
1 Population Growth Models

Back to our problem of trying to predict the future.
We start by using the math you already know to study population growth. This field is

usually called mathematical biology or mathematical ecology. Our goal is to use knowledge
about a species and its environment to give an approximation to the size of the population
of that species in the future.

Two ideas for how to do this come to mind. The first is to look at the historical data and
see if we can identify trends. This is a great idea, but is often very difficult. Data seldom
fits a simple pattern perfectly and we must constantly worry about what trends are “real”
in the data, what trends are due to temporary changes in the situation and what trends are
created by our human desire to see patterns, even when there are none. We will return to
these problems when we discuss probability and statistics.

The second idea is to make a deterministic model of how the population changes using
our knowledge of the biology of the species. The model has to be simple enough for us to
use and understand, but complete enough to include enough of the major factors governing
population to give reasonable predictions.

For now we follow the second idea and construct models based on some (simple) assump-
tions about biology. Of course, combining both model building and data analysis–using the
data to motivate and check the assumptions and using the models to tease out trends in the
data–is more powerful than either technique by itself.

Think of this section as practice building models for physical world and seeing what kinds
of behavior simple models can predict. The “hidden” agenda is to use some of the functions
we have seen in our zoo.

1.1 Exponential Growth Models

As fits our basic outline, we start by making a simple, abstract model of the growth of a
population. We are guided by a principle called “Occam’s Razor” which states that a model
(or explanation) should be the simplest possible model that “works”. That is, we do not
want to add complication unless we must to match reality.

So, consider a small population of some species let loose in a large area. For example, in
October 1859, Thomas Austin released 24 rabbits on his farm in Australia (at least according
to Wikipedia). This population eventually grew to over 600 million.

We let t represent time measured in years. If we were considering a population of whales
we might measure time in decades while for bacteria, we would measure time in hours or
minutes. We let P (t) be the population at time t. Again, we might measure P as number of
individuals (for whales), or thousands or millions of individuals (for rabbits or people). We
could also let P represent a population density. That is, we could let P be the number of
rabbits per square kilometer or square meter. So fractional values of P are allowed.

1



As the notation suggests, we think of P (t) as a function of t. Our goal is to be able to
predict a value of P (t) for any time t. We could just write down a guess for a formula of
P (t), but that isn’t much more satisfying than just guessing the values of P (t). Instead, let’s
think a (very) little bit about biology.

What do we know about rabbits? Well, rabbits do what they are famous for and beget
more rabbits. The more rabbits you have this year, the more baby rabbits you will have
next year. So the (very) basic biology of rabbits tells us not what the population of rabbits
is, but rather, how the population changes.

Our models for population size will be based on rules derived from how the population
changes. Keeping with Occam’s Razor, we start with the simplest aspects of population
change and make some explicit assumptions about how they work:

1. The number of births between time t and time t + 1 is proportional to the size of the
population P (t) at time t. That is, there is a constant b > 0 such that the number of
births between time t and t+ 1 is b · P (t).

2. The number of deaths between time t and time t+ 1 is also proportional to the size of
the size of the population P (t) at time t. That is, there is a constant d > 0 such that
the number of deaths between time t and t+ 1 is d · P (t).

Clearly, these are just the most basic assumptions on how any population might change.
There are many factors that effect births and deaths. These include external factors, like the
weather, and factors that depend on where the species is on the food chain. However, we
start simple and ignore all other mechanisms of that can alter the rate of population change.

Now we must turn these assumptions into statements that we can use to compute fu-
ture populations. While this makes our discussion look more “mathy”–formulas instead of
sentences–we emphasize that all we are doing in this step is translating the sentences above
into a form we can use for computation.

Putting our two assumptions together, we can say that the population at time t + 1 is
the population at time t plus the births between t and t+ 1 minus the deaths between t and
t+ 1. We can write this on one line as

Population at time t+ 1 = (population at time t) + (births t to t+ 1)− (deaths t to t+ 1).

Now our assumptions say that the births time t to t+ 1 are given by bP (t) while the deaths
are given by dP (t). Hence, we can shorten the sentence above with notation, writing

P (t+ 1) = P (t) + bP (t)− dP (t).

This completes our translation of the assumptions into a formula (and it really is only a
translation). We can now use the algebra you learned long ago to simplify things even more.
By factoring out P (t) on the right, we get

P (t+ 1) = (1 + b− d)P (t).
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We can consolidate a bit more by letting

k = 1 + b− d

and calling k the “growth rate constant”. Our model can now be written in the very efficient
form

P (t+ 1) = kP (t).

