MA 341: Advanced Problems for Fun: # 1

Define the sequence of Fibonacci¹ numbers by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. These numbers arise in a few places in number theory, and have a lot of amazing properties. In doing these problems, it may help to write a long list of F_n 's to be able to test some computations out.

- 1. (Relation to the Euclidean Algorithm) Let S(a, b) be the number of steps it takes the Euclidean algorithm to terminate when computing the GCD of a and b. Show that if $a, b \leq F_n$, then $S(a, b) \leq S(F_n, F_{n-1})$. Show that $S(F_n, F_{n-1}) = n 2$.
- 2. (Closed Form for F_n) Let

$$\varphi = \frac{1+\sqrt{5}}{2}$$
, so $-\varphi^{-1} = \frac{1-\sqrt{5}}{2}$

Show that

$$\left[\begin{array}{c}F_{n+1}\\F_n\end{array}\right] = \left[\begin{array}{cc}1&1\\1&0\end{array}\right] \left[\begin{array}{c}F_n\\F_{n-1}\end{array}\right].$$

Use linear algebra (eigenvalues/eigenvectors!) to show that

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}$$

- 3. (Speed of EA) Deduce from above that $n \approx \log(F_n)$, so that if $m = \max\{a, b\}$, then S(a, b) is at most $\approx \log(m)$. (If you don't have perspective for speed of algorithms, this is incredibly fast!)
- 4. (Common Factors) Find an expression for (F_n, F_m) . Use it to show that $(F_n, F_{n+1}) = 1$.
- 5. (Fun with 5) Let p be prime. Compare F_p with $\left(\frac{p}{5}\right) \mod p$. Can you prove your observation? (What's special about 5?)
- 6. (Convergents of φ) Compute the continued fraction for φ and some of the convergents. What do you notice? (If you can prove your observations, and believe convergents are good at approximating, then this gives one proof that $\lim_{n\to\infty} F_{n+1}/F_n = \varphi$. Can you prove it another way?)

¹Once again, as is tradition in mis-naming objects, these numbers were at least studied quite a bit by Indian mathematicians going back to at least 200 BC, but Fibonacci (c. 1170 - c. 1250) gets the Westerners' acknowledgement for introducing the sequence there.