
MA 341: Advanced Problems for Fun: # 1

We say that Z is an example of a ring, namely it has two operations + and · which
satisfy the “algebra axioms”, i.e. are associative, commutative, satisfy the distributive law,
and have the usual relations with 0 and 1. In this series of exercises, we will describe Z
completely using only a short list of additional axioms.

1. We say that a ring R is ordered if there exists a non-empty subset P ⊆ R satisfying
the following:

• ∀a, b ∈ P, a + b ∈ P and a · b ∈ P .

• (Trichotomy) Exactly one of the following holds ∀a ∈ R: a ∈ P, a = 0,−a ∈ P .

This set P is meant to model the positive integers in Z, and is called the subset of
positive elements of R. Show that 1 ∈ P . Note if R is ordered, P need not be unique.
(Can you think of an example1?)

2. If R is ordered with set P as above, show that the relation a > b if a− b ∈ P defines
a total ordering on R.

3. Show that a > b and c > d implies a + c > b + d in an ordered ring. Show if c > 0,
then a > b implies a · c > b · c. What if c < 0? Find a suitable definition for a ≥ b and
prove analogous results. (Since P need not be unique, a choice of positive elements is
implicitly made to use the notation >.)

4. Examples of ordered rings you know include: Z,Q,R with their usual positive elements.
Show that Zm, the integers mod m, is never ordered. In fact, no finite ring is ordered.

5. We can go further than the last exercise: show if n · 1 = 1 + 1 + · · · + 1 = 0 in R for
some n, then R is not ordered. (This includes finite rings!)

6. Show that if a ring R contains an element x such that x2 = −1, then R is not ordered.

7. Show if R is ordered, then a · b = 0 implies a = 0 or b = 0.

8. A ring homomorphism is a function f : R → S between rings such that f(a + b) =
f(a) + f(b), f(a · b) = f(a) · f(b), and f(1) = 1. Show that any ring homomorphism
f : R → R has to preserve inequalities. Use this to show any ring isomorphism from
R to R (i.e. a bijective homomorphism) has to be the identity function.

9. We say a ring is well-ordered if it is ordered and its subset of positive elements P
satisfies the well-ordering principle: any non-empty subset S ⊆ P has a smallest
element. Show that if R is a well-ordered ring, then there exists (exactly one) ring
isomorphism f : Z → R, and this takes the usual positive integers to the set P . We
say that Z is the “unique well-ordered ring up to unique isomorphism.”

1It may be a bit tricky how to make an example, but this isn’t necessary for the rest of the set.



10. (Induction) The “principle of mathematical induction” is actually a feature about Z.
We say an ordered ring R has the “induction feature” (totally my own term) if its
subset of positive elements P has the following property:

• If S ⊆ P with 1 ∈ S and n ∈ S =⇒ (n + 1) ∈ S, then S = P .

Show that any ordered ring R with the ”induction feature” admits a unique isomor-
phism to Z, and this isomorphism takes P to the positive integers. (Try writing an
induction proof using this feature’s wording!)

11. Throughout the course, we’ve used a lot of “basic facts” about how algebra works in
Z in our proofs, right from the start. The exercises above prove some of these, but feel
free to go back and check every manipulation we’ve done rests only on the assumption
that Z is a well-ordered ring. In fact, every thing you know about Z should follow from
these axioms. For example, there are no integers between n and n + 1 for any n ∈ Z.
Can you prove it just from these axioms? Is it possible to prove this fact without using
well-ordering?

12. (NIBZO) The last exercise establishes a dear fact you know about Z: there are No
Integers Between Zero and One, i.e. there are no x ∈ Z such that 0 < x < 1. Suppose
an ordered ring R has this property, that there are no x ∈ R with 0 < x < 1. Must
there exist an isomorphism from Z to R?


