *p*. Let *A* be the class group of $\mathbb{Q}(\mu_p)$. Set $C = A/A^p$.
- Let Δ = Gal(Q(µ_p)/Q), and let χ : Gal(Q/Q) → Δ → F[×]_p be the mod p cyclotomic character.

Then C decomposes as $\bigoplus_i C(\chi^i)$ where $C(\chi^i)$ is the χ^i -isotypic component of C as a Galois module.

Ribet's Converse to Herbrand

Notation

- Fix a prime *p*. Let *A* be the class group of $\mathbb{Q}(\mu_p)$. Set $C = A/A^p$.
- Let Δ = Gal(Q(μ_p)/Q), and let χ : Gal(Q/Q) → Δ → F[×]_p be the mod p cyclotomic character.
- Then C decomposes as $\bigoplus_i C(\chi^i)$ where $C(\chi^i)$ is the χ^i -isotypic component of C as a Galois module.
- Let B_k be the *k*th Bernoulli number, e.g. $B_k = -k\zeta(1-k)$.

Ribet's Converse to Herbrand

The Theorem

• Let
$$2 \le k \le p - 3$$
 be even.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ribet's Converse to Herbrand

The Theorem

• Let
$$2 \le k \le p - 3$$
 be even.

Theorem (Ribet-Herbrand)

 $p \mid B_k$ if and only if $C(\chi^{1-k}) \neq 0$.

Ribet's Converse to Herbrand

The Theorem

• Let
$$2 \le k \le p - 3$$
 be even.

Theorem (Ribet-Herbrand)

$$p \mid B_k$$
 if and only if $C(\chi^{1-k}) \neq 0$.

The "if" direction is due to Herbrand; follows from Stickelberger's theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ribet's Converse to Herbrand

The Theorem

• Let
$$2 \le k \le p - 3$$
 be even.

Theorem (Ribet-Herbrand)

$$p \mid B_k$$
 if and only if $C(\chi^{1-k}) \neq 0$.

- The "if" direction is due to Herbrand; follows from Stickelberger's theorem.
- The "only if" direction is a corollary to Vandiver's conjecture that p does not divide the class number of Q(µ_p)⁺, but Ribet gives an unconditional proof.

Ribet's Converse to Herbrand

CFT Translation

• The goal: if $p \mid B_k$, then $C(\chi^{1-k}) \neq 0$. By CFT, this is equivalent to showing:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CFT Translation

• The goal: if $p \mid B_k$, then $C(\chi^{1-k}) \neq 0$. By CFT, this is equivalent to showing:

Theorem (1.2)

Suppose $p \mid B_k$. Then there exists a Galois extension E/\mathbb{Q} with group G with the properties:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CFT Translation

• The goal: if $p \mid B_k$, then $C(\chi^{1-k}) \neq 0$. By CFT, this is equivalent to showing:

Theorem (1.2)

Suppose $p \mid B_k$. Then there exists a Galois extension E/\mathbb{Q} with group G with the properties:

E/Q(μ_p) is unramified abelian with group H of type (p,..., p),
 i.e. killed by p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CFT Translation

• The goal: if $p \mid B_k$, then $C(\chi^{1-k}) \neq 0$. By CFT, this is equivalent to showing:

Theorem (1.2)

Suppose $p \mid B_k$. Then there exists a Galois extension E/\mathbb{Q} with group G with the properties:

- E/Q(μ_p) is unramified abelian with group H of type (p,..., p),
 i.e. killed by p.
- **b** For $\sigma \in G, \tau \in H$,

$$\sigma\tau\sigma^{-1} = \chi(\sigma)^{1-k}\tau.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CFT Translation

• The goal: if $p \mid B_k$, then $C(\chi^{1-k}) \neq 0$. By CFT, this is equivalent to showing:

Theorem (1.2)

Suppose $p \mid B_k$. Then there exists a Galois extension E/\mathbb{Q} with group G with the properties:

- E/Q(μ_p) is unramified abelian with group H of type (p,..., p),
 i.e. killed by p.
- **b** For $\sigma \in G, \tau \in H$,

$$\sigma\tau\sigma^{-1} = \chi(\sigma)^{1-k}\tau.$$

Let Q(µ_p^{⊗(1-k)}) be the unique subfield of Q(µ_p) of degree (p-1)/(p-1, k-1) over Q. Ribet shows a stronger version of (1.2) with this field in place of Q(µ_p).

