Ribet's Level-Lowering Theorem for Modular Representations

Ricky Magner

November 8, 2017

Ricky Magner Ribet's Level-Lowering Theorem for Modular Representations

Overview

2 Level-Lowering Theorems

3 Character Groups

Outline for section 1

2 Level-Lowering Theorems

3 Character Groups

4 Shimura Curves and Modular Curves

- **→** → **→**

Modular Representations

Let ℓ be an odd prime and let 𝔽 be a finite field of characteristic ℓ. Let 𝔅 = 𝔅_N be the Hecke algebra associated to S(N) := S₂(Γ₀(N)), the space of weight 2 cuspforms of level Γ₀(N).

Modular Representations

- Let ℓ be an odd prime and let 𝔅 be a finite field of characteristic ℓ. Let 𝔅 = 𝔅_N be the Hecke algebra associated to S(N) := S₂(Γ₀(N)), the space of weight 2 cuspforms of level Γ₀(N).
- We say that a (continuous) Galois representation $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ is modular of level N if det $\circ \rho$ is the mod ℓ cyclotomic character, and there is a homomorphism $\omega: \mathbb{T} \to \overline{\mathbb{F}}$ such that

$$\mathsf{tr}(\rho(\mathsf{Frob}_p)) = \omega(T_p)$$

for almost all primes p.

Modular Representations (cont.)

Theorem (Deligne)

Let $f \in S(N)$ be a Hecke eigenform and let E be the number field generated by its Hecke eigenvalues. Let ℓ be prime and pick $\lambda \mid \ell$ a place of E. Then there exists a representation $\rho_f : G_{\mathbb{Q}} \to GL_2(E_{\lambda})$, unramified away from ℓN , such that

$$tr(\rho_f(Frob_p)) = a_p$$
, and $det(\rho_f(Frob_p)) = p$

for all $p \nmid \ell N$.

Modular Representations (cont.)

Theorem (Deligne)

Let $f \in S(N)$ be a Hecke eigenform and let E be the number field generated by its Hecke eigenvalues. Let ℓ be prime and pick $\lambda \mid \ell$ a place of E. Then there exists a representation $\rho_f : G_{\mathbb{Q}} \to GL_2(E_{\lambda})$, unramified away from ℓN , such that

$$tr(\rho_f(Frob_p)) = a_p$$
, and $det(\rho_f(Frob_p)) = p$

for all $p \nmid \ell N$.

• For example, if $f \in S(N)$ is a Hecke eigenform, then define $\omega : \mathbb{T} \to \overline{\mathbb{F}}$ by $\omega(T_p) = a_p$ ("mod ℓ ") where $T_p f = a_p f$. Then the "reduction" of the representation ρ_f constructed above is modular of level N by our definition.

・ロト ・得ト ・ヨト ・ヨト

Outline for section 2

2 Level-Lowering Theorems

3 Character Groups

4 Shimura Curves and Modular Curves

→ < ∃→

A condition on representations

Definition

Suppose $\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ is a Galois representation. We say ρ is finite at p if there exists a finite flat \mathbb{F} -vector space scheme H over \mathbb{Z}_p such that the representation of $G_{\mathbb{Q}_p}$ arising from $H(\overline{\mathbb{Q}_p})$ is the restriction of ρ to the decomposition group at p.

A condition on representations

Definition

Suppose $\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ is a Galois representation. We say ρ is finite at p if there exists a finite flat \mathbb{F} -vector space scheme H over \mathbb{Z}_p such that the representation of $G_{\mathbb{Q}_p}$ arising from $H(\overline{\mathbb{Q}_p})$ is the restriction of ρ to the decomposition group at p.

• For example, if E/\mathbb{Q} is an elliptic curve, then $E[\ell]$ is finite at all primes $p \neq \ell$ such that E has good reduction at p.

The Main Theorem

Theorem (Ribet)

Let $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ be an irreducible modular representation of level Mp, with $p \nmid M$ and $\ell = char(\mathbb{F})$. Assume ρ is finite at p. Then ρ is modular of level M if at least one of the following hold: (i) $\ell \nmid M$, (ii) $p \not\equiv 1 \mod \ell$.