If there are more births than deaths (b > d), then k > 1 and the population at time t+ 1
is larger than the population at time t. If we know the population at time t = 0, then at
time t = 1 we have

P (1) = kP (0)

and at time t = 2 we have

P (2) = kP (1) = k(kP (0)) = k2P (0)

and at time t = 3 we have

P (3) = kP (2) = k(k2P (0)) = k3P (0).

You can see the pattern developing here. The proof (by induction) shows the general case
by noting that if P (N − 1) = kN−1P (0), then

P (N) = kP (N − 1) = k(kN−1P (0)) = kNP (0)

and we have a formula for the population for all future times N– provided we know the
population at time zero.

This type of model is called an “exponential growth” population model because the
population P (N) is an exponential function. For example, if P (0) = 24 and k = 2, that is,
the population starts at 24 at time t = 0 and the population doubles each year, then

P (34) = 234 · 24 = 412, 316, 860, 416

or the original population of 24 will grow to over 400 billion in only 34 years. This is
remarkably fast growth (see Fig. 1).

Note that exponential growth occurs even when k is just slightly greater than one. For
example, if k = 1.01 and P (0) = 0.3 then (see Fig 2)

P (N) = 1.01N(0.3).

In order to use this model to predict future populations, we need two things. First, we
need the initial population P (0). This can actually be the population at any time since we
get to decide when t = 0, that is, we decide when to start the clock. We also need the value
of k.
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Figure 1: Exponential growth with k = 2, P (0) = 24

1.1.1 Predicting world population

Suppose we want to predict the world population, say starting in the year 1000 and going
into the future, that is, we let t = 0 be the year 1000 and we are interested in P (t) for
t ≥ 1001. Since there are a lot of people, we use units of one billion people. So saying
P (0) = 0.3 means that in the year 1000 there were about 300, 000, 000 people.

Now, what value of k do we pick? We see right away possible problems using the ex-
ponential growth model. Average life spans and birth rates have changed a great deal over
the past 1000 years, so choosing just one value of k is a huge simplification. Noting that
much of the increase in life span has happened in the last 100 years, we make a guess (and
its just that) of a life span of 50 years, so guess a death rate of 1/50 = 0.02 percent of the
population per year.

Birth rate is harder to estimate and has fluctuated due to advances in health care and
social norms. Half the population is women and each woman spends half to one third of her
life in child bearing years. We make an estimate of about 1/10 of the women in child bearing
years have a child in a given year (this is the biggest guess), then an estimate for birth rate
of (1/2) · (1/2) · 1/10 = 1/40 = 0.025.

Hence, we estimate our growth rate constant as

k = 1 +
1

40
− 1

50
= 1 + 0.025− 0.02 = 1.005.

So we get a population growth prediction in year N of

P (N) = 1.005N · 0.3.
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Figure 2: Exponential growth with k = 1.01, P (0) = 0.3

This gives the graph below and the prediction that the population in the year 2010 (t = 1010)
should be about 41 billion.

Luckily, this is larger than the actual population of about 6 billion. Our estimate of k
must be too high. If we take k = 1.003 then the model predicts a population in 2010 of
about 5.8 billion, which is a lot more reasonable.

1.2 Criticism of the Exponential Growth Model

As noted above, the use of a constant growth rate constant k is the most serious assumption
in this model. For human populations improvements in public health, wars, changes in social
attitudes can make a large difference in k.

This does not mean that the exponential growth model is useless–it just means that we
have to be careful where and how we use it. For the example above, it tells us that for
most of the last thousand years, the growth rate constant must have been very small. We
are forced to re-examine our assumptions about birth and death rates. A small population
in a large environment under fairly constant conditions will probably follow an exponential
growth model fairly accurately, at least until the population becomes too large.

The moral is: There is no magic answer and no substitute for careful thought when
building and evaluating models.

1.3 Another View of the Exponential Growth model

Before looking at more generally applicable population models, we need to use what we know
about functions to get a different view of the exponential growth model.
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Figure 3: Exponential growth with k = 1.005, P (0) = 0.3
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Figure 4: Exponential growth with k = 1.003, P (0) = 0.3
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So far we have only drawn graphs of the population P (t) as a function of time t. That
is, t is on the horizontal axis and P (t) is on the vertical axis. A completely different way to
visualize this same model is to draw the graph of the relation ship between the population
at time t and the population at time t + 1. If t is in years, then we use the population this
year, Pthis year, along the horizontal axis and the population next year, Pnext year, along

the vertical axis. Our model states that

Pnext year = k · Pthis year

This is the equation of a line through the origin with slope k (see Fig.5).
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Figure 5: Graph of the exponential growth model with PThis year on the horizontal axis

and Pnext year on the vertical axis. Here k = 2.