Ribet's Converse to Herbrand

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ribet's Converse to Herbrand

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

Theorem (1.3)

If $p \mid B_k$, then there exists \mathbb{F}/\mathbb{F}_p finite and a continuous

$$\overline{
ho}:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})
ightarrow\operatorname{GL}_2(\mathbb{F})$$

Ribet's Converse to Herbrand

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

Theorem (1.3)

If $p \mid B_k$, then there exists \mathbb{F}/\mathbb{F}_p finite and a continuous

$$\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$$

such that

i $\overline{\rho}$ is unramified for $\ell \neq p$;

Ribet's Converse to Herbrand

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

Theorem (1.3)

If $p \mid B_k$, then there exists \mathbb{F}/\mathbb{F}_p finite and a continuous

$$\overline{
ho}:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})
ightarrow\operatorname{GL}_2(\mathbb{F})$$

- i $\overline{\rho}$ is unramified for $\ell \neq p$;
- **ii** $\overline{\rho}$ is an extension of χ^{k-1} by 1 (im \approx upper triangular);

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

Theorem (1.3)

If $p \mid B_k$, then there exists \mathbb{F}/\mathbb{F}_p finite and a continuous

$$\overline{
ho}:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})
ightarrow\operatorname{GL}_2(\mathbb{F})$$

- **i** $\overline{\rho}$ is unramified for $\ell \neq p$;
- **ii** $\overline{\rho}$ is an extension of χ^{k-1} by 1 (im \approx upper triangular);
- im $(\overline{\rho})$ has order divisible by p, so $\overline{\rho}$ is not diagonalizable;

Galois Representation

To prove (1.2), Ribet defers to a more representation theoretic theorem.

Theorem (1.3)

If $p \mid B_k$, then there exists \mathbb{F}/\mathbb{F}_p finite and a continuous

$$\overline{
ho}:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})
ightarrow\operatorname{GL}_2(\mathbb{F})$$

- **i** $\overline{\rho}$ is unramified for $\ell \neq p$;
- **ii** $\overline{\rho}$ is an extension of χ^{k-1} by 1 (im \approx upper triangular);
- im $(\overline{\rho})$ has order divisible by p, so $\overline{\rho}$ is not diagonalizable;
- iv for *D* a decomposition group for *p* in Gal($\overline{\mathbb{Q}}/\mathbb{Q}$), $\overline{\rho}|_D$ is diagonalizable, i.e. im($\overline{\rho}|_D$) is not divisible by *p*.

Ribet's Converse to Herbrand

$$(1.3) \implies (1.2)$$

• Let $\overline{\rho}$ be as in (1.3) and set $E = \overline{\mathbb{Q}}^{\ker \overline{\rho}}$, so E/\mathbb{Q} is Galois with group im($\overline{\rho}$) of type (p, \ldots, p) over $\mathbb{Q}(\mu_p^{\otimes (1-k)})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Ribet's Converse to Herbrand

$$(1.3) \implies (1.2)$$

• Let $\overline{\rho}$ be as in (1.3) and set $E = \overline{\mathbb{Q}}^{\ker \overline{\rho}}$, so E/\mathbb{Q} is Galois with group im($\overline{\rho}$) of type (p, \ldots, p) over $\mathbb{Q}(\mu_p^{\otimes (1-k)})$.

A D N A 目 N A E N A E N A B N A C N

 By (i), E/Q is unramified away from p, and by (iii), E/Q(µ_p^{⊗(1-k)}) is nontrivial. By (iv), this extension is unramified at p, so it is unramified everywhere.

Ribet's Converse to Herbrand

$$(1.3) \implies (1.2)$$

- Let $\overline{\rho}$ be as in (1.3) and set $E = \overline{\mathbb{Q}}^{\ker \overline{\rho}}$, so E/\mathbb{Q} is Galois with group im($\overline{\rho}$) of type (p, \ldots, p) over $\mathbb{Q}(\mu_p^{\otimes (1-k)})$.
- By (i), E/Q is unramified away from p, and by (iii), E/Q(µ_p^{⊗(1-k)}) is nontrivial. By (iv), this extension is unramified at p, so it is unramified everywhere.
- The conjugation formula follows from (ii) and an analogous formula on the level of upper triangular matrices, used to represent the image of p.