Deligne's Theorem revisited

• To prove Ribet's theorem, we need to define $\rho_{\mathfrak{m}}$ for $\mathfrak{m} \subset \mathbb{T} = \mathbb{T}_N$ a maximal ideal.

Theorem

Let $\mathfrak{m} \subset \mathbb{T}$ be a maximal ideal. Then there is a unique semisimple representation $\rho_{\mathfrak{m}} : G_{\mathbb{Q}} \to GL_2(\mathbb{T}/\mathfrak{m})$ unramified away from $\mathfrak{m}N$ such that

 $tr(\rho_{\mathfrak{m}}(Frob_{p})) = T_{p} \mod \mathfrak{m}, and \det(\rho_{\mathfrak{m}}(Frob_{p})) = p \mod \mathfrak{m}$

for all primes p away from $\mathfrak{m}N$.

- 4 同 6 4 日 6 4 日 6

Sketch of the proof

 Let k = T/m, and L be the space of weight 2 cuspforms whose q-expansions at the usual cusp at ∞ lie in Z[[q]].

(b) (4) (2) (4)

Sketch of the proof

- Let k = T/m, and L be the space of weight 2 cuspforms whose q-expansions at the usual cusp at ∞ lie in Z[[q]].
- The map (L ⊗ k) × (T ⊗ k) → k by (f, T) →(the coefficient of q in f|T) induces a map L ⊗ k → hom_Z(T, k).

伺 ト イヨト イヨト

Sketch of the proof

- Let k = T/m, and L be the space of weight 2 cuspforms whose q-expansions at the usual cusp at ∞ lie in Z[[q]].
- The map (L ⊗ k) × (T ⊗ k) → k by (f, T) →(the coefficient of q in f|T) induces a map L ⊗ k → hom_Z(T, k).
- By a dimension argument, one can show this map is an isomorphism. Taking the canonical element on the right $\mathbb{T} \to \mathbb{T}/\mathfrak{m}$, we get $f \in \mathcal{L} \otimes k$ whose *q*-coefficients are $t_n = T_n \mod \mathfrak{m}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of the proof

- Let k = T/m, and L be the space of weight 2 cuspforms whose q-expansions at the usual cusp at ∞ lie in Z[[q]].
- The map (L ⊗ k) × (T ⊗ k) → k by (f, T) →(the coefficient of q in f|T) induces a map L ⊗ k → hom_Z(T, k).
- By a dimension argument, one can show this map is an isomorphism. Taking the canonical element on the right *T* → *T*/m, we get *f* ∈ *L* ⊗ *k* whose *q*-coefficients are *t_n* = *T_n* mod m.
- By carefully lifting f, we can apply Deligne's theorem to the corresponding eigenform to get $\rho_f =: \rho_{\mathfrak{m}}$, which satisfies the desired properties.

イロト イポト イヨト イヨト 二日

Mazur's Level-Lowering Theorem

Fix *M* and *p* ∤ *M* an odd prime. Let T = T_{Mp}, and m ⊂ T a maximal ideal.

Mazur's Level-Lowering Theorem

Fix *M* and *p* ∤ *M* an odd prime. Let T = T_{Mp}, and m ⊂ T a maximal ideal.

Theorem (Mazur)

Suppose $\rho_{\mathfrak{m}}$ is irreducible, $\ell = char(\mathbb{T}/\mathfrak{m})$ is odd, and $\rho_{\mathfrak{m}}$ is finite at p. If also $p \not\equiv 1 \mod \ell$, then $\rho_{\mathfrak{m}}$ is modular of level M.

Strategy for the Proof of Main Theorem

 Start with ρ_m of level Mp, p ∤ M with the assumptions in Ribet's theorem. To show it is of level M, we use three steps:

- A 🗄 🕨

Strategy for the Proof of Main Theorem

- Start with $\rho_{\mathfrak{m}}$ of level Mp, $p \nmid M$ with the assumptions in Ribet's theorem. To show it is of level M, we use three steps:
 - **Raise the level** from *Mp* to *Mpq* for a convenient choice of odd prime q ∤ Mp.

