MA 341: Advanced Problems for Fun: \# 4
Let f and g be arithmetic functions (maps from \mathbb{N} to \mathbb{C}). Define the convolution h of f and g, written as $f * g$, to be the function given by

$$
h(n)=(f * g)(n):=\sum_{d \mid n} f(d) \cdot g(n / d)
$$

where the sum is over the positive divisors d of n.
This is an important operation on arithmetic functions we will explore a bit, and see their connection with L-functions.

1. Show that $f * g=g * f$ and that $(f * g) * h=f *(g * h)$. Also, $f *(g+h)=f * g+f * h$. In other words, the set of arithmetic functions forms a ring under the usual + and multiplication given by $*$.
2. Let $I(n)=1$ if $n=1$ and 0 otherwise. Show that $f * I=f$ for any f, so that I is the multiplicative identity in this ring.
3. Let $\mathbf{1}(n)=1$ for all n. Define $\mu(n)$ via $1 * \mu=I$. Compute $\mu(n)$ in terms of the prime factorization of n.
4. (Mobius Inversion) Let $g(n)=\sum_{d \mid n} f(d)$. Using the last problem, show that $f(n)=\sum_{d \mid n} g(d) \mu(n / d)$. (i.e. convolution with μ gets f out of the sum.)
5. Show that $\varphi(n)=\sum_{d \mid n} d \cdot \mu(n / d)$, or equivalently $n=\sum_{d \mid n} \varphi(d)$.
6. Show that $\sum_{d \mid n} \tau(d) \cdot \mu(n / d)=1$ for all n if $\tau(n)$ is the number of positive divisors of n.
7. Let f be an arithmetic function. Define $L(f, s)$ to be

$$
L(f, s)=\sum_{n \geq 1} \frac{f(n)}{n^{s}}
$$

So for example, $L(\mathbf{1}, s)=\zeta(s)$, the usual Riemann zeta function, and $L(f, s)=L(s)$ from class when $f(n)=(-1)^{\frac{n-1}{2}}$. Show that

$$
L(f, s) \cdot L(g, s)=L(f * g, s)
$$

(this may remind you of a similar property for Fourier transform - this is no coincidence!). In particular, deduce that

$$
\frac{1}{\zeta(s)}=\sum_{n \geq 1} \frac{\mu(n)}{n^{s}}
$$

(Could you see this directly without using the identities above?)
8. Let $\Lambda(n)$ equal either $\ln (p)$ if $n=p^{k}$ for p prime, or 0 otherwise. Show that $\Lambda * \mathbf{1}=\ln$.
9. Show that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-L(\Lambda, s) \cdot{ }^{1}
$$

[^0]
[^0]: ${ }^{1}$ This is the first clue that the zeroes Riemann zeta function can be used to understand asymptotic behavior of Λ and hence be used to study the distribution of primes (though much more of an argument is needed to get to the Prime Number Theorem). The zeroes of $\zeta(s)$ correspond to the "poles" of the above function, which place a major role in various integration techniques in complex analysis.

