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Let Q denote the algebraic closure of Q in C. All number fields considered
here are understood to be subfields of Q. We write Qab for the maximal abelian
extension of Q and Qaa for the maximal almost abelian extension, the latter being
defined as the compositum of all finite Galois extensions K of Q such that the
commutator subgroup of Gal(K/Q) is central of exponent dividing 2. Note that
Q

ab ⊂ Qaa. Anderson [1] has proved the following beautiful complement to the
Kronecker-Weber theorem:

Q
aa = Q

ab({ 4
√
` : ` prime} ∪ {

√
tp,q : p, q prime, p < q}),(1)

where if p is odd then tp,q = sp,q/sq,p with

sp,q =
(p−1)/2∏
j=1

(
sin(πj/p)∏(q−1)/2

k=0 sin(π(j + pk)/(pq))

)
while if p = 2 then

t−1
p,q = 2q/2

(q−1)/2∏
k=0

sin(π
1 + 4k

4q
)

(q−1)/2∏
j=1

sin(πj/q) sin(π(2j − 1)/(2q))
sin(πj/(2q)) sin(π(2j − 1)/(4q))

 .

Although we have departed from Anderson’s notation slightly, our tp,q nonetheless
coincides with Anderson’s sin apq.

In this note we use Anderson’s work to establish a connection between almost
abelian Artin representations ofQ – in other words, Artin representations ofQ which
factor through Gal(Qaa/Q) – and Hecke-Shintani representations. The latter term
refers to two-dimensional irreducible monomial Artin representations of Q which
can be induced from more than one quadratic field. The intended allusion is to
Shintani’s work [12] on Stark’s conjecture, which rests on the fact that certain
irreducible two-dimensional Artin representations of Q induced from real quadratic
fields can also be induced from imaginary quadratic fields, making it possible to
deduce Stark’s conjecture in such cases from the Kronecker limit formula. But
Shintani himself credits Hecke ([12], p. 158): “A coincidence of an L-series of a real
quadratic field with an L-series of an imaginary quadratic field was first observed by
Hecke.” In any case, we shall see that Hecke-Shintani representations are precisely
the two-dimensional irreducible almost abelian Artin representations of Q. The
connection is in fact somewhat broader:

Theorem 1. Every irreducible almost abelian Artin representation of Q occurs in
a tensor product of Hecke-Shintani representations.

Here we regard an individual Hecke-Shintani representation as a tensor product
with one factor. Our main result is actually a bit more precise than Theorem 1 and
includes a uniqueness statement (Theorem 2 in Section 5), but the more precise
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version depends on the notion of an AHS representation: Roughly speaking, an
AHS representation is a Hecke-Shintani representation directly tied to Anderson’s
description (1) of Qaa. The definition will be given in Section 5, but the point
to emphasize here is that the class of AHS representations has been thoroughly
studied by Bae, Hu, and Yin [2], who not only construct such representations
explicitly but also compute their Artin conductors and characters in some cases.
(See also Yin and C. Zhang [13] and Yin and Q. Z. Zhang [14] for the algebraic
number theory underlying the constructions in [2].) In principle, the proof of the
key technical result of the present work (Proposition 12 in Section 4) could be
replaced by an appeal to [2], but for the reader’s convenience we have included a
simple self-contained argument proving just what we need.

Returning to Theorem 1 itself, we would like to emphasize that even as it stands,
it is not a purely group-theoretic assertion: The analogous statement for abstract
groups is false. That said, much of the proof does amount to elementary group
theory of a sort that is well known in principle, at least in the context of Heisenberg
groups. This material occupies the first three sections of the paper. Then in
Sections 4 and 5 we deduce our main theorem from Anderson’s results. We also give
a criterion for a tensor product of Hecke-Shintani representations to be irreducible.

Section 6 consists of two remarks. The first concerns Rankin-Selberg convolu-
tions: If ρ is a Hecke-Shintani representation and ρ∨ the dual representation, then

L(s, ρ⊗ ρ∨) = ζ(s)L(s, χ)L(s, χ′)L(s, χ′′),(2)

where χ, χ′, and χ′′ are certain primitive quadratic Dirichlet characters associated
to ρ. While (2) is just a simple group-theoretic observation, it has the following
amusing consequence: If f is the primitive cusp form of weight 1 attached to a
Hecke-Shintani representation of odd determinant then the Petersson norm of f can
be calculated explicitly via the Dirichlet class number formula. We shall see that (2)
actually characterizes Hecke-Shintani representations among all two-dimensional
irreducible Artin representations of Q.

Our second remark is a footnote to Serre’s results on lacunarity [11]. Fix an
Artin representation ρ of Q such that 0 is a value of the character of ρ, and write
L(s, ρ) =

∑
n>1 ann

−s. Let ϑ(x) be the number of n 6 x such that an 6= 0. Serre
proves that

ϑ(x) ∼ cx/ logα x(3)

with c, α > 0 ([11], p. 237, Théorème 3.4). In fact he proves something much
stronger, namely that (3) can be replaced by an asymptotic expansion involving
arbitrarily high powers of 1/ log x. But the focus here will be on (3), and specifically
on the exponent α. Serre observes that if the image of ρ is the dihedral group of
order 8 then α = 3/4. (See [11], pp. 240 – 241, where the discussion involves the
modular form ∆1/12(12z) – note that Serre refers to the same paper of Hecke [7]
cited by Shintani.) The footnote to be added here is that α = 3/4 for all Hecke-
Shintani representations and that they are again characterized by this property
among two-dimensional irreducible Artin representations of Q.

In the final section of the paper we classify the finite groups G which can arise as
Gal(L/Q), where L is the fixed field of the kernel of a Hecke-Shintani representation.
It turns out that up to a cyclic direct factor of odd order, G is either the dihedral
or quaternion group of order 8 or else belongs to one of two infinite families which
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can be described explicitly. This classification could probably also be deduced from
[2], where generators and relations are given for some closely related Galois groups.