A D N A 目 N A E N A E N A B N A C N

Ribet's Converse to Herbrand

Anatomy of the Paper

- Section 1: Introduction
- Section 2: Lemma (2.1) on mod *p* representations
- Section 3: Creating a cuspform f with specific congruence conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Section 4: Construction of $\overline{\rho}$ from f

└─Overview of the Proof

Table of Contents

1 Ribet's Converse to Herbrand

2 Overview of the Proof

3 More on ρ_f

4 More on *f*, or "Cuspstruction"

5 Summary

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

└─Overview of the Proof

Divisibility of B_k

• Let $E_k = -B_k/2k + \sum \sigma_{k-1}(n)q^n$ be the Eisenstein series of weight k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Divisibility of B_k

- Let $E_k = -B_k/2k + \sum \sigma_{k-1}(n)q^n$ be the Eisenstein series of weight k.
- The inspiration of this bridge from p | B_k to creating p̄ comes from observing that under this assumption, E_k looks like a cuspform mod p.

Divisibility of B_k

- Let $E_k = -B_k/2k + \sum \sigma_{k-1}(n)q^n$ be the Eisenstein series of weight k.
- The inspiration of this bridge from p | B_k to creating p̄ comes from observing that under this assumption, E_k looks like a cuspform mod p.
- Then one may hope that E_k ≡ f mod p for some genuine cuspform f that lifts and produces a Galois representation with the desired properties since the Fourier coefficients of E_k match the values traces of Frobenius on 1 ⊕ χ^{k-1}.

The Cuspform

■ To create $\overline{\rho}$ as in Theorem (1.3), Ribet creates a Hecke eigenform and produces from it an associated Galois representation.

The Cuspform

■ To create $\overline{\rho}$ as in Theorem (1.3), Ribet creates a Hecke eigenform and produces from it an associated Galois representation.

Theorem (3.7)

There exists $f = \sum a_n q^n$ a normalized cuspidal eigenform of weight 2 and level $\Gamma_1(p)$ of type ε satisfying

$$a_\ell\equiv\sigma_{k-1}(\ell)=1+\ell^{k-1}\equiv 1+arepsilon(\ell)\ellmod\mathfrak{p}$$

where p divides p in K, the field generated by the a_n 's.

└─Overview of the Proof

The Residual Representation

■ From f as above, Ribet creates ρ_f, a p-adic representation of Gal(Q/Q).

The Residual Representation

- From f as above, Ribet creates ρ_f, a p-adic representation of Gal(Q/Q).
- The congruences above then imply the reduction mod p is an extension of χ^{k-1} by 1, and the representation is unramified away from p since it arises from a modular form for Γ₁(p). This establishes (1.3) (i) and (ii) for p
 _f.

The Residual Representation

- From f as above, Ribet creates ρ_f, a p-adic representation of Gal(Q/Q).
- The congruences above then imply the reduction mod p is an extension of χ^{k-1} by 1, and the representation is unramified away from p since it arises from a modular form for Γ₁(p). This establishes (1.3) (i) and (ii) for p
 _f.

• (1.3)(iii) follows from (2.1) and simplicity of ρ_f .

The Residual Representation

- From f as above, Ribet creates ρ_f, a p-adic representation of Gal(Q/Q).
- The congruences above then imply the reduction mod p is an extension of χ^{k-1} by 1, and the representation is unramified away from p since it arises from a modular form for Γ₁(p). This establishes (1.3) (i) and (ii) for p
 _f.
- (1.3)(iii) follows from (2.1) and simplicity of ρ_f .
- (1.3)(iv) comes from a geometric argument involving Raynaud's classification of group schemes of type (p,..., p).

Table of Contents

1 Ribet's Converse to Herbrand

2 Overview of the Proof

3 More on ρ_f

4 More on *f*, or "Cuspstruction"

5 Summary

 \square More on ρ_f

• Let f, K, \mathfrak{p} be as in (3.7), so $f = \sum a_n q^n$, $K = \mathbb{Q}(\{a_n\})$, and $f \equiv E_k \mod \mathfrak{p}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Let f, K, \mathfrak{p} be as in (3.7), so $f = \sum a_n q^n$, $K = \mathbb{Q}(\{a_n\})$, and $f \equiv E_k \mod \mathfrak{p}$.
- Let K_p be the completion of K at p, with ring of integers O_p.
 Let π be a uniformizer of O_p.