While this is just basic graphing of functions, we are actually doing something pretty
sophisticated. We now have two ways to graph or picture the same model–the “time series”
where we graph P (t) versus time t, and the graph of the model equation graphing Pnext year
against Pthis year. Each of these graphs can be used to tell us something about what the

model predicts.
For example, the graph of Pthis year vs Pnext year immediately tells us the the popu-

lation next year will be greater than the population this year except when the population
is zero. This is because the line giving Pnext year as a function of Pthis year is above the
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diagonal where Pnext year = Pthis year. Moreover, as the population this year gets larger,

the increase to the population next year gets larger.
Which of these two graphical representations of the model we use depends what we want

to learn about what the model predicts. It is like looking at the body of an elephant or
the DNA of an elephant. They give similar information, but in a very different forms. If
we want to see what the model predicts for the population far in the future for a particular
initial population P (0), then we look at the graph with time t on the horizontal axis and
P (t) on the vertical axis. If we want to visualized the model directly, seeing how different
populations change in a year, then we look at the graph with the population this year on the
horizontal axis and the population next year on the vertical axis, which allows us to predict
one year in the future for any P value. Being able to move between these two pictures is a
very useful skill which we study next.

2 Exponential Growth and Harvesting

The case of rabbits in Australia is one of the best known and one of the most dramatic cases
of exponential growth of an introduced invasive species. Sadly, it is not the only case–other
examples include cane toads in Australia, Kudzu in the southern U.S., and zebra muscles in
the midwestern U.S. (and recently in western Massachusetts).

What seems a harmless, or even beneficial species from another area of the world, can
become a pest or weed very quickly when there are no natural controls on its population
growth. An example in the news lately is the Asian or silver carp which was imported
to the U.S. to clean commercial fish farm tanks. After their escape during a flood to the
lower Mississippi, the carp spread north and now been caught in Lake Michigan. These carp
eat plankton voraciously cutting off the food chain for native species. They also have the
annoying habit of jumping out of the water when disturbed by boats. (You can find videos
of this on youtube–search jumping asian carp. A more thoughtful video on this invasive
species is at http://www.youtube.com/watch?v=oii4U3cQx_E ) Expect to hear a lot more
about these fish as they spread through the great lakes.

Of course, not all invasive species are dangerous pests–many of the foods we enjoy and
grow have been imported from other parts of the world. Some ecologists have argued recently
that a fanatical attack on every introduced species is not justified. This brings up a difficult
question of what really is “natural” and how should we best preserve nature (or is our habit
of moving plants and animals around really part of nature?)

On the other hand, some introduced species really are annoying or dangerous (e.g., think
of West Nile virus). Once a species is recognized as a pest, attempts are made to control its
growth. Typically, these include attempts to “harvest” the species, that is, remove as many
as possible from the environment.
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2.1 One More Feature of Exponential Growth

Before moving on to more complicated population models, let’s return for a moment to our
original model of rabbits and make one more important observation about this model.

For k = 2 (doubling of the population each year) and P (0) = 24, we saw that after 34
years,

P (34) = 234 · 24 = 412, 316, 860, 416.

But what if the initial count had been off by just one rabbit? What if P (0) = 25 instead of
24? Then

P (34) = 234 ∗ 25 = 429, 496, 729, 600,

which is a difference of 429, 496, 729, 600 − 412, 316, 860, 416 = 17, 179, 869, 184 or over 17
billion rabbits. That is a lot of rabbits!

The fact that a tiny error in P (0) makes a huge difference in the prediction after a few
years is troubling. The birth or death of one extra rabbit can, after a few years, make a huge
difference in the precise quantitative prediction of the model. We say that an initial “error”
between P (0) = 24 and P (0) = 25 can grow exponentially, just like the population.

This does not mean the exponential model is useless We say the exponential model
predicts a population explosion. If there are hundreds of billions of rabbits around, an extra
17 billion plus or minus is not too big a concern. We will see later that this expnonetial
growth of error can have huge consequences for other models and is the basis for “chaos
theory”.