Strategy for the Proof of Main Theorem

- Start with ρ_m of level Mp, p ∤ M with the assumptions in Ribet's theorem. To show it is of level M, we use three steps:
 - **Raise the level** from *Mp* to *Mpq* for a convenient choice of odd prime q ∤ Mp.
 - **Lower the level** using Ribet's main work to go from *Mpq* to *Mq*.

Strategy for the Proof of Main Theorem

- Start with ρ_m of level Mp, p ∤ M with the assumptions in Ribet's theorem. To show it is of level M, we use three steps:
 - **Raise the level** from *Mp* to *Mpq* for a convenient choice of odd prime q ∤ Mp.
 - **Lower the level** using Ribet's main work to go from *Mpq* to *Mq*.
 - Use Mazur's theorem to get rid of q in the level to get level M.

Strategy for the Proof of Main Theorem

- Start with ρ_m of level Mp, p ∤ M with the assumptions in Ribet's theorem. To show it is of level M, we use three steps:
 - **Raise the level** from *Mp* to *Mpq* for a convenient choice of odd prime *q* ∤ *Mp*.
 - **Lower the level** using Ribet's main work to go from *Mpq* to *Mq*.
 - Use Mazur's theorem to get rid of q in the level to get level M.
- As a diagram:

$$Mp \xrightarrow{\mathsf{Raise Level}} Mpq \xrightarrow{\mathsf{Ribet}} Mq \xrightarrow{\mathsf{Mazur}} M$$

Ribet's Arrow

So what we need to show now is

Theorem (Ribet)

Suppose $\ell \nmid qM$ and $\rho_{\mathfrak{m}}$ (of level Mpq) is finite at p. Assume $q \not\equiv 1 \mod \ell$. Then $\rho_{\mathfrak{m}}$ is modular of level Mq.

Note that by Mazur's theorem, we can assume $p \equiv 1 \mod \ell$, so in particular, $\ell \nmid Mpq$.

Outline for section 3

2 Level-Lowering Theorems

3 Character Groups

4 Shimura Curves and Modular Curves

- **→** → **→**

Reductions of Curves

 Let C be a curve over a p-adic field K. Let C be the regular minimal model over O_K. Write C_k for the special fiber.

- **→** → **→**

Reductions of Curves

- Let C be a curve over a p-adic field K. Let C be the regular minimal model over O_K. Write C_k for the special fiber.
- Suppose the gcd of the multiplicity of the irreducible components of C_k is 1 and all singular points of C_k are ordinary double points (i.e. look like xy = 0 locally).
- (These conditions will be satisfied in our applications.)

Character Groups Associated to Reductions

• The normalization of \mathscr{C}_k is the disjoint union of some nonsingular curves D_j inducing a surjection

$$\mathsf{Pic}^0(\mathscr{C}_k) o \prod_j \mathsf{Pic}^0(D_j)$$

whose kernel is a torus T.

Character Groups Associated to Reductions

 The normalization of *C_k* is the disjoint union of some nonsingular curves *D_j* inducing a surjection

$${\it Pic}^0({\mathscr C}_k) o \prod_j {\it Pic}^0(D_j)$$

whose kernel is a torus T.

 Define X = X(T) to be the character group of T. We call this the character group associated to the reduction of C.

Outline for section 4

2 Level-Lowering Theorems

3 Character Groups

- ∢ ≣ ▶

From $\rho_{\mathfrak{m}}$ to Shimura Curves

• Let M, p, q, ℓ be as before.

From $\rho_{\mathfrak{m}}$ to Shimura Curves

- Let M, p, q, ℓ be as before.
- Let *C* be the Shimura curve associated to the norm 1 units in a level *M* Eichler order in the quaternion algebra over \mathbb{Q} of discriminant *pq*.

From $\rho_{\mathfrak{m}}$ to Shimura Curves

- Let M, p, q, ℓ be as before.
- Let *C* be the Shimura curve associated to the norm 1 units in a level *M* Eichler order in the quaternion algebra over \mathbb{Q} of discriminant *pq*.
- Set J = Pic⁰(C) and let W = J(Q)[m] be the group of elements of J(Q) annihilated by m ⊂ T. In particular, if l = char(T/m), then W ⊆ J(Q)[l] as GQ-modules.