- Let f, K, \mathfrak{p} be as in (3.7), so $f = \sum a_n q^n$, $K = \mathbb{Q}(\{a_n\})$, and $f \equiv E_k \mod \mathfrak{p}$.
- Let K_p be the completion of K at p, with ring of integers O_p.
 Let π be a uniformizer of O_p.

• Write \mathbb{F} for $\mathcal{O}_{\mathfrak{p}}/\mathfrak{p}$.

Shimura's Construction

Shimura showed there exists an abelian variety $A = A_f/\mathbb{Q}$ associated to f, with the following properties:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shimura's Construction

Shimura showed there exists an abelian variety $A = A_f/\mathbb{Q}$ associated to f, with the following properties:

1 dim $(A) = [K : \mathbb{Q}]$, and $K \subseteq \operatorname{End}^{0}(A_{\mathbb{Q}})$, so

$$V_{\mathfrak{p}}:=V_{
ho}(A)\otimes_{K\otimes\mathbb{Q}_{
ho}}K_{\mathfrak{p}}$$

is a 2-dimensional $K_{\mathfrak{p}}$ vector space with a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -action.

Shimura's Construction

Shimura showed there exists an abelian variety $A = A_f/\mathbb{Q}$ associated to f, with the following properties:

1 dim $(A) = [K : \mathbb{Q}]$, and $K \subseteq \operatorname{End}^{0}(A_{\mathbb{Q}})$, so

$$V_{\mathfrak{p}} := V_{p}(A) \otimes_{K \otimes \mathbb{Q}_{p}} K_{\mathfrak{p}}$$

A D N A 目 N A E N A E N A B N A C N

is a 2-dimensional K_p vector space with a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -action. 2 A arises as a quotient of $J_1(p)$, so V_p is unramified at $\ell \neq p$.

Shimura's Construction

Shimura showed there exists an abelian variety $A = A_f/\mathbb{Q}$ associated to f, with the following properties:

1 dim $(A) = [K : \mathbb{Q}]$, and $K \subseteq \operatorname{End}^{0}(A_{\mathbb{Q}})$, so

$$V_{\mathfrak{p}} := V_{p}(A) \otimes_{K \otimes \mathbb{Q}_{p}} K_{\mathfrak{p}}$$

is a 2-dimensional $K_{\mathfrak{p}}$ vector space with a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -action.

- **2** A arises as a quotient of $J_1(p)$, so V_p is unramified at $\ell \neq p$.
- 3 (Eichler-Shimura) The trace of a Frobenius element for ℓ acting on $V_{\mathfrak{p}}$ is a_{ℓ} and the determinant is $\varepsilon(\ell)\ell$.

Shimura's Construction

Shimura showed there exists an abelian variety $A = A_f/\mathbb{Q}$ associated to f, with the following properties:

1 dim $(A) = [K : \mathbb{Q}]$, and $K \subseteq \operatorname{End}^{0}(A_{\mathbb{Q}})$, so

$$V_{\mathfrak{p}} := V_{\rho}(A) \otimes_{K \otimes \mathbb{Q}_{\rho}} K_{\mathfrak{p}}$$

is a 2-dimensional K_p vector space with a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -action.

- **2** A arises as a quotient of $J_1(p)$, so V_p is unramified at $\ell \neq p$.
- 3 (Eichler-Shimura) The trace of a Frobenius element for ℓ acting on V_p is a_ℓ and the determinant is $\varepsilon(\ell)\ell$.

Write $\rho_f : \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \to \operatorname{GL}(V_{\mathfrak{p}}) = \operatorname{GL}_2(K_{\mathfrak{p}})$ for this representation.

Irreducibility

For desirable properties of the reduction, we need:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For desirable properties of the reduction, we need:

Proposition (4.1)

 ρ_f is irreducible.

For desirable properties of the reduction, we need:

Proposition (4.1)

 ρ_{f} is irreducible.

Proof.

If not, then $\rho_f^{ss} = \rho_1 \oplus \rho_2$. A theorem of Serre implies $\rho_i = \chi^{n_i} \varepsilon_i$ where ε_i has finite order ramified only at p.