2.2 Model of Exponential Growth with Harvesting

As our next model, we adjust the exponential growth model to add the effect of harvesting.
This is an interesting and important topic both for controlling invasive species and for
managing useful wild populations, but we also have a hidden agenda. At the end of the
last section we saw that there are two ways to “picture” the exponential growth model.
That is, there are two different graphs that we can draw that contain all the information
about the model. They are the graph of the population as a function of time and the graph
of the population next year as a function of the population this year. In this section we
study how these two views of a model are related and how we can use both pictures to make
predictions about the future from the model.

We start with the same notation and assumptions we had in the last section. That is,
t is time (which, for convenience, we say is measured in years), P (t) is the population at
time t measured in some convenient units. For the exponential model, we assume that the
population only changes because of births and deaths and that the number of each of these
is proportional to the total size of the population. Our fundamental equation is

P (t+ 1) = kP (t)
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or
Pnext year = kPthis year

where k is the growth rate constant. As long as k > 1, and the initial population P (0) is
bigger than zero, the population will grow exponentially,

P (N) = kNP (0).

We picture this below for k = 1.5. Fig. 6 is the graph of the population next year as a function
of the population this year. Fig. 7 is a typical graph of the growth of a particular population
where P (0) is chosen to be 0.3 (so here we are measuring P in thousands or millions of
individuals or by density, individuals per square kilometer, so that decimal numbers for
population make sense). Note that to produce Fig. 7 we need to specify both k and P (0)–
this graph changes if P (0) is adjusted.
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Figure 6: Graph of the exponential growth model with PThis year on the horizontal axis

and Pnext year on the vertical axis. Here k = 1.5.

Now we add the effect “harvesting” to the exponential model. By harvesting we mean
the removal of members of the population. The simplest way to manage a useful population
is to give out a certain predetermined number of licenses (hunting licenses or catch limits
for fishing or permits for logging, etc.) When trying to eliminate a pest or weed population,
as many individuals as possible are removed and the limiting factor is the amount of money
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Figure 7: Graph of the exponential growth model with time t on the horizontal axis and
population P (t) on the vertical axis. Here k = 1.5 and the initial population is P (0) = 0.3.

available. In either case, we assume that the number of individuals removed each year is a
constant which we call H. Also, for simplicity, we assume H remains constant from year to
year.

Our new model can now be written

Pnext year = kPthis year −H.

We are assuming that the harvesting does not effect the growth rate constant k (individuals of
the species reproduce just as effectively as before), so the only change in the new population
model is the −H term. To see how this changes things, let’s pick particular numbers. Say
k = 1.5 as above and let’s take H = 0.2 and graph the population next year as a function of
the population this year (see Fig. 8).
Note that the only difference between Fig.8 and Fig. 6 for the exponential model, is that the
line is pushed down. The “vertical intercept” is now at −0.2, while the slope k, the same as
above.

2.3 What Does This Model Predict?

Taking k = 1.5 and H = 0.2, we compare the predictions of the exponential growth model,

Pnext year = 1.5Pthis year

to the exponential growth with harvesting model,

Pnext year = 1.5Pthis year − 0.2,
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Figure 8: Graph of the exponential model with harvesting with k = 1.5 and H = 0.2, along
with the diagonal.

using the same initial populations. If we start with P (0) = 0.3, then for the exponential
growth model, we have already seen that

P (N) = 1.5N0.3.

The oredictions of the model with harvesting is more difficult to compute. Let PH(t) be
the population at time t for the harvesting model. Then we are given that PH(0) = 0.3. To
compute PH(1), we compute

PH(1) = 1.5 · PH(0)−H = 1.5 · 0.3− 0.2 = 0.25,

PH(2) = 1.5 · PH(1)−H = 1.5 · 0.25− 0.2 = 0.175,

and
PH(3) = 1.5 · PH(2)−H = 1.5 · 0.175− 0.2 = 0.0625.

Finally,
PH(4) = 1.5 · PH(3)−H = 1.5 · 0.0625− 0.2 = −0.10625.

What does this mean? The population decreases from years zero to one, one to two and two
to three. In year four the population has gone negative. This isn’t “physically realizable”,
but in order to become negative, PH(t) must have gone through a population of zero at some
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Figure 9: Population as a function of time for the exponential model with harvesting for
P (0) = 0.3 with k = 1.5, H = 0.2.

time between t = 3 and t = 4. So a negative population is interpreted as extinction (see Fig.
9).

