MA 341: Advanced Problems for Fun: \# 3

In this set we'll explore the relationships between solving congruence equations $f(x) \equiv 0 \bmod p$ and $f(x) \equiv 0 \bmod p^{k}$ where p is prime. Once we understand this well enough, by the CRT we will understand how to solve $f(x) \equiv 0 \bmod n$ for general n once we can solve $f(x) \equiv 0 \bmod p$ for p prime, thus completing the reduction to the prime modulus case. We'll push these ideas far enough to discover an important number system used widely in modern number theory.

1. Let $f(x)=x^{2}-4 x+3$. Solve $f(x) \equiv 0 \bmod 5$. Then solve $f(x) \equiv 0 \bmod 25$.
2. Compare with $f(x)=x^{2}-3 x+1$. Solve $f(x) \equiv 0 \bmod 5$ and then again $\bmod 25$.
3. Suppose $f(a) \equiv 0 \bmod p$ where $f(x)=x^{2}+b x+c$. Show there exists a unique $A \in \mathbb{Z}_{p^{2}}$ such that $f(A) \equiv 0 \bmod p^{2}$ and $A \equiv a \bmod p$ if $2 a+b \not \equiv 0 \bmod p$. (This process is called "lifting" a solution $\bmod p$ to one $\bmod p^{2}$.)
4. In general, show if $f(a) \equiv 0 \bmod p$, then there exists unique $A \in \mathbb{Z}_{p^{2}}$ with $f(A) \equiv 0 \bmod p$ and $A \equiv a \bmod p$ if $f^{\prime}(a) \not \equiv 0 \bmod p$.
5. Show by example the converse to the above fails: i.e. there may or may not exist solutions to $f(A) \equiv 0 \bmod p^{2}$ with $A \equiv a \bmod p$ if $f^{\prime}(a) \equiv 0 \bmod p$.
6. Show if $f(a) \equiv 0 \bmod p$ and $f^{\prime}(a) \not \equiv 0 \bmod p$, then there exists a unique $A_{k} \in \mathbb{Z}_{p^{k}}$ with $f\left(A_{k}\right) \equiv 0 \bmod p^{k}$ and $A_{k} \equiv a \bmod p$ for all $k \geq 1$.
7. Let \mathcal{O}_{p} be the following ring ${ }^{1}$: the elements are sequences $\left(a_{k}\right)$ where $a_{k} \in \mathbb{Z}_{p^{k}}$ and $a_{k+1} \equiv$ $a_{k} \bmod p^{k}$ for all k. Let $p=3$. Write down some examples of elements in \mathcal{O}_{3}. You can add them term by term. How should we multiply them?
8. Let $p \equiv 1 \bmod 4$. Show that the polynomial $x^{2}+1$ has a solution in the $\operatorname{ring} \mathcal{O}_{p}$.
9. Determine the units in \mathcal{O}_{p}.
10. Write down a polynomial with no roots in \mathcal{O}_{p}. (Hint: Your answer may depend on p.)
11. Show that we may view \mathbb{Z} inside of \mathcal{O}_{p} for any p : send $n \in \mathbb{Z}$ to the sequence $\left(n \bmod p^{k}\right)$. Show no 2 integers map to the same place, but generally there are elements of \mathcal{O}_{p} not in \mathbb{Z}.
[^0]
[^0]: ${ }^{1}$ These are one way of representing p-adic integers, where p is acting like a variable. So there are 2 -adic, 3 -adic, 5 -adic numbers, etc.