For desirable properties of the reduction, we need:

Proposition (4.1)

 ρ_f is irreducible.

Proof.

If not, then $\rho_f^{ss} = \rho_1 \oplus \rho_2$. A theorem of Serre implies $\rho_i = \chi^{n_i} \varepsilon_i$ where ε_i has finite order ramified only at p. We get equations for $\ell \neq p$:

$$\ell^{n_1+n_2}arepsilon_1(\ell)arepsilon_2(\ell)=\ellarepsilon(\ell), ext{ and } a_\ell=arepsilon_1(\ell)\ell^{n_1}+arepsilon_2(\ell)\ell^{n_2}.$$

For desirable properties of the reduction, we need:

Proposition (4.1)

 ρ_f is irreducible.

Proof.

If not, then $\rho_f^{ss} = \rho_1 \oplus \rho_2$. A theorem of Serre implies $\rho_i = \chi^{n_i} \varepsilon_i$ where ε_i has finite order ramified only at p. We get equations for $\ell \neq p$:

$$\ell^{n_1+n_2}arepsilon_1(\ell)arepsilon_2(\ell)=\ellarepsilon(\ell), ext{ and } a_\ell=arepsilon_1(\ell)\ell^{n_1}+arepsilon_2(\ell)\ell^{n_2}.$$

As $n_1 + n_2 = 1$, the second equation gives $|a_{\ell}| \ge \ell - 1$, contradicting RH $|a_{\ell}| \le 2\sqrt{\ell}$ for $\ell \gg 0$.

Reducing ρ_f

To get good reduction properties, we need a fact about representations over p-adic fields.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (2.1)

Reducing ρ_f

To get good reduction properties, we need a fact about representations over p-adic fields.

Proposition (2.1)

Let L/\mathbb{Q}_p be finite, V a 2-dimensional L vector space. Suppose a compact group G acts continuously via ρ on V so that V is a simple G-module, but its reductions are reducible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- More on ρ_f

Reducing ρ_f

To get good reduction properties, we need a fact about representations over *p*-adic fields.

Proposition (2.1)

Let L/\mathbb{Q}_p be finite, V a 2-dimensional L vector space. Suppose a compact group G acts continuously via ρ on V so that V is a simple G-module, but its reductions are reducible. Then there is a G-stable lattice $L \subset V$ on whose reduction G acts by upper triangular matrices but not semi-simply.

Reducing ρ_f

To get good reduction properties, we need a fact about representations over *p*-adic fields.

Proposition (2.1)

Let L/\mathbb{Q}_p be finite, V a 2-dimensional L vector space. Suppose a compact group G acts continuously via ρ on V so that V is a simple G-module, but its reductions are reducible. Then there is a G-stable lattice $L \subset V$ on whose reduction G acts by upper triangular matrices but not semi-simply.

The proof involves matrix computations and using the *p*-adic topology.

From the above, we get

Finally $\overline{\rho}_f$

From the above, we get

Proposition (4.2)

There exists an $\mathcal{O}_{\mathfrak{p}}$ lattice $L \subset V_{\mathfrak{p}}$ stable under $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ whose residual representation $\overline{\rho}_{f}$ is an extension of χ^{k-1} by 1 which is not semi-simple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finally $\overline{\rho}_{f}$

From the above, we get

Proposition (4.2)

There exists an $\mathcal{O}_{\mathfrak{p}}$ lattice $L \subset V_{\mathfrak{p}}$ stable under $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ whose residual representation $\overline{\rho}_{f}$ is an extension of χ^{k-1} by 1 which is not semi-simple.

Proof.

By Eichler-Shimura and Chebotarev density, the trace and determinant of $\overline{\rho}_f$ agree with $\chi^{k-1} \oplus \mathbf{1}$, so its semi-simplification is isomorphic to this sum. In particular, $\overline{\rho}_f$ is reducible. The claim follows from Prop (2.1).

Finally $\overline{\rho}_{f}$

From the above, we get

Proposition (4.2)

There exists an $\mathcal{O}_{\mathfrak{p}}$ lattice $L \subset V_{\mathfrak{p}}$ stable under $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ whose residual representation $\overline{\rho}_{f}$ is an extension of χ^{k-1} by 1 which is not semi-simple.