If this were an invasive species, this would be good news. For PH(0) = 0.3, harvesting at
a rate of 0.2 per year is enough to drive this species extinct in four years.

While there is not anything difficult involved in computing PH(N), it is tedious. We were
lucky that the population went extinct fairly quickly. If we take PH(0) = 2.0, and repeat
the process above to compute the predicted populations

PH(1) = 1.5 ∗ PH(0)− 0.2 = 1.5 ∗ 2.0− 0.2 = 2.8,

that is, the population has grown. Future populations continue to grow and we must do a
lot of arithmetic to compute the precise prediction. Comparing the population predictions
with and without harvesting, we see very similar exponential growth in both cases (see Fig.
10).

For the exponential growth model, there is a formula for P (N) = kNP (0). We can
compute the population in year N directly from P (0). For the exponential growth model
with harvesting, to compute PH(N), we need to compute all the years from t = 0 to t = N−1
before we can compute PH(N).

2.4 Avoiding the arithmetic

We would like to be able to predict the long-term behavior of the population for the harvest-
ing model for any initial population without having to do an exorbitant amount of arithmetic.
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Figure 10: Population as a function of time for the exponential model with harvesting for
P (0) = 2 with k = 1.5, H = 0.2.

The key to doing this is to look carefully at the graph of the population this year vs. the
population next year.

Given the population this year, PH(0), we can obtain the population next year PH(1), by
starting on the horizontal axis at PH(1), going vertically to the graph, then going horizontally
to the vertical axis. The point on the vertical axis is PH(1).

We have been putting the diagonal Pnext year = Pthis year on our graphs for reference,

now we can use the diagonal to help describe the behavior of the model. Note that the
graph for the model crosses this diagonal in exactly one point. If the population this year
is small enough, then the graph for the model is below the diagonal. This means that the
population next year is smaller than the population this year (the graph of the model is
below the diagonal for Pthis year small). If the population this year is sufficiently large, the

graph for the model is above the diagonal, so the population next year is larger than the
population this year.

The dividing point between these two behaviors is the point where the graph of the
model crosses the diagonal. This is the point where the model predicts that the population
next year equals the population this year. Such a point is called a “fixed point”, since the
population stays fixed from year to year. We can compute the exact location of this point
by noting that this point satisfies both equations

Pnext year = 1.5Pthis year − 0.2

and
Pnext year = Pthis year,
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Figure 11: Graph of the exponential growth model with harvesting for k = 1.5, H = 0.2.

so we solve
Pthis year = 1.5Pthis year − 0.2

for Pthis year. This occurs at P = 0.4. So if PH(0) < 0.4 then the population dies out, but

if PH(0) > 0.4 then the population grows. Eventually, it grows like the exponential growth
model

2.5 Types of functions

The exponential growth model with harvesting gives us a new view of what kinds of functions
can occur by using models and gives us two different ways to look at the same model. For
H = 0, that is, just the exponential growth model, every non-zero initial condition leads to
a rapidly growing population.

For H > 0, and PH(0) sufficiently large, the model still predicts a rapidly growing
population.

However, for H > 0 and a small initial population (PH(0) close to zero), the model
predicts the population that quickly crashes to extinction.

Finally, for each value of H > 0, the exponential growth model with harvesting predicts
the existence of a fixed point–that is, the model predicts a population where harvesting and
natural deaths are exactly balanced by births, so the population stays the same from year
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to year. In this case the graph of the population as a function of time is just a constant
function.

2.6 The power of a clever idea

Again we see that the power of mathematics comes not in massively complicated equations
or hugely elaborate arithmetic. The great ideas in mathematics come when somebody looks
at some problem in a new way. The idea of looking at a model by graphing the population
this year vs the population next year does not require hard computations, so far our graphs
have been lines. However, the idea of drawing this picture and using it to say things about
what the model predicts for different initial populations is very useful. We exploit this idea
in the next section.

While the problems of population biology can be both very interesting and extremely
important (ask anyone who has been knocked out of their boat by a large silver carp),
don’t forget the bigger picture. We are following the process of modelling–making a model,
learning things about the model, then refining the model to do a better job reflecting the
situation of the original problem.

3 Limited growth

We know that growth, particularly exponential growth, can not go on forever in a finite
environment. For populations with the ability to spread widely (like people) we forget this
because the earth is very big and we are relatively small. However, eventually, growth must
subside–you just run out of room.