It is a great pleasure to thank the referee for a careful reading of the paper,
for several thoughtful comments, and especially for drawing my attention to [2], of
which I had not been aware. I am also grateful to Henri Darmon for pointing out
to me that Hecke-Shintani representations appear (although not by that name) in
work of Darmon, Rotger, and Zhao (see [4], Proposition 3.2, part (4)). The term
Hecke-Shintani representation was introduced in [8], and the underlying group-
theoretic property figures prominently in a paper of Schmidt and Turki [9], who
refer to an abstract group representation of the relevant type as triply imprimitive.
This useful terminology is adopted here with a slight modification. Finally, it is
important to recognize the contributions of Das [5] and Seo [10], whose work was
fundamental to the development of Anderson’s theory.

1. Almost abelian groups

Throughout this note, G denotes a finite group, Z(G) its center, and [G,G] its
commutator subgroup. By the exponent of G we mean the minimal exponent, in
other words the smallest positive integer e such that ge = 1 for all g ∈ G. Following
Anderson [1], we say that G is almost abelian if [G,G] is contained in Z(G) and of
exponent 1 or 2. The case of exponent 1 ensures that abelian groups are almost
abelian. One readily verifies that subgroups, quotient groups, and finite direct
products of almost abelian groups are almost abelian.

Proposition 1. If G is an almost abelian group then G ∼= P × A, where P is an
almost abelian 2-group and A is abelian of odd order.

Proof. Since [G,G] ⊂ Z(G), we see that G is nilpotent, hence isomorphic to the
product of its Sylow subgoups. Thus G ∼= P × A with P as above and A almost
abelian of odd order. As the exponent of [A,A] is odd and divides 2, it equals 1.
(I am indebted to the referee for this simple argument.) �

Proposition 2. If [G,G] has order 6 2 then G is almost abelian. Conversely, if
G is almost abelian with cyclic center then [G,G] has order 6 2.

Proof. The first assertion follows from the fact that normal subgroups of order 6 2
are central, and the second from the fact that cyclic groups have order equal to
their exponent. �

For any finite group G we can consider the isoclinism pairing

〈∗, ∗〉 : G/Z(G) × G/Z(G) −→ [G,G](4)

given by 〈aZ(G), bZ(G)〉 = aba−1b−1 (cf. [3], p. xxiii). An easy calculation shows
that if [G,G] ⊂ Z(G) – in particular, if G is almost abelian – then (4) is Z-bilinear,
but even without this assumption, (4) is nondegenerate in the sense that if for
some a ∈ G we have 〈aZ(G), bZ(G)〉 = 1 for all b ∈ G then a ∈ Z(G). We shall be
interested in the case where

G/Z(G) ∼= (Z/2Z)2m(5)

for some integer m > 0. If G satisfies (5) then we put m(G) = m. The following
example (Heisenberg groups over F2) shows that for each positive integer m there
exists an almost abelian group G such that (5) holds with m(G) = m.
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Example. Put n = m+2 and let G ⊂ GLn(F2) be the subgroup 1+W , where 1 is
the n× n identity matrix and W is the additive group of n× n matrices (wij) over
F2 such that wij = 0 unless either i = 1 and 2 6 j 6 n or j = n and 1 6 i 6 n− 1.
Let ω ∈ G be the element with 1’s on the diagonal and in the upper right-hand
corner and 0’s elsewhere. Then Z(G) = {1, ω} and (5) holds, and G is almost
abelian by the following proposition:

Proposition 3. If (5) holds then G is almost abelian. Conversely, if G is almost
abelian with cyclic center then (5) holds.

Proof. Suppose that (5) holds. Then G/Z(G) is abelian, so given a, b ∈ G there
exists z ∈ Z(G) such that aba−1 = bz. Iterating, we find that a2ba−2 = bz2. On
the other hand, a2 ∈ Z(G), so a2ba−2 = b. Thus z2 = 1. In summary, for all
a, b ∈ G we have aba−1b−1 ∈ Z(G) and (aba−1b−1)2 = 1, so G is almost abelian.

Conversely, suppose that G is almost abelian with cyclic center. If G is abelian,
then (5) holds with m = 0. Otherwise, Proposition 2 gives [G,G] = {1, ω} with
ω ∈ Z(G). We claim that for any a ∈ G we have a2 ∈ Z(G), or in other words
a2ba−2 = b for all b ∈ G. This is obvious if aba−1 = b, so suppose that aba−1b−1 =
ω. Write this equation as a conjugation: aba−1 = ωb. Iterating the conjugation,
we obtain a2ba−2 = b, because ω2 = 1.

We have just seen that G/Z(G) has exponent 2. It follows that G/Z(G) is
abelian (which is obvious anyway, since [G,G] ⊂ Z(G)). Thus G/Z(G) is a vector
space over F2. Since [G,G] = F2 as an abelian group, (4) defines a nondegenerate
symplectic pairing on the F2-vector space G/Z(G), and (5) follows. �

2. Almost abelian representations

Throughout, a representation of a finite group G is a finite-dimensional complex
representation of G. Similarly, a character of G is a complex character of G, denoted
tr ρ if ρ is the underlying representation, and a one-dimensional character is a
homomorphism G → C

×. When there is no risk of confusion we often refer to a
one-dimensional character simply as a character. If ρ is an irreducible representation
of G then we also speak of the central character of G, which is the one-dimensional
character of G giving the action of ρ|Z(G) by scalar multiplication. If H is a
subgroup of G and ξ is a one-dimensional character of H then indGHξ denotes the
representation of G induced by ξ, and if H is normal in G and g ∈ G then ξg is the
character of H given by ξg(h) = ξ(g−1hg) for h ∈ H.

Suppose that H is normal in G, and put ρ = indGHξ. Then

ρ|H = ⊕gmodHξ
g,(6)

where g runs over a set of representatives for the distinct cosets of H in G, and ρ is
irreducible if and only if ξg 6= ξ for g ∈ GrH (Mackey’s criterion). In particular,
if ρ is irreducible then H contains Z(G). Note also that if ρ is faithful then H is
abelian, because (6) gives an embedding of H in the product of [G : H] copies of
C
×. These facts will be used frequently in what follows.

Proposition 4. Let G be almost abelian with cyclic center. If ρ is an irreducible
representation of G of dimension > 1 then there exists a one-dimensional character
χ of G of odd order such that ρ⊗ χ is faithful.