伺 ト く ヨ ト く ヨ ト

From $\rho_{\mathfrak{m}}$ to Shimura Curves

- Let M, p, q, ℓ be as before.
- Let *C* be the Shimura curve associated to the norm 1 units in a level *M* Eichler order in the quaternion algebra over \mathbb{Q} of discriminant *pq*.
- Set J = Pic⁰(C) and let W = J(Q)[m] be the group of elements of J(Q) annihilated by m ⊂ T. In particular, if l = char(T/m), then W ⊆ J(Q)[l] as GQ-modules.
- If V is the underlying vector space of $\rho_{\mathfrak{m}}$, one can show $V \hookrightarrow W$ as $\mathbb{T}/\mathfrak{m}[G_{\mathbb{Q}}]$ -modules.

・ 同 ト ・ ヨ ト ・ ヨ ト

From $\rho_{\mathfrak{m}}$ to Shimura Curves

- Let M, p, q, ℓ be as before.
- Let *C* be the Shimura curve associated to the norm 1 units in a level *M* Eichler order in the quaternion algebra over \mathbb{Q} of discriminant *pq*.
- Set J = Pic⁰(C) and let W = J(Q)[m] be the group of elements of J(Q) annihilated by m ⊂ T. In particular, if l = char(T/m), then W ⊆ J(Q)[l] as GQ-modules.
- If V is the underlying vector space of $\rho_{\mathfrak{m}}$, one can show $V \hookrightarrow W$ as $\mathbb{T}/\mathfrak{m}[G_{\mathbb{Q}}]$ -modules.
- As V is finite at $p \neq \ell$, V is unramified at p. Hence we can identify it with a subgroup of $J(\overline{\mathbb{F}_p})$.

・ロト ・同ト ・ヨト ・ヨト

Character Groups for Modular Curves

Let X be the character group associated to the reduction of X₀(Mq) mod q, and L the character group associated to the reduction of X₀(Mpq) mod q.

Character Groups for Modular Curves

- Let X be the character group associated to the reduction of X₀(Mq) mod q, and L the character group associated to the reduction of X₀(Mpq) mod q.
- The natural degeneracy maps X₀(Mpq) → X₀(Mq) yield a map L → X ⊕ X, which is surjective. Let Y be the kernel.

From Modular to Shimura Curves

• Let Z be the character group associated to the reduction of the Shimura curve C defined earlier mod p. Let Ψ be the component group of J mod p.

From Modular to Shimura Curves

 Let Z be the character group associated to the reduction of the Shimura curve C defined earlier mod p. Let Ψ be the component group of J mod p.

Theorem

There is a Hecke-equivariant isomorphism $Z \cong Y$.

From Modular to Shimura Curves

 Let Z be the character group associated to the reduction of the Shimura curve C defined earlier mod p. Let Ψ be the component group of J mod p.

Theorem

There is a Hecke-equivariant isomorphism $Z \cong Y$.

 Combining this with some facts about the group X associated to X₀(Mq) mod q, we get

From Modular to Shimura Curves

• Let Z be the character group associated to the reduction of the Shimura curve C defined earlier mod p. Let Ψ be the component group of J mod p.

Theorem

There is a Hecke-equivariant isomorphism $Z \cong Y$.

 Combining this with some facts about the group X associated to X₀(Mq) mod q, we get

Theorem

There is an exact sequence of Hecke modules

$$0 o K o (X \oplus X) / \gamma(X \oplus X) o \Psi o C o 0$$

for some groups K and C, and $\gamma = (T_p)^2 - 1 \in \mathbb{T}$.

The Proof in One Case

If V ⊂ J(𝔽_p) is not zero in Ψ, the component group of the reduction, then 𝔅 is in the support of Ψ.

The Proof in One Case

- If V ⊂ J(𝔽_p) is not zero in Ψ, the component group of the reduction, then 𝔅 is in the support of Ψ.
- By the earlier exact sequence, this implies \mathfrak{m} lies in the support of $X \oplus X$ as a Hecke module.