Situations where the limits to growth effect the sizes of populations are not hard to
find. Populations restricted to small islands, species whose biology restrict them to the
high altitudes of mountain peaks and plants and animals in isolated ponds face these limits
relatively quickly. For example, on Lovells and Gallops islands in Boston Harbor, it is hard
to walk down a path without encountering a large fluffy rabbit. (By the way, this is a lovely
day trip when it is nice out.) These populations are large for the size of the islands and the
dynamics of the population is very interesting.

3.1 A model incorporating a limit to growth

To modify the exponential model so that growth does not continue forever, we make the
following assumptions

1. The exponential growth model works well for small populations.
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2. There is some population size, call it C, such that if the population ever gets to C or
above then all the resources are consumed and the next time period the population is
zero.

The new parameter C is the absolute upper bound to growth. We will call C the “crash
population”. If the population reaches C (or above), then the population immediately goes
extinct. Presumedly, a population near C would consume almost all the resources, so there
would be many more deaths than births and the population would crash to close to zero.

There are many ways to build a model that satisfies these assumptions, but we remember
Occum’s Razor and try to find a simple model. There are two ways to proceed. First we
could try algebra. Since the assumption says that exponential growth is a good model for
small populations, our model should look like

Pnext year = kPthis year

when Pthis year is small. However, when Pthis year is C then Pnext year is zero. We can

include this in the exponential model by multiplying on the right hand side by a term which
is zero when Pthis year = C, for example,

Pnext year = kPthis year

(
1−

Pthis year

C

)
.

Note if Pthis year is near zero, then (1− Pthis year/C) is near one so the model is near the

exponential model, as we require.
We can also construct our new model graphically. Assumption 1 above says that the ex-

ponential model does a good job when the population is near zero, so the graph of Pthis year
vs. Pnext year should look like the exponential model near Pthis year = 0. That is, like a

straight line going through the origin with a slope bigger than one (see Fig. 12).
Assumption 2 says that for Pthis year near the value of the crash population, C, the

value of Pnext year must be near zero. When Pthis year = C then Pnext year = 0. Putting

these two requirements on the graph, we get the picture in Fig. 12.
What happens when Pthis year is between zero and C? We fill in the graph in a simple

way with a smooth curve, say a nice parabola. This is exactly the kind of graph we get when
we plot the function

Pnext year = kPthis year

(
1−

Pthis year

C

)
.

This model is called the “Discrete Logistic model” of population growth in a limited envi-
ronment. Since negative populations don’t make any sense, we usually add the requirement
that for Pthis year larger than C, the population next year is zero (i.e., extinct).
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Figure 12: Building the limited growth model from the two assumptions.

3.2 What does this model predict?

To see what kinds of population dynamics this model predicts, we look at some specific
examples. Suppose we are counting the population of thousands of rabbits on a small island.
So we will count rabbits in units of 1000, i.e., P = 1 means a population of 1000 rabbits,
etc.

Suppose for this island, the crash population (the population at which the rabbits eat
everything an immediately go extinct) is 4000, or C = 4. If Pthis year is 4 or larger, then

next year the population will be extinct (Pnext year = 0).
We try a number of different values of the growth rate constant k.

3.2.1 Small k

We start with a relatively small value of k, say k = 1.5. Since k > 1 the population grows
quickly when it is small

We look first at the graph of Pthis year vs. Pnext year (see Fig. 13). This graph shows

that there are fixed populations at P = 0 (extinct is forever) and for P near 1.33. For
populations below 1.33 the population next year will be larger. For populations just above
1.33, the population next year will be slightly smaller.

If we start with an initial population, of P (0) = 0.2 then tedious computation (or Excel)
shows us that in subsequent years the population increases, but levels off at the fixed point
P ≈ 1.33. If the initial population is large, say P (0) = 3.95 (very near the crash population
of 4), then initially the population drops to close to zero. Then it grows slowly toward the
fixed point of P = 1.33
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Figure 13: Graph of the Discrete Logistic model for k = 1.5.

In fact, no matter where you set the initial population P (0), in subsequent years the
population tends to the fixed population P ≈ 1.33.

This is a new type of behavior for functions and it agrees with our guess about what
might happen in a limited environment. At first a small population grows, but eventually
the limits to growth “kick in” and the population settles to a stable fixed value.

3.2.2 Large k

Suppose our population of rabbits is extremely prolific if the population is small–assume
k = 4. Small populations will almost quadruple in size after a single year, so we expect that
a small population will grow very quickly. The graph of Pthis year vs. Pnext year still has

the same shape as before, but the slope is much greater near P = 0. There is still a fixed
point just but now it is much larger, near P = 3, and it occurs where the graph is decreasing
(see Fig. 15).