Proof. By Proposition 1 we may assume that G = P × C, where P is an almost
abelian 2-group and C is cyclic of odd order as Z(G) = Z(P ) × C. Since the
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restriction of ρ to Z(G) and in particular to C is scalar, we can choose a character
χ of C such that (ρ|C)⊗χ is a faithful representation of C. Viewing χ as a character
of G trivial on P , we claim that ρ⊗ χ is faithful.

First we show that ρ⊗χ is faithful on Z(G). Since |Z(P )| and |C| are relatively
prime and (ρ⊗χ)|C is faithful by construction, it suffices to see that (ρ⊗χ)|Z(P )
is faithful. But (ρ ⊗ χ)|Z(P ) = ρ|Z(P ), and as ρ is irreducible of dimension > 1
it does not factor through G/[G,G]. Thus if we write [G,G] = [P, P ] = {1, ω}
(Proposition 2) then ρ(ω) 6= 1. As ω is the element of order 2 in the cyclic 2-group
Z(P ), it follows that ρ|Z(P ) is indeed faithful.

To complete the proof, take g ∈ G r Z(G); we must show that (ρ ⊗ χ)(g) 6= 1.
Since (4) is nondegenerate, there exists h ∈ G such that ghg−1h−1 = ω. So if
(ρ⊗χ)(g) = 1 then (ρ⊗χ)(ω) = 1, a contradiction since χ|P = 1 and ρ(ω) 6= 1. �

Proposition 5. Let G be an almost abelian group. Then Z(G) is cyclic if and only
if G has a faithful irreducible representation.

Proof. We may assume that G nonabelian; otherwise the proposition is immediate.
If Z(G) is cyclic, choose any irreducible representation ρ of G of dimension > 1;
then ρ ⊗ χ is faithful for some character χ of G by Proposition 4. Conversely,
suppose that G has an irreducible representation ρ which is faithful. Then ρ|Z(G)
is faithful also, so by Schur’s lemma ρ provides an embedding of Z(G) in C×. But
a finite subgroup of C× is cyclic. �

If G is almost abelian and Z(G) is cyclic then (5) holds by Proposition 3. Recall
that we then write m(G) for the integer m in (5). If in addition G is nonabelian
then [G,G] ∼= F2 by Proposition 2, whence (4) makes G/Z(G) into a symplectic
vector space over F2. A subspace W of dimension m such that 〈w,w′〉 = 0 for all
w,w′ ∈W is a maximal isotropic subspace of G/Z(G).

Proposition 6. Let G be an almost abelian group with cyclic center, and let ρ
be an irreducible representation of G of dimension > 1. Then ρ is monomial of
dimension 2m, where m = m(G). In fact given a subgroup H of G there exists a
one-dimensional character ξ of H such that ρ = indGHξ if and only if H contains
Z(G) and H/Z(G) is a maximal isotropic subspace of G/Z(G).

Proof. Let H be the inverse image in G of a maximal isotropic subspace of G/Z(G).
Then H is an abelian normal subgroup of index 2m in G, and we claim that ρ =
indGHξ, where ξ is any one-dimensional character of H occurring in ρ|H. To verify
the claim, take g ∈ G r H; it suffices to show that ξg 6= ξ. As H is the inverse
image of a maximal isotropic subspace of G/Z(G), there exists h ∈ H such that
ghg−1h−1 6= 1, and consequently ghg−1 = ωh, where ω is the nonidentity element
of [G,G]. But ρ is irreducible of dimension > 1 and thus does not factor through
G/[G,G]. Furthermore ρ|Z(G) is scalar. Thus ρ(ω) = −1 and ξg(h) = −ξ(h). It
follows that ξg 6= ξ, whence ρ = indGHξ.

Now let H be any subgroup of G such that ρ = indGHξ for some character ξ of H.
Then H contains Z(G), because ρ is irreducible. Thus H is the inverse image of a
subgroup W of G/Z(G); in particular, H is normal in G, and therefore (6) holds.
If ρ is faithful then it follows that H is abelian, whence W is isotropic and in fact
maximal isotropic since the index of W in G/Z(G) is 2m. If ρ is not faithful then
by Proposition 4 there exists a character χ of G such that ρ ⊗ χ is faithful. Since
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ρ ⊗ χ ∼= indGH(ξ · χ|H), we see that (6) holds with ρ replaced by ρ ⊗ χ and ξ by
ξ · χ|H. As before, we conclude that H is abelian and W maximal isotropic. �

Remark. It follows that if m(G) > 1 then there are no irreducible two-dimensional
representations of G at all. It is in this sense that Theorem 1 is not a purely group-
theoretic statement.

Proposition 7. Let G be an almost abelian group and ρ a faithful irreducible
representation of G. Then tr ρ(g) = 0 if and only if g ∈ Gr Z(G).

Proof. It suffices to prove that if g /∈ Z(G) then tr ρ(g) = 0, for the converse is
obvious. In particular, the theorem is vacuous for G is abelian, so we may assume
that dim(ρ) > 1. Note also that Z(G) is cyclic by Proposition 5. So suppose
that g /∈ Z(G). Then gZ(G) 6= 0 in G/Z(G), so there exists a maximal isotropic
subspace W ⊂ G/Z(G) such that gZ(G) /∈W . By Proposition 6 the inverse image
H of W in G is a subgroup such that ρ = indGHξ for some one-dimensional character
ξ of H. Since H is normal in G and g /∈ H we conclude that tr ρ(g) = 0. �

Finally we come to an elementary analogue of the theorem of Stone and von
Neumann. The version below differs from statements in the literature in at most a
few details. It is the key group-theoretic input to the proof of Theorem 1:

Proposition 8. Suppose that J is almost abelian, and let ρ and ρ′ be irreducible
representations of J with respective central characters ϕ and ϕ′. If

ϕ|[J, J ] = ϕ′|[J, J ]

then ρ′ ∼= ρ⊗ χ for some one-dimensional character χ of J .

Proof. First let χ be any one-dimensional character of J , and consider the sum

s(χ) =
1
|J |
∑
j∈J

χ(j)tr ρ(j)tr ρ′(j).(7)

As ρ ⊗ χ and ρ′ are irreducible the right-hand side of (7) is 1 if ρ ⊗ χ ∼= ρ′ and 0
otherwise. Thus it will suffice to show that for some χ we have s(χ) 6= 0.

