MA 341: Advanced Problems for Fun: \# 4
Crypto!

1. Now let's try a different factoring technique. Let $p=13$ and $q=31$. Let $B=4$ be a so-called "smoothness" bound. Compute

$$
M=\prod_{\ell \text { prime } \leq B} \ell^{\left\lfloor\log _{\ell}(B)\right\rfloor} .
$$

2. Continuing from the last step, we have $n=13 \cdot 31=403$, but we'll pretend we don't know that factorization. Compute $d=\operatorname{gcd}\left(2^{M}-1, n\right)$. (Note: you can compute $2^{M}-1 \bmod n$ before computing the gcd - this may be easier than computing that larger number in practice!) How does this ${ }^{1}$ help us factor n ?
3. What happens if we tweak B a little? For example, if we set $B=5$ instead, or $B=3$? Why does this method work sometimes? As a hint, recall that $a^{p-1} \equiv 1 \bmod p$ when p is prime and $\operatorname{gcd}(a, p)=1$.
4. Is it easier to factor n when $p-1$ has lots of small prime factors, or just a few large prime factors using this $p-1$ method?

The second technique illustrates just one pitfall to watch out for when implementing cryptosystems - not all primes are just as good for creating difficult numbers n to factor. In the crypto world, one may call Pollard's $p-1$ method an "attack" against RSA, whose security relies on the difficulty of factoring $n=p q$ when the numbers are large. In practice, the numbers used are a bit too large for this attack to succeed, assuming $p-1$ and $q-1$ don't have that many small factors, so designers of actual cryptosystems need to keep these sort of technical points in mind.

[^0]
[^0]: ${ }^{1}$ This is called Pollard's $p-1$ method.