伺 ト く ヨ ト く ヨ ト

The Proof in One Case

- If V ⊂ J(𝔽_p) is not zero in Ψ, the component group of the reduction, then 𝔅 is in the support of Ψ.
- By the earlier exact sequence, this implies \mathfrak{m} lies in the support of $X \oplus X$ as a Hecke module.
- But one can show that the action of T on X ⊕ X is through the *p*-old quotient! Thus there exists a λ ⊂ T_{Mq} such that ρ_m ≅ ρ_λ, i.e. ρ_m is of level Mq.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Proof in One Case

- If V ⊂ J(𝔽_p) is not zero in Ψ, the component group of the reduction, then 𝔅 is in the support of Ψ.
- By the earlier exact sequence, this implies \mathfrak{m} lies in the support of $X \oplus X$ as a Hecke module.
- But one can show that the action of T on X ⊕ X is through the *p*-old quotient! Thus there exists a λ ⊂ T_{Mq} such that ρ_m ≅ ρ_λ, i.e. ρ_m is of level Mq.
- The case when V is zero in Ψ requires a few more facts....

・ 同 ト ・ ヨ ト ・ ヨ ト

The Second Case

 If V is zero in Ψ, then one shows that it must be contained in hom(Z/mZ, μ_ℓ), so that dim Z/mZ ≥ 2 (as a k = T/m vector space).

伺 ト く ヨ ト く ヨ ト

The Second Case

- If V is zero in Ψ, then one shows that it must be contained in hom(Z/mZ, μ_ℓ), so that dim Z/mZ ≥ 2 (as a k = T/m vector space).
- Using $Z \cong Y$, we get dim_k $Y/\mathfrak{m}Y \ge 2$.

伺 ト く ヨ ト く ヨ ト

The Second Case

- If V is zero in Ψ, then one shows that it must be contained in hom(Z/mZ, μ_ℓ), so that dim Z/mZ ≥ 2 (as a k = T/m vector space).
- Using $Z \cong Y$, we get $\dim_k Y/\mathfrak{m}Y \ge 2$.
- Assume \mathfrak{m} does not belong to the support of $X \oplus X$ (otherwise the previous argument finishes the proof). But then using

$$0 \to Y \to L \to X \to 0$$

we get $Y/\mathfrak{m}Y \cong L/\mathfrak{m}L$, i.e. $\dim_k L/\mathfrak{m}L \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Second Case

- If V is zero in Ψ, then one shows that it must be contained in hom(Z/mZ, μ_ℓ), so that dim Z/mZ ≥ 2 (as a k = T/m vector space).
- Using $Z \cong Y$, we get $\dim_k Y/\mathfrak{m}Y \ge 2$.
- Assume \mathfrak{m} does not belong to the support of $X \oplus X$ (otherwise the previous argument finishes the proof). But then using

$$0 \to Y \to L \to X \to 0$$

we get $Y/\mathfrak{m}Y \cong L/\mathfrak{m}L$, i.e. $\dim_k L/\mathfrak{m}L \ge 2$.

But one can show that dim_k L/mL ≤ 1, so we have a contradiction and m belongs to the support of X ⊕ X.

- 4 同 6 4 日 6 4 日 6

The Second Case

- If V is zero in Ψ, then one shows that it must be contained in hom(Z/mZ, μ_ℓ), so that dim Z/mZ ≥ 2 (as a k = T/m vector space).
- Using $Z \cong Y$, we get $\dim_k Y/\mathfrak{m}Y \ge 2$.
- Assume \mathfrak{m} does not belong to the support of $X \oplus X$ (otherwise the previous argument finishes the proof). But then using

$$0 \to Y \to L \to X \to 0$$

we get $Y/\mathfrak{m}Y \cong L/\mathfrak{m}L$, i.e. $\dim_k L/\mathfrak{m}L \ge 2$.

- But one can show that dim_k L/mL ≤ 1, so we have a contradiction and m belongs to the support of X ⊕ X.
- This finishes the proof of Ribet's theorem used in the step $Mpq \longrightarrow Mq$.

・ロト ・同ト ・ヨト ・ヨト