Put G = J/ ker ρ and G′ = J/ ker ρ′, and let π : J → G and π′ : J → G′ be the
quotient maps. Then we can write ρ = %◦π and ρ′ = %′ ◦π′ with faithful irreducible
representations % and %′ of G and G′ respectively. Applying Proposition 7 to % and
%′, we see that tr ρ(j)tr ρ′(j) = 0 unless π(j) ∈ Z(G) and π′(j) ∈ Z(G′). Hence (7)
becomes

s(χ) =
1
|J |

∑
h∈H

χ(h)tr ρ(h)tr ρ′(h)(8)

with H = π−1(Z(G)) ∩ (π′)−1(Z(G′)).
Since π and π′ are surjective, Z(J) ⊂ H. We claim that ϕ and ϕ′ can be

extended to characters of H. Indeed let φ and φ′ be the central characters of % and
%′. Then ϕ = φ ◦π and ϕ′ = φ′ ◦π′ on Z(J), and we can take these same equations
as defining extensions of ϕ and ϕ′ to H. Equation (8) is now

s(χ) =
(dimρ)(dimρ′)

|J |
∑
h∈H

χ(h)ϕ(h)ϕ′(h),(9)

because ρ|H and ρ′|H are scalar multiplication by ϕ and ϕ′ respectively.
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We now choose χ. Since [J, J ] is a subgroup of Z(J) and a fortiori of H, we can
view ϕϕ′ as a one-dimensional character of H/[J, J ]. But H/[J, J ] is a subgroup
of the abelian group J/[J, J ], so we can extend ϕϕ′ to a character χ of J/[J, J ].
Viewing χ as a character of J trivial on [J, J ], we see that the summand on the right-
hand side of (9) is identically 1, whence s(χ) > 0 and in particular s(χ) 6= 0. �

3. Triply monomial representations

We now specialize to the case m = 1. We say that an irreducible two-dimensional
representation of a finite groupG is triply monomial if it can be induced from exactly
three subgroups of index 2 in G. As mentioned in the introduction, this is a slight
modification of the terminology in [9].

Although triply monomial representations are not required to be faithful, one
can always reduce to the faithful case, for if ρ is a triply monomial representation
of G with kernel K then the representation ρ of G/K afforded by ρ is also triply
monomial. Indeed if H and H ′ are distinct index-two subgroups of G from which
ρ can be induced, then H and H ′ contain K and H/K and H ′/K are distinct
index-two subgroups of G/K from which ρ can be induced, and conversely.

Proposition 9. Let ρ be a faithful irreducible two-dimensional representation of a
finite group G. The following are equivalent:

(i) G is almost abelian.
(ii) ρ is triply monomial.
(iii) ρ can be induced from more than one subgroup of index 2 in G.

If these equivalent conditions hold and if H and H ′ are distinct subgroups of index
2 in G from which ρ can be induced, then the third such subgroup is the subgroup
containing H ∩H ′ which is of index 2 in G and not equal to H or H ′; furthermore,
Z(G) = H ∩H ′.

Proof. The implication (i) ⇒ (ii) follows from Propositions 5 and 6, given that
in a two-dimensional symplectic vector space every one-dimensional subspace is
maximal isotropic. The implication (ii)⇒ (iii) is trivial. To prove that (iii) implies
(i), we merely rework the proof of Proposition 5 of [8], which asserts that (iii)
implies (ii). Let H and H ′ be distinct subgroups of index 2 in G from which ρ can
be induced, and write

G/(H ∩H ′) ∼= G/H × G/H ′ ∼= (Z/2Z)2.(10)

Let h and h′ be representatives for the nontrivial coset of H ∩ H ′ in H and H ′

respectively. Then h, h′ and hh′ represent the nontrivial cosets of H ∩H ′ in G, and
consequently G is generated by h, h′, and H ∩H ′. Since h and h′ both centralize
H∩H ′ – for as ρ is faithful both H and H ′ are abelian – we see that H∩H ′ ⊂ Z(G),
whence H ∩ H ′ = Z(G) (else Z(G) has index two in G and G is abelian). Thus
(10) gives (5) and (i) follows from Proposition 3. At the same time we have proved
the final assertion of the proposition. �

The following proposition provides an alternative characterization:

Proposition 10. Let G be a finite group, H a subgroup of index 2, and ξ a one-
dimensional character of H, and suppose that the representation ρ = indGHξ is
faithful and irreducible. Then ρ is triply monomial if and only if ξ2 extends to a
character of G.



8 DAVID E. ROHRLICH

Proof. Suppose that ρ is triply monomial, so thatG is almost abelian by Proposition
9. Then (aba−1b−1)2 = 1 for any a, b ∈ G, and consequently ξ2(aba−1b−1) = 1
(note that [G,G] ⊂ H since G/H is abelian). So ξ2 factors through the subgroup
H/[G,G] of the abelian group G/[G,G] and therefore extends to a character of G.

Conversely, suppose that χ is an extension of ξ2 to G. Then χ(a−1ba) = χ(b) for
a, b ∈ G. Taking b = h ∈ H, we see that ξ(a−1h2a) = ξ(h2). Replacing a first by
ag and then by g, where g ∈ GrH, we also find that ξg(a−1h2a) = ξg(h2). Since
ρ is faithful and ρ|H = ξ ⊕ ξg, we deduce that a−1h2a = h2. In other words, if
h ∈ H then h2 ∈ Z(G). So H/Z(G) is an abelian subgroup of G/Z(G) of exponent
2 and index 2.

To complete the argument, view ρ as an irreducible representation G→ GL2(C).
Then we may identify G/Z(G) with a finite subgroup of PGL2(C), hence with the
dihedral group D2n of order 2n (n > 2) or with A4, S4 or A5. But the last three
groups do not have abelian subgroups of index 2, and D2n has an abelian subgroup
of index 2 and exponent 2 only if n is 2 or 4. If n = 2 then (5) holds with m = 1 and
G is almost abelian by Proposition 3, hence ρ is triply monomial by Proposition 9.
Thus we may assume that G/Z(G) ∼= D8.