If we look at the prediction of this model for, say, P (0) = 0.2, we see an entirely new, and
surprising, type of function. The population rises and falls without any particular pattern.
The only things we can say for sure is that if the population is very small, then it will increase
quickly and if the population is near P = 4, then it will crash to near zero (see Fig. 16)

3.3 A Bigger Surprise

There is something even more shocking about this model. Suppose we change the initial
population just a tiny amount from P (0) = 0.2 to P (0) = 0.201 (or one more rabbit). The
predictions of the model look very similar when graphed (see Fig. 17). However, if we
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Figure 14: Population predictions for P (0) = 0.2 and P (0) = 3.95 for the Discrete Logistic
model with k = 1.5.

graph the predictions for P (0) = 0.2 and P (0) = 0.201 on the same graph we see something
shocking. The two populations evolve almost the same way for a few years, but by year 8 we
can see a significant difference in the populations. By year 12, the predictions are completely
different (see Fig. 17).

This is called “sensitive dependence on initial conditions” and is a hallmark of what has
come to be called “chaotic dynamics” in a model.

Chaos is really shocking. Our model is simple and completely deterministic, but a tiny
change in initial conditions radically changes the predictions of the model after only a few
years! If one extra rabbit is born or dies, or if our initial count is off by only one, our
predictions will be completely different in only a few years.

But wait–you should have that mysterious feelng of deja vu–that mysterious feeling of deja
vu. The exponential model also had the property that a small change in initial conditions lead
to a a large discrepancy in prediction. However, this large discrepancy wasn’t so noticable
because the population was so large.

In fact, the same phenomenon as in the exponential growth model is happening here. The
exponential growth of small populations quickly makes any small error grow. Populations
under this model don’t just grow forever, but rise and crash, this error can alter the timing
of the crashes. Two nearby initial populations can lead to predictions for a particular time
in the future where one population is large (near 4) and the other is small (near 0).
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Figure 15: Graph of the Discrete Logistic model for k = 4.

3.4 A Glass Half Full

How you react to this observation depends on if you are a “glass half full” or “glass half
empty” kind of person. On the one hand, you might say that this makes the model worthless
because we can never get the initial value exactly right or guarantee that there are not any
tiny external effects that are quickly magnified.

On the other hand, one of the fundamental mysteries of our world is how things got so
complicated. How can we possibly “understand” such complicated behavior? Won’t the
explanation be at least as complicated? Remarkably, the Discrete Logistic model is really
pretty simple and yet it displays very complicated (even “chaotic”) behavior. If a popula-
tion following the simple Discrete Logistic model can make predictions of very complicated
behavior, perhaps other things in nature that look like they are extremely complicated arrise
from simple rules. There is hope of understanding the rules that govern our complicated,
chaotic world.

The proper response to a model exhibiting this sort of behavior, that is, sensitive depen-
dence on initial conditions, is to be more careful which questions we ask. For example, for
this Discrete Logistic model with k = 4, we see that while any tiny error in initial condition
changes the value of future population predictions. We can confidently predict that the pop-
ulation will rise until it gets close to the crash population, then crash and start to rebuild.
The predictions of the Discrete Logistic model for P (0) = 0.2 and P (0) = 0.201 for P (20)
are very different, but if we take the average population over a long period of time, we get
almost the same value for both initial conditions.

One of the classic examples of a chaotic system is the weather. It isn’t reasonable for us
to expect an accurate weather prediction more than a few days in the future because the
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Figure 16: Population predictions for P (0) = 0.2 for the Discrete Logistic model with k = 4.

weather displays the same sort of sensitivity to initial conditions that the Discrete Logistic
model does (on a larger scale). In fact, it has been said, only slightly tongue-in-cheek the
the decision of a butterfly in Brazil to flap its wings an extra time can effect the weather in
New York a few months later. However, this does not mean that we can’t predict the future
average weather. Even during a cold snap in January, we confidently predict the average
temperature will be much higher in August–so predictions about climate change should be
taken seriously even if a prediction of rain a week from Monday is suspect.

3.5 A final comment

All the mathematics you learned in high school was developed by mathematicians that share
the following characteristics. They are male, they are dead (and have been for at least 200
years) and they are probably European. (If not European, then they have been dead for at
least 500 years.)