Proof.

By Eichler-Shimura and Chebotarev density, the trace and determinant of $\overline{\rho}_f$ agree with $\chi^{k-1} \oplus \mathbf{1}$, so its semi-simplification is isomorphic to this sum. In particular, $\overline{\rho}_f$ is reducible. The claim follows from Prop (2.1).

This gives (1.3)(i),(ii), & (iii).

 \square More on f, or "Cuspstruction"

Table of Contents

1 Ribet's Converse to Herbrand

2 Overview of the Proof

3 More on ρ_f

4 More on *f*, or "Cuspstruction"

5 Summary

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

 \square More on f, or "Cuspstruction"

Some Eisenstein Series

To construct f, we need some Eisenstein series. The following are Hecke eigenforms:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \square More on f, or "Cuspstruction"

Some Eisenstein Series

To construct f, we need some Eisenstein series. The following are Hecke eigenforms:

• For $\varepsilon : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mu_{p-1}$ a nontrivial even character,

$$G_{2,\varepsilon} := L(-1,\varepsilon) + \sum_{n\geq 1} \sum_{d\mid n} \varepsilon(d) dq^n.$$

 \square More on f, or "Cuspstruction"

Some Eisenstein Series

To construct f, we need some Eisenstein series. The following are Hecke eigenforms:

• For $\varepsilon : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mu_{p-1}$ a nontrivial even character,

$$G_{2,\varepsilon} := L(-1,\varepsilon) + \sum_{n\geq 1} \sum_{d\mid n} \varepsilon(d) dq^n.$$

For ε odd,

$$G_{1,\varepsilon} := L(0,\varepsilon) + \sum_{n\geq 1} \sum_{d|n} \varepsilon(d)q^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \square More on f, or "Cuspstruction"

Some Eisenstein Series

To construct f, we need some Eisenstein series. The following are Hecke eigenforms:

• For $\varepsilon : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mu_{p-1}$ a nontrivial even character,

$$\mathcal{G}_{2,arepsilon} := L(-1,arepsilon) + \sum_{n\geq 1} \sum_{d\mid n} arepsilon(d) dq^n.$$

For ε odd,

$${\it G}_{1,arepsilon}:=L(0,arepsilon)+\sum_{n\geq 1}\sum_{d\mid n}arepsilon(d)q^n.$$

Fix $\mathfrak{p} \mid p$ in $\mathbb{Q}(\mu_{p-1})$. Let $\omega : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mu_{p-1}$ so that $\omega(d) \equiv d \mod \mathfrak{p}$.

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$ \square More on f, or "Cuspstruction"

Relation to E_k

• These new Eisenstein series are congruent to the old ones.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$ — More on f, or "Cuspstruction"

Relation to E_k

These new Eisenstein series are congruent to the old ones.

Lemma (3.1)

Let k be even with $2 \le k \le p-3$. Then $G_{2,\omega^{k-2}}$ and $G_{1,\omega^{k-1}}$ have p-integral expansions in $\mathbb{Q}(\mu_{p-1})$ and are congruent to $E_k \mod p$.

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$ — More on f, or "Cuspstruction"

Relation to E_k

These new Eisenstein series are congruent to the old ones.

Lemma (3.1)

Let k be even with $2 \le k \le p-3$. Then $G_{2,\omega^{k-2}}$ and $G_{1,\omega^{k-1}}$ have p-integral expansions in $\mathbb{Q}(\mu_{p-1})$ and are congruent to $E_k \mod p$.

 This can be used now to create a modular form g of weight 2, type ω^{k-2} with p-integral q-expansion with constant term 1. (Theorem 3.3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$ — More on f, or "Cuspstruction"

Relation to E_k

These new Eisenstein series are congruent to the old ones.

Lemma (3.1)

Let k be even with $2 \le k \le p-3$. Then $G_{2,\omega^{k-2}}$ and $G_{1,\omega^{k-1}}$ have p-integral expansions in $\mathbb{Q}(\mu_{p-1})$ and are congruent to $E_k \mod p$.

- This can be used now to create a modular form g of weight 2, type ω^{k-2} with p-integral q-expansion with constant term 1. (Theorem 3.3)
- The proof involves various bounds on cyclotomic field class numbers and special values of *L*-functions.

