MA 341: Advanced Problems for Fun: \# 1

Define the sequence of Fibonacci ${ }^{1}$ numbers by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. These numbers arise in a few places in number theory, and have a lot of amazing properties. In doing these problems, it may help to write a long list of F_{n} 's to be able to test some computations out.

1. (Relation to the Euclidean Algorithm) Let $S(a, b)$ be the number of steps it takes the Euclidean algorithm to terminate when computing the GCD of a and b. Show that if $a, b \leq F_{n}$, then $S(a, b) \leq S\left(F_{n}, F_{n-1}\right)$. Show that $S\left(F_{n}, F_{n-1}\right)=n-2$.
2. (Closed Form for F_{n}) Let

$$
\varphi=\frac{1+\sqrt{5}}{2}, \text { so }-\varphi^{-1}=\frac{1-\sqrt{5}}{2} .
$$

Show that

$$
\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right] .
$$

Use linear algebra (eigenvalues/eigenvectors!) to show that

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}} .
$$

3. (Speed of EA) Deduce from above that $n \approx \log \left(F_{n}\right)$, so that if $m=\max \{a, b\}$, then $S(a, b)$ is at most $\approx \log (m)$. (If you don't have perspective for speed of algorithms, this is incredibly fast!)
4. (Common Factors) Find an expression for $\left(F_{n}, F_{m}\right)$. Use it to show that $\left(F_{n}, F_{n+1}\right)=1$.
5. (Fun with 5) Let p be prime. Compare F_{p} with $\left(\frac{p}{5}\right) \bmod p$. Can you prove your observation? (What's special about 5?)
6. (Convergents of φ) Compute the continued fraction for φ and some of the convergents. What do you notice? (If you can prove your observations, and believe convergents are good at approximating, then this gives one proof that $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}=\varphi$. Can you prove it another way?)
[^0]
[^0]: ${ }^{1}$ Once again, as is tradition in mis-naming objects, these numbers were at least studied quite a bit by Indian mathematicians going back to at least 200 BC, but Fibonacci (c. 1170 - c. 1250) gets the Westerners' acknowledgement for introducing the sequence there.