If H/Z(G) is cyclic then it is of order 2, for its exponent is 2. Since [G : H] = 2
it follows that |G/Z(G)| = 4, a contradiction. Therefore H/Z(H) is not cyclic.
But D8 has a cyclic subgroup of index 2, hence so does G/Z(G). Thus there is
a subgroup H ′ of G containing Z(G) with H ′/Z(G) cyclic of index 2 in G/Z(G).
The cyclicity of H ′/Z(G) ensures that H ′ is an abelian subgroup of index 2, and
since ρ|H ′ is nonscalar (for ρ is faithful and Z(G) is a proper subgroup of H ′), ρ is
induced from H ′. By assumption, ρ is also induced from H, but H 6= H ′ because
H/Z(G) is not cyclic. Thus ρ is triply monomial by Proposition 9. �

Finally, we note that the class of triply monomial representations is closed under
dualization and one-dimensional twists:

Proposition 11. If ρ is a triply monomial representation of a finite group G and
χ is a one-dimensional character of G then both ρ∨ and ρ⊗χ are triply monomial.

Proof. For each subgroup H of index 2 in G such that ρ = indGHξ with a character
ξ of H, we have ρ∨ = indGHξ

−1 and ρ⊗ χ = indGHξ
′ with ξ′ = ξ · χ|H. �

4. Hecke-Shintani representations

Given a profinite group Γ, we write Z(Γ) for its center, [Γ,Γ] for its commutator
subgroup, and [Γ,Γ]cl for the closure of [Γ,Γ]. A representation of Γ is a continuous
homomorphism Γ → GL(V ), where V is a finite-dimensional vector space over C.
Such a homomorphism is trivial on an open subgroup of Γ and so can be viewed as
a representation of a finite group G. In particular, if K ⊂ Q is a number field, then
an Artin representation of K can be viewed either as a continuous homomorphism
ρ : Gal(Q/K) → GL(V ) or as a representation ρ : Gal(L/K) → GL(V ) for some
finite Galois extension L of K. Via the latter alternative, terms pertaining to
representations of finite groups carry over to Artin representations. We say that
ρ is almost abelian if its image is an almost abelian group and triply monomial
if it is two-dimensional and irreducible and can be induced from exactly three
quadratic extensions of K. A Hecke-Shintani representation is a triply monomial
Artin representation of Q.
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A word of caution is in order. Let Γ be a profinite group and G the quotient of
Γ by an open subgroup. While the quotient map Γ→ G is surjective, its restriction
Z(Γ)→ Z(G) may not be, so if ρ is an irreducible representation of Γ which factors
through G then the domain of the central character of ρ is open to interpretation.
We intend the more restrictive interpretation, in other words Z(Γ) or its image in
Z(G). However starting in the next paragraph, we specialize to a setting where
[Γ,Γ]cl ⊂ Z(Γ), and from that point on the central character of ρ will appear
primarily via its restriction to [Γ,Γ]cl. The surjectivity of [Γ,Γ]cl → [G,G] then
eliminates any possibility of confusion.

Indeed, from now on we take Γ = Gal(Qaa/Q) and put

Ω = Gal(Qaa/Qab) = [Γ,Γ]cl.

To verify that Ω ⊂ Z(Γ), let G be a quotient of Γ by an open subgroup, and let
λ : Γ→ G be the quotient map. Then λ(Ω) ⊂ [G,G], and since G is almost abelian
it follows that λ(Ω) ⊂ Z(G). Since G is arbitrary we obtain Ω ⊂ Z(Γ).

It follows from (1) that Ω is an abelian group of exponent 2, and even though
it is written multiplicatively, we shall view it as a vector space over F2. The same
goes for Ω̂, where the hat denotes Pontryagin dual. In fact the proof of our main
result depends on the choice of an explicit basis for Ω̂ over F2. Let U be the subset
of Qab consisting of the numbers

√
` for each prime number ` and the numbers tp,q

for each ordered pair of prime numbers (p, q) with p < q. Anderson’s theory gives
not only (1) but also the linear independence over F2 of the cosets in Qab×/(Qab×)2

represented by the elements u ∈ U . Thus putting Ωu = Gal(Qab(
√
u)/Qab), we

have

Ω ∼=
∏
u∈U

Ωu(11)

by Kummer theory, whence

Ω̂ ∼= ⊕u∈U Ω̂u(12)

on passing to Pontryagin duals. We use the identifications (11) and (12) as follows:
For each u0 ∈ U , we define σu0 ∈ Ω by demanding that σu0 map to the nontrivial
element of Ωu for u = u0 and the trivial element otherwise. And we define ψu0 ∈ Ω̂
by the condition that ψu0(σu) = −1 if u = u0 and ψu0(σu) = 1 otherwise. The set
{ψu0 : u0 ∈ U} is the desired basis for Ω̂. The key step in the proof of our main
theorem is now the following:

Proposition 12. Given u ∈ U , there exists a Hecke-Shintani representation ρ such
that the associated central character ϕ satisfies ϕ|Ω = ψu.

Proof. There are two cases to consider: Either u =
√
` for some prime `, or u = tp,q

with primes p < q.
Suppose first that u =

√
`, and put L = Q( 4

√
`, i), so that the group G =

Gal(L/Q) is dihedral of order 8. Thus G satisfies (5) with m = 1, and hence the
irreducible two-dimensional representation ρ of G (unique up to isomorphism) is
a Hecke-Shintani representation. Furthermore L = K(

√
u), where K = L ∩ Qab

(= Q(
√
`, i)). It follows that when ρ is viewed as a representation of Γ, its central

character coincides with ψu on Ω.