 \square More on f, or "Cuspstruction"

Creating f

Set $\varepsilon = \omega^{k-2}$ and $f' = G_{2,\varepsilon} - cg$ where c is the constant term of $G_{2,\varepsilon}$. By construction, f' is a "semi-cuspform" i.e. it vanishes at the cusp ∞ (but perhaps not the other cusp for $\Gamma_1(p)$).

└─ More on *f* , or "Cuspstruction"

Creating f

Set $\varepsilon = \omega^{k-2}$ and $f' = G_{2,\varepsilon} - cg$ where c is the constant term of $G_{2,\varepsilon}$. By construction, f' is a "semi-cuspform" i.e. it vanishes at the cusp ∞ (but perhaps not the other cusp for $\Gamma_1(p)$).

Since $\mathfrak{p} \mid c$ (since we've assumed $p \mid B_k...!$), we have

$$f'\equiv G_{2,\varepsilon}\equiv E_k \mod \mathfrak{p}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

└─ More on *f* , or "Cuspstruction"

Creating f

- Set $\varepsilon = \omega^{k-2}$ and $f' = G_{2,\varepsilon} cg$ where c is the constant term of $G_{2,\varepsilon}$. By construction, f' is a "semi-cuspform" i.e. it vanishes at the cusp ∞ (but perhaps not the other cusp for $\Gamma_1(p)$).
- Since $\mathfrak{p} \mid c$ (since we've assumed $p \mid B_k...!$), we have

$$f' \equiv G_{2,\varepsilon} \equiv E_k \mod \mathfrak{p}.$$

 Since f' is a cuspform mod p, a lifting argument of Deligne-Serre gives a semi-cuspform f whose Hecke eigenvalues satisfy

$$a_\ell(f) \equiv 1 + \varepsilon(\ell)\ell \mod \mathfrak{q}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some $\mathfrak{q} \mid \mathfrak{p}$ in $\mathbb{Q}(\mu_p, \{a_n\})$.

 \square More on f, or "Cuspstruction"

Finishing (3.7)

Ribet shows f is cuspidal by ruling out the explicit semi-cuspform which is not cuspidal:

$$s_{2,arepsilon} = \sum_{n\geq 1} \sum_{d\mid n} arepsilon (n/d) dq^n.$$

 \square More on f, or "Cuspstruction"

Finishing (3.7)

Ribet shows f is cuspidal by ruling out the explicit semi-cuspform which is not cuspidal:

$$s_{2,arepsilon} = \sum_{n\geq 1} \sum_{d\mid n} arepsilon (n/d) dq^n.$$

• One checks by comparing eigenvalues that if $f = s_{2,\varepsilon}$, then

$$\varepsilon(\ell) + \ell \equiv 1 + \varepsilon(\ell)\ell \mod \mathfrak{p}.$$

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$

 \square More on f, or "Cuspstruction"

Finishing (3.7)

Ribet shows f is cuspidal by ruling out the explicit semi-cuspform which is not cuspidal:

$$s_{2,arepsilon} = \sum_{n\geq 1} \sum_{d\mid n} arepsilon (n/d) dq^n.$$

• One checks by comparing eigenvalues that if $f = s_{2,\varepsilon}$, then

$$\varepsilon(\ell) + \ell \equiv 1 + \varepsilon(\ell)\ell \mod \mathfrak{p}.$$

This is not possible since ε is nontrivial.

Constructing Unramified Extensions of $\mathbb{Q}(\mu_p)$

└─ More on *f* , or "Cuspstruction"

Finishing (3.7)

Ribet shows f is cuspidal by ruling out the explicit semi-cuspform which is not cuspidal:

$$s_{2,arepsilon} = \sum_{n\geq 1} \sum_{d\mid n} arepsilon (n/d) dq^n.$$

• One checks by comparing eigenvalues that if $f = s_{2,\varepsilon}$, then

$$\varepsilon(\ell) + \ell \equiv 1 + \varepsilon(\ell)\ell \mod \mathfrak{p}.$$

• This is not possible since ε is nontrivial.

Altogether, we get Theorem (3.7): there exists f of weight 2 type ε such that a_ℓ(f) ≡ 1 + ℓ^{k−1} mod p for some ideal p in K, generated by the a_ℓ.

