MA 341: Advanced Problems for Fun: \# 2
This advanced problem set is about Gauss sums with an application at the end to proving quadratic reciprocity, modeled on the exposition given by W. Stein. It requires a bit of experience with complex numbers.

1. Let $\zeta_{n}=\cos (2 \pi i / n)+i \sin (2 \pi i / n)$. Show that $\zeta_{n}^{n}=1$. (Hint: Use Euler's identity for complex exponentials!) Show that $\zeta_{n}^{a}=1$ for any a, and that $\zeta_{n}^{a} \equiv \zeta_{n}^{b}$ if and only if $a \equiv b \bmod n$. (So the exponents "work mod n ") The numbers ζ_{n}^{a} are called nth roots of unity.
2. Let p be an odd prime, set $\zeta=\zeta_{p}$, and $a \in \mathbb{Z}$. We define the Gauss sum associated to a as

$$
g_{a}=\sum_{n=0}^{p-1}\left(\frac{a}{p}\right) \zeta^{a n}
$$

where the Legendre symbol is used. Try computing a few values of g_{a} by hand (draw some pictures in the complex plane!). Then compute some values of g_{a}^{2}.
3. Show $g_{a}=\left(\frac{a}{p}\right) g_{1}$, where we used the Legendre symbol.
4. Show that $g_{a} \cdot g_{-a}=(-1)^{(p-1) / 2} g_{1}^{2}$.
5. Compute $\sum_{a=0}^{p-1} g_{a} \cdot g_{-a}$ in two different ways to deduce $g_{1}^{2}=(-1)^{(p-1) / 2} p$. (And hence $g_{a}^{2}=$ $(-1)^{(p-1) / 2} p$.)
6. Let $p^{*}=(-1)^{(p-1) / 2} p$, so $g^{2}=p^{*}$ where $g=g_{1}$. Use Euler's criterion for p^{*} to deduce

$$
g^{q} \equiv g\left(\frac{p^{*}}{q}\right) \bmod q
$$

where we interpret this congruence happening in the number system $\mathbb{Z}[\zeta]$ (i.e. q divides the difference in this ring).
7. Use $(x+y)^{q} \equiv x^{q}+y^{q} \bmod q$ to show

$$
g^{q} \equiv g_{q} \bmod q
$$

8. Use $g_{q}=\left(\frac{q}{p}\right) g$ to deduce that

$$
\left(\frac{p^{*}}{q}\right)=\left(\frac{q}{p}\right) .
$$

(Be careful in checking to "cancel g " in this step!) This is equivalent to Quadratic Reciprocity by a homework problem.