10 DAVID E. ROHRLICH

Next suppose that u = tp,q with p < q. Let K = Q(e2πi/(4pq)), so that

Gal(K/Q) ∼= (Z/4Z)× × (Z/pZ)× × (Z/qZ)×,(13)

if p is odd and

Gal(K/Q) ∼= (Z/8Z)× × (Z/qZ)×,(14)

if p = 2. Let t ∈ Qab× be the number denoted sin a on p. 467 of [1]. Then t
represents the same coset as tp,q modulo (Qab×)2 but has the additional virtue that
the field L = K(

√
t) is Galois over Q. Actually if p is odd then we can dispense

with t, because Das has shown that K(
√
tp,q) is itself Galois over Q ([5], p. 3576,

Theorem 11), but I do not know whether the same is true for p = 2. In any case,
Q

abL = Q
ab(
√
u) and L∩Qab = K, whence J = Gal(L/Q) is nonabelian and thus

has an irreducible representation ρ of dimension > 1. But ρ|Gal(L/K) is nontrivial,
else ρ factors through the abelian group Gal(K/Q). Thus it is again the case that
when ρ is viewed as a representation of Γ, its central character coincides with ψu
on Ω. It remains only to see that dim(ρ) = 2. Let M be the fixed field of the
kernel of ρ, and put G = Gal(M/Q). Then G is a quotient of J , so G/[G,G] is a
quotient of J/[J, J ], or in other words of Gal(K/Q). As [G,G] ⊂ Z(G) it follows
that G/Z(G) is a quotient of Gal(K/Q). But inspecting both (13) and (14), we see
that Gal(K/Q) can be generated by 3 elements. Hence so can G/Z(G). Referring
to (5), we see that m(G) = 1, so dim(ρ) = 2 by Proposition 6. �

5. Proof of the main theorem

We call a Hecke-Shintani representation ρ an AHS representation if the restric-
tion to Ω of the central character of ρ coincides with one of the characters ψu for
u ∈ U . Furthermore, we say that a list of AHS representations ρ1, ρ2, . . . , ρn is
independent if the corresponding characters ψu1 , ψu2 , . . . , ψun are linearly indepen-
dent as elements of the vector space Ω̂. Equivalently, ρ1, ρ2, . . . , ρn are independent
if u1, u2, . . . , un are distinct elements of U .

Theorem 2. Let ρ be an irreducible almost abelian Artin representation of Q of
dimension greater than one. Then there exist independent AHS representations
ρ1, ρ2, . . . , ρn such that ρ occurs in ρ1⊗ρ2⊗· · ·⊗ρn. Furthermore, if ρ′1, ρ

′
2, . . . , ρ

′
n′

are also independent AHS representations such that ρ occurs in ρ′1⊗ ρ′2⊗ · · · ⊗ ρ′n′ ,
then n′ = n and there is a permutation β of {1, 2, . . . , n} such that ρ′β(j)

∼= ρj ⊗ χj
with one-dimensional characters χj of Γ satisfying χ1χ2 · · ·χn = 1 on Z(Γ).

Proof. Let ϕ be the central character of ρ. By Proposition 12, there exist in-
dependent AHS representations ρ1, ρ2, . . . , ρn with respective central characters
ϕ1, ϕ2, . . . , ϕn such that

ϕ1ϕ2 · · ·ϕn|Ω = ϕ|Ω.(15)

The restriction of ρ1⊗ρ2⊗· · ·⊗ρn to Z(Γ) is scalar, given by ϕ1ϕ2 · · ·ϕn, and thus
if π is an irreducible constituent of ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn then the central character of
π is ϕ1ϕ2 · · ·ϕn. Let M ⊂ Qaa be a finite Galois extension of Q such that π and ρ
both factor through Gal(M/Q). Taking account of (15) and applying Proposition 8
with J = Gal(M/Q), we deduce that ρ ∼= π⊗χ for some one-dimensional character
of Γ. Thus ρ occurs in ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn ⊗χ. But ρn ⊗χ is itself a Hecke-Shintani
representation by Proposition 11. Furthermore, when restricted to Ω the central
characters of ρn and ρn ⊗ χ are equal, because χ is trivial on Ω. So after replacing
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ρn by ρn⊗χ we obtain independent AHS representations with the property that ρ
occurs in their tensor product.

Next we prove the uniqueness statement. Let ϕj and ϕ′i be the central characters
of ρj and ρ′i respectively, and write ϕj |Ω = ψuj , ϕ

′
i|Ω = ψu′i . Then

n′∏
i=1

ψu′i =
n∏
j=1

ψuj ,(16)

because both sides coincide with the restriction to Ω of the central character of ρ.
In view of the distinctness of u1, . . . , un, the distinctness of u′1, . . . , u

′
n′ , and the

linear independence of the ψu for u ∈ U , we deduce from (16) that n = n′ and that
u′β(j) = uj for some permutation β of {1, 2, . . . , n}. Applying Proposition 8 again,
we conclude that ρ′β(j)

∼= ρj ⊗ χj for some one-dimensional characters χj of Γ.
Finally, since ϕ1ϕ2 . . . ϕn and ϕ′1ϕ

′
2 . . . ϕ

′
n both coincide with the central character

of ρ they coincide with each other. But

ϕ′β(j) = (χj |Z(Γ))ϕj ,

so χ1χ2 · · ·χn|Z(Γ) = 1. �

Remark. It is not hard to see that Z(Γ) = Gal(Qaa/Qqu), where Qqu is the
compositum of all quadratic extensions of Q in Q.

Theorem 1 follows from Theorem 2 and a silly remark:

Proposition 13. Every one-dimensional character of Γ occurs in a tensor product
of two Hecke-Shintani representations.

Proof. Let ρ be any Hecke-Shintani representation. Since ρ is irreducible, the trivial
character occurs in ρ⊗ρ∨, so χ occurs in (ρ⊗χ)⊗ρ∨. Now use Proposition 11. �

Next we prove two results complementary to Theorems 1 and 2. The first is
implicit already in the proof of Theorem 2.

Proposition 14. If ρ1, ρ2, . . . , ρn are Hecke-Shintani representations and ρ and ρ′

are irreducible representations occurring in ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, then ρ′ ∼= ρ⊗ χ for
some one-dimensional character χ of Γ.

Proof. If ϕ1, ϕ2, . . . , ϕn are the central characters of ρ1, ρ2, . . . , ρn and ϕ and ϕ′ are
those of ρ and ρ′, then then ϕ and ϕ′ both coincide with ϕ1ϕ2 . . . ϕn, hence with
each other. In particular, ϕ|Ω = ϕ′|Ω, and an appeal to Proposition 8 completes
the proof. �

The second complement is a criterion for a tensor product of Hecke-Shintani
representations to be irreducible. First we prove a lemma.