Table of Contents

1 Ribet's Converse to Herbrand

2 Overview of the Proof

3 More on ρ_f

4 More on *f*, or "Cuspstruction"

5 Summary

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▼

Recap

C = A/A^p for A the class group of Q(μ_p). We want to show p | B_k implies C(χ^{1-k}) ≠ 0. By CFT, we need to create a special Galois representation p
 to build a special unramified extension of Q(μ_p).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap

- $C = A/A^p$ for A the class group of $\mathbb{Q}(\mu_p)$. We want to show $p \mid B_k$ implies $C(\chi^{1-k}) \neq 0$. By CFT, we need to create a special Galois representation \overline{p} to build a special unramified extension of $\mathbb{Q}(\mu_p)$.
- The assumption $p \mid B_k$ suggests that the Eisenstein series E_k will be cuspidal mod p. With some work, we can show the existence of a nice cuspform $f \equiv E_k$ modulo a certain prime ideal in a bigger field.

Recap

- $C = A/A^p$ for A the class group of $\mathbb{Q}(\mu_p)$. We want to show $p \mid B_k$ implies $C(\chi^{1-k}) \neq 0$. By CFT, we need to create a special Galois representation \overline{p} to build a special unramified extension of $\mathbb{Q}(\mu_p)$.
- The assumption $p \mid B_k$ suggests that the Eisenstein series E_k will be cuspidal mod p. With some work, we can show the existence of a nice cuspform $f \equiv E_k$ modulo a certain prime ideal in a bigger field.
- Using the Tate module of a modular Jacobian, we can attach a representation ρ_f of the Galois group to f whose values on Frobenius elements relate to the Hecke eigenvalues of f.

Taking a particular reduction of ρ_f yields the desired p̄ in (1.3): the congruence f ≡ E_k means it will be an extension of χ^{k-1} by 1 but not diagonalizable, and have the other properties we wanted.

- Taking a particular reduction of ρ_f yields the desired p̄ in (1.3): the congruence f ≡ E_k means it will be an extension of χ^{k-1} by 1 but not diagonalizable, and have the other properties we wanted.
- Then ker ρ̄ creates the unramified abelian extension of Q(μ_p) corresponding to C(χ^{1-k}) ≠ 0.

(日)(1)

Bonus!

■ What about (1.3)(iv), namely the condition that p
|D be diagonalizable for D a decomposition group for p?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bonus!

- What about (1.3)(iv), namely the condition that p
 |D be diagonalizable for D a decomposition group for p?
- Let *M* be the space for *p̄*. To show *p* does not divide the size of the image of *D* under *p̄*, restrict to the subgroup Gal(*Q̄*/*Q*(*μ_p*)⁺) since *p* ∤ [*Q*(*μ_p*)⁺ : *Q̄*]. Let *F* be the completion of *Q*(*μ_p*)⁺ with respect to the prime above *p*.

A D N A 目 N A E N A E N A B N A C N

Bonus!

- What about (1.3)(iv), namely the condition that p
 |D be diagonalizable for D a decomposition group for p?
- Let *M* be the space for *p̄*. To show *p* does not divide the size of the image of *D* under *p̄*, restrict to the subgroup Gal(*Q̄*/*Q*(*μ_p*)⁺) since *p* ∤ [*Q*(*μ_p*)⁺ : *Q̄*]. Let *F* be the completion of *Q*(*μ_p*)⁺ with respect to the prime above *p*.

(日)(1)

■ One shows *M* is the "Galois module of a finite flat group scheme *M* of type (*p*,...,*p*) over *O*_{*F*}."

Bonus!

- What about (1.3)(iv), namely the condition that p
 |D be diagonalizable for D a decomposition group for p?
- Let *M* be the space for *p̄*. To show *p* does not divide the size of the image of *D* under *p̄*, restrict to the subgroup Gal(*Q̄*/*Q*(*µ_p*)⁺) since *p* ∤ [*Q*(*µ_p*)⁺ : *Q̄*]. Let *F* be the completion of *Q*(*µ_p*)⁺ with respect to the prime above *p*.
- One shows *M* is the "Galois module of a finite flat group scheme *M* of type (*p*,...,*p*) over *O*_{*F*}."
- Using an argument with the connected-étale sequence for *M*, one creates two distinct lines in *M* preserved by *D*. Any element of order *p* would preserve a *unique* line however.