But mathematics is still alive and growing–the material above is a great example. It is
an active field of research no older than your parents. Those in the field are not entirely
European– almost all other continents are all represented. Even better, you might see
the person who gave the best accepted definition of a “chaotic” system, Professor Robert
Devaney, walking down Commonwealth Ave. talking to Prof. Nancy Kopell, one of the great
names in applying these ideas to mathematical biology.
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Figure 17: Population predictions for P (0) = 0.2 and P (0) = 0.201 for the Discrete Logistic
model with k = 4.

Exercises:

1. Suppose a species of bacteria in a friendly environment, reproduces every twenty min-
utes by splitting in 2. (So if you start with 1 bacteria, after 20 minutes you hvae 2,
after 40 minutes you have 4 (each of the 2 splits) and so on.)

Let P (N) be the number of bacterial at time N with time measured in hours.

(a) How is P (N + 1) related to P (N) (i.e., what is the model for how the population
changes.)

(b) If you start with P (0) = 1 bacteria, how many will you have after two hours?

(c) If you start with P (0) = 3 bacteria, how many will you have after two hours?

2. Ideas and rumors sometimes spread very quickly. Suppose someone starts a rumor and
it is so interesting that each person who hears the rumor starts calling friends to tell
them the rumor. Suppose it takes 1 minute to tell a friend the rumor. Of course, once
they hear the rumor, they start telling their friends and so on.

(a) If one person starts the rumor, how many people will know the rumor after 1
minutes, 2 minutes, 10 minutes, 1 hour, 2 hours and 3 hours.

(b) If R(t) is the number of people who know the rumor at time t measured in minutes,
what it the relationship between R(t+ 1) and R(t)?
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(c) While this might be a good model for the initial growth of a rumor, why is it not
a good model after 3 hours? Explain how you know the model can’t be accurate
and what goes wrong in your assumptions made in building the model that make
it not work.

3. Suppose a population of rabbits follows the exponential growth model

P (t+ 1) = kP (t)

where t is time in years and P (t) is the population at time t. Suppose the popultion
increases from 4000 to 130, 000 in 6 years, (that is P (0) = 4000 and P (6) = 130, 000).
What is the value of k. (Hint: We know how to express P (6) in terms of k and P (0).
You can use trial and error or, if you remember some other properties of logs, you can
solve algebraically–either way is fine.)

4. Using the value of k you found in Exercise 1, what harvesting rate H in the exponential
model with harvesting

P (t+ 1) = kP (t)−H

has P = 4000 as a fixed point? (Hint: Again, this is a little algebra. Remember that a
fixed population Pfixed has the property that if P (t) = Pfixed then P (t+ 1) = Pfixed
also, so

Pfixed = P (t+ 1) = kP (t)−H = kPfixed −H,

and we know k from Exercise 1 and Pfixed = 4000 is given, so solve for H.)

5. Macquarie Island is a small island between Australia and Antarctica. Before 2000,
it was populated with 4000 rabbits and 160 feral house cats (both introduced
species), It is also used by various species of sea birds for nesting. Some of the
bird species that use the island are rare so it was decided that the cats should be
“removed” (i.e., killed).

However, cats also eat rabbits. Once the cats were removed, the rabbit population
exploded to 130000 by 2006. How many rabbits did each of the cats eat per month
before in order to keep the population at 4000?

(You can find more information at

http://www.newscientist.com/article/dn16414-rampant-rabbits-trash-world-heritage-island.

html

and

http://www.newscientist.com/article/mg20126913.200-blunder-let-bunnies-devastate-antartic-island.

html

and a web cam of Macquarie Island at
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http://www.aad.gov.au/asset/webcams/macca/default.asp.)

Read the article in Sunday’s (Jan 31) New York Times about the problems with
rabbits on Robben Island (you can find it at

http://www.nytimes.com/2010/02/01/world/africa/01safrica.html?scp=1&sq=

rabbit&st=cse).

There is a detail that should catch your eye that indicates that the efforts to
control the rabbits are doomed. What is this detail?

(a)6. Use whatever technology you have available (a spread sheet program like Excel is best),
to compute P (1), . . . , P (50) for the Discrete Logistic model

P (t+ 1) = kP (t)

(
1− P (t)

4

)
with P (0) = 0.2 and k = 2.5, 2.6, 2.7, . . . , 3.9, 4.0. Comment on the patterns in these
numbers–that is, how would you describe the behavior of the population? (For exam-
ple: “For k = 3 the population that oscillates between ≈ 2.766 and 2.560.).
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