MA 341: Advanced Problems for Fun: # 3

In this set we'll explore the relationships between solving congruence equations $f(x) \equiv 0 \mod p$ and $f(x) \equiv 0 \mod p^k$ where p is prime. Once we understand this well enough, by the CRT we will understand how to solve $f(x) \equiv 0 \mod n$ for general n once we can solve $f(x) \equiv 0 \mod p$ for p prime, thus completing the reduction to the prime modulus case. We'll push these ideas far enough to discover an important number system used widely in modern number theory.

- 1. Let $f(x) = x^2 4x + 3$. Solve $f(x) \equiv 0 \mod 5$. Then solve $f(x) \equiv 0 \mod 25$.
- 2. Compare with $f(x) = x^2 3x + 1$. Solve $f(x) \equiv 0 \mod 5$ and then again $\mod 25$.
- 3. Suppose $f(a) \equiv 0 \mod p$ where $f(x) = x^2 + bx + c$. Show there exists a unique $A \in \mathbb{Z}_{p^2}$ such that $f(A) \equiv 0 \mod p^2$ and $A \equiv a \mod p$ if $2a + b \not\equiv 0 \mod p$. (This process is called "lifting" a solution mod p to one mod p^2 .)
- 4. In general, show if $f(a) \equiv 0 \mod p$, then there exists unique $A \in \mathbb{Z}_{p^2}$ with $f(A) \equiv 0 \mod p$ and $A \equiv a \mod p$ if $f'(a) \not\equiv 0 \mod p$.
- 5. Show by example the converse to the above fails: i.e. there may or may not exist solutions to $f(A) \equiv 0 \mod p^2$ with $A \equiv a \mod p$ if $f'(a) \equiv 0 \mod p$.
- 6. Show if $f(a) \equiv 0 \mod p$ and $f'(a) \not\equiv 0 \mod p$, then there exists a unique $A_k \in \mathbb{Z}_{p^k}$ with $f(A_k) \equiv 0 \mod p^k$ and $A_k \equiv a \mod p$ for all $k \ge 1$.
- 7. Let \mathcal{O}_p be the following ring¹: the elements are sequences (a_k) where $a_k \in \mathbb{Z}_{p^k}$ and $a_{k+1} \equiv a_k \mod p^k$ for all k. Let p = 3. Write down some examples of elements in \mathcal{O}_3 . You can add them term by term. How should we multiply them?
- 8. Let $p \equiv 1 \mod 4$. Show that the polynomial $x^2 + 1$ has a solution in the ring \mathcal{O}_p .
- 9. Determine the units in \mathcal{O}_p .
- 10. Write down a polynomial with no roots in \mathcal{O}_p . (Hint: Your answer may depend on p.)
- 11. Show that we may view \mathbb{Z} inside of \mathcal{O}_p for any p: send $n \in \mathbb{Z}$ to the sequence $(n \mod p^k)$. Show no 2 integers map to the same place, but generally there are elements of \mathcal{O}_p not in \mathbb{Z} .

¹These are one way of representing p-adic integers, where p is acting like a variable. So there are 2-adic, 3-adic, 5-adic numbers, etc.