Sample Problem Section 1.1, #14

Two students memorize according to the model

\[
\frac{dL}{dt} = 2(1 - L)
\]

where \(t = \text{time} \), \(L(t) = \text{fraction of material learned} \)

a) If student 1 has learned \(L_1(t) \) at time \(t \)
 and \(L_1(0) = \frac{1}{2} \)
 then \(\frac{dL_1}{dt} \bigg|_{t=0} = 2(1 - L_1(0)) = 2(1 - \frac{1}{2}) = 1 \)

while if student 2 has learned \(L_2(t) \) at time \(t \)
 and \(L_2(0) = 0 \)
 then \(\frac{dL_2}{dt} \bigg|_{t=0} = 2(1 - L_2(0)) = 2(1 - 0) = 2 \)

So \(L_2 \), student 2, is learning faster at time 0.

b) Student 2 cannot catch up to student 1.
 The learning rate of both students slows down as \(t \) goes to \(1 \) and \(t \) goes to infinity.
 But student 1 is always ahead of student 2.