Lemma. Let G be a finite group and H a subgroup such that the quotient map
H → G/Z(G) is surjective. Then the irreducible representations of H are precisely
the restrictions to H of the irreducible representations of G.

Proof. The hypothesis means that G = H · Z(G). If ρ is an irreducible represen-
tation of G then Z(G) acts by scalars, so an H-stable subspace of the space of ρ
is also G-stable. Hence the irreducibility of ρ gives that of ρ|H. Conversely, if ρ is
an irreducible repesentation of H then the restriction of ρ to H ∩ Z(G) is scalar,
given by a character ϕ of H ∩Z(G). After extending ϕ to a character of Z(G), we
extend ρ to G by setting ρ(zh) = ϕ(z)ρ(h) for z ∈ Z(G) and h ∈ H. �
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To state our criterion for irreducibility, we make two definitions, the first of
which is standard for n = 2 but perhaps less so for n > 2: We say that finite Galois
extensions K1,K2, . . . ,Kn of Q are linearly disjoint over Q if

[K : Q] =
n∏
j=1

[Kj : Q],(17)

where K = K1K2 · · ·Kn. For the second definition, let ρ be a Hecke-Shintani
representation, viewed as a faithful representation of G = Gal(L/Q) for some finite
Galois extension L of Q. From (5) it follows that the fixed field K of Z(G) is a
biquadratic field, and we call K the biquadratic field associated to ρ.

Proposition 15. A tensor product of Hecke-Shintani representations is irreducible
if and only if the associated biquadratic fields are linearly disjoint over Q.

Proof. Let ρ1, ρ2, . . . , ρn be Hecke-Shintani representations, let K1,K2, . . . ,Kn be
the associated biquadratic fields, and let L1, L2, . . . , Ln be the fixed fields of the
respective kernels. We put ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn and write K = K1K2 · · ·Kn and
L = L1L2 · · ·Ln.

Suppose first that K1,K2, . . . ,Kn are linearly disjoint over Q. Put

G =
n∏
j=1

Gal(Lj/Q)

and let H be the image in G of the product of the restriction maps

Gal(L/Q)→
n∏
j=1

Gal(Lj/Q).(18)

We claim that the hypothesis of the lemma is satisfied. Indeed the center of a
product is the product of the centers, and Z(Gal(Lj/Q)) = Gal(Lj/Kj), so

G/Z(G) =
n∏
j=1

Gal(Kj/Qj).

Thus to check the hypothesis of the lemma we must verify that the composition of
(18) with

n∏
j=1

Gal(Lj/Q)→
n∏
j=1

Gal(Kj/Q)

is surjective. But this composition factors through Gal(K/Q) to give

Gal(K/Q)→
n∏
j=1

Gal(Kj/Q),

which is clearly injective, hence surjective by (17). Thus the lemma implies that
the irreducible representations of Gal(L/Q) are precisely the pullbacks of those of
G. But because G is a product, its irreducible representations are the external
tensor products of irreducible representations of the factors; consequently ρ is an
irreducible representation of Gal(L/Q).

Conversely, suppose that ρ is irreducible. We observe that for g ∈ Gal(L/Q),
tr ρ(g) = 0 if and only if tr ρj(g) = 0 for some j, hence if and only if g /∈ Gal(L/Kj)
for some j (Proposition 7). Hence tr ρ(g) = 0 if and only if g /∈ Gal(L/K). Let M
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be the fixed field of the kernel of ρ. Then K ⊂M , for if g ∈ Gal(L/Q) and g|K is
nontrivial then tr ρ(g) = 0, whence ρ(g) 6= 1. Putting G = Gal(M/Q) and viewing ρ
as a faithful irreducible representation of G, we see in fact (appealing to Proposition
7 again) that K is the fixed field of Z(G). Therefore [K : Q] = [G : Z(G)].
Now Propositions 5 and 3 imply that [G : Z(G)] = 22m for some m, and then
dim(ρ) = 2m by Proposition 6. But dim(ρ) = 2n, because ρ is the tensor product
of n two-dimensional representations. Thus m = n and consequently

[K : Q] = [G : Z(G)] = 22m = 22n.

Formula (17) follows. �

6. Two characterizations of Hecke-Shintani representations

We come now to the characterizations mentioned in the introduction. The first
one pertains to Rankin-Selberg convolutions and depends on the proposition below.
For a finite group G let regG denote the regular representation of G. We say that a
representation of G is abelian if its image is abelian, or equivalently, if it is a direct
sum of one-dimensional characters.

Proposition 16. Let ρ be a faithful two-dimensional irreducible representation of
a finite group G, and let ρ∨ be the dual representation. The tensor product ρ⊗ ρ∨
is abelian if and only if ρ is triply monomial. Furthermore, if these equivalent
conditions hold, then ρ ⊗ ρ∨ ∼= regA, where A = G/Z(G) and regA is viewed as a
representation of G.

Proof. If ρ⊗ρ∨ is abelian then it is trivial on [G,G], whence ρ|[G,G] is reducible –
otherwise the multiplicity of the trivial representation in (ρ⊗ρ∨)|[G,G] would be 1,
not 4. So ρ|[G,G] = ψ⊕ψ′ with two one-dimensional characters ψ and ψ′ of [G,G].
If ψ 6= ψ′ then ψ−1ψ′ is a nontrivial character occurring in ρ ⊗ ρ∨, contradiction.
So ψ = ψ′ and ρ|[G,G] is scalar. Since ρ is faithful it follows that [G,G] ⊂ Z(G)
and hence that G/Z(G) is abelian (but not cyclic, else G is abelian). If we view ρ
as giving an embedding of G in GL2(C) and hence of G/Z(G) in PGL2(C), then
the classification of finite subgroups of PGL2(C) shows that G/Z(G) ∼= (Z/2Z)2.
Therefore G is almost abelian by Proposition 3, and then Proposition 9 shows that
ρ is triply monomial.

Conversely, suppose that ρ is triply monomial, and write ρ = indGHξ with a
subgroup H of index two in G and a one-dimensional character ξ of H. Then
ρ|H ∼= ξ⊕ ξg for any g ∈ GrH, and therefore ρ∨|H = ξ−1 + (ξg)−1. Consequently

ρ⊗ ρ∨ ∼= indGH(ξ ⊗ (ξ−1 ⊕ (ξg)−1)).

