
MA 341: Advanced Problems for Fun: # 4

Crypto!

1. Now let’s try a different factoring technique. Let p = 13 and q = 31. Let B = 4 be a so-called
“smoothness” bound. Compute

M =
∏

` prime ≤B

`blog`(B)c.

2. Continuing from the last step, we have n = 13·31 = 403, but we’ll pretend we don’t know that
factorization. Compute d = gcd(2M − 1, n). (Note: you can compute 2M − 1 mod n before
computing the gcd – this may be easier than computing that larger number in practice!) How
does this1 help us factor n?

3. What happens if we tweak B a little? For example, if we set B = 5 instead, or B = 3? Why
does this method work sometimes? As a hint, recall that ap−1 ≡ 1 mod p when p is prime and
gcd(a, p) = 1.

4. Is it easier to factor n when p − 1 has lots of small prime factors, or just a few large prime
factors using this p− 1 method?

The second technique illustrates just one pitfall to watch out for when implementing cryptosys-
tems - not all primes are just as good for creating difficult numbers n to factor. In the crypto world,
one may call Pollard’s p−1 method an “attack” against RSA, whose security relies on the difficulty
of factoring n = pq when the numbers are large. In practice, the numbers used are a bit too large
for this attack to succeed, assuming p−1 and q−1 don’t have that many small factors, so designers
of actual cryptosystems need to keep these sort of technical points in mind.

1This is called Pollard’s p− 1 method.