The right-hand side is (indGH1)⊕(indGHξ(ξ
g)−1). Furthermore indGH1 ∼= 1⊕χ, where

χ is the character of G with kernel H, so we deduce that χ occurs in ρ⊗ ρ∨. But
ρ is triply monomial, whence we can redo the calculation with H replaced by the
other two subgroups of index two from which ρ can be induced, say H ′ and H ′′.
Let χ′ and χ′′ be the characters of G with kernel H ′ and H ′′ respectively. Then χ,
χ′, and χ′′ all occur in ρ⊗ ρ∨, as does the trivial character of G. Since ρ⊗ ρ∨ has
dimension 4 we conclude that

ρ⊗ ρ∨ ∼= 1⊕ χ⊕ χ′ ⊕ χ′′.
Thus ρ⊗ ρ∨ is abelian and in fact coincides with regA by Proposition 9. �

For a number field K let ζK(s) denote the Dedekind zeta function of K.
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Corollary 1. Let ρ be a two-dimensional irreducible Artin representation of Q.
There is a factorization of L(s, ρ⊗ ρ∨) of the form

L(s, ρ⊗ ρ∨) = ζ(s)L(s, χ)L(s, χ′)L(s, χ′′)

with primitive Dirichlet characters χ, χ′, and χ′′ if and only if ρ is a Hecke-Shintani
representation. The characters χ, χ′, and χ′′ are then quadratic, corresponding
to the three quadratic subfields of the biquadratic field K associated to ρ. Thus
L(s, ρ⊗ ρ∨) = ζK(s).

Proof. If ρ is a Hecke-Shintani representation then the factorization is an immediate
consequence of Proposition 16 and the Artin formalism for L-functions. Conversely,
suppose that the stated factorization holds, and suppose that p is a prime not
dividing the conductor of ρ. Let σp ∈ Gal(Q/Q) be a Frobenius element at p.
Examining the coefficient of p−s on both sides of the factorization, we find

tr (ρ⊗ ρ∨)(σp) = 1 + χ(σp) + χ′(σp) + χ′′(σp).

Since Frobenius elements are dense in Gal(Q/Q) and a representation is determined
up to isomorphism by its character, it follows that

ρ⊗ ρ∨ ∼= 1⊕ χ⊕ χ′ ⊕ χ′′.

Hence Proposition 16 implies that ρ is a Hecke-Shintani representation. �

The second characterization depends on the following proposition:

Proposition 17. Let ρ be a two-dimensional irreducible representation of a finite
group G, and let C ⊂ G be the subset of elements g ∈ G such that tr ρ(g) 6= 0.
Then |C|/|G| > 1/4, with equality if and only if ρ is triply monomial.

Proof. We may assume without loss of generality that ρ is faithful. Now
1
|G|

∑
g∈G
|tr ρ(g)|2 = 1(19)

by the orthogonality relations, and the summation can be restricted to g ∈ C.
Furthermore, since dim(ρ) = 2 we have |tr ρ(g)| 6 2 with equality if and only if the
two eigenvalues of ρ(g) are equal. The latter condition means that ρ(g) is scalar, or
equivalently (since ρ is faithful and irreducible) that g ∈ Z(G). Thus the left-hand
side of (19) is 6 4|C|/|G|, with equality if and only if C = Z(G). It remains to
prove that C = Z(G) if and only if ρ is triply monomial.

That C = Z(G) if ρ is triply monomial follows from Propositions 9 and 7.
Conversely, suppose that C = Z(G). Then for g ∈ GrZ(G) the eigenvalues of ρ(g)
are λ and −λ, say, and consequently ρ(g2) is scalar. Since ρ is faithful it follows
that g2 ∈ Z(G). Thus the group G/Z(G) has exponent 2 and is therefore abelian,
hence of the form (Z/2Z)k for some k. It follows that |Z(G)|/|G| = 2−k; but we
are assuming that Z(G) = C, and we have already seen that |C|/|G| = 1/4. So
k = 2. We conclude that G is almost abelian by Proposition 3, whence ρ is triply
monomial by Proposition 9. �

Now suppose that ρ is a two-dimensional irreducible Artin representation of
Q, let M be the fixed field of the kernel of ρ, and put G = Gal(M/Q). Let C
be the subset of g ∈ G for which tr ρ(g) 6= 0, and put α = 1 − |C|/|G|. We
assume that C 6= G, so that α > 0. Write L(s, ρ) =

∑
n>1 ann

−s, and as in the
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introduction, let ϑ(x) be the number of n 6 x such that an 6= 0. Serre has shown
that ϑ(x) ∼ cx/ logα x with c > 0 ([11], pp. 237–238). Hence Proposition 17 implies:

Corollary 2. The exponent α satisfies α 6 3/4, with equality if and only if ρ is a
Hecke-Shintani representation.

7. Almost abelian groups of degree two

We shall classify the almost abelian groups with a faithful irreducible represen-
tation of dimension 2. If G is such a group then Propositions 5 and 6 imply that
Z(G) is cyclic and G/Z(G) ∼= (Z/2Z)2. Conversely, if G is a finite group such that
Z(G) is cyclic and G/Z(G) ∼= (Z/2Z)2, then G is almost abelian by Proposition
3, and from Proposition 6 it follows that G has an a two-dimensional irreducible
representation, which may be assumed faithful by Proposition 4. Thus our task is
simply to classify finite groups G such that Z(G) is cyclic and G/Z(G) ∼= (Z/2Z)2.
By Proposition 1, we can restrict our attention to 2-groups with these properties.

Let D8 and Q8 be the dihedral and quaternion groups of order 8, and for k > 4
put

N2k = 〈a, b|a2k−1
= b2 = 1, bab = a2k−2+1〉(20)

and

DT2k = 〈z, a, b|z2k−2
= a2 = b2 = 1, aza = bzb = z, bab = z2k−3

a〉.(21)

The “N” in N2k stands for “nameless”: The standard classification of nonabelian 2-
groups having a cyclic subgroup of index 2 (cf. Huppert [6], p. 91) lists four infinite
families, of which three get names; (20) does not. As for (21), among the groups
with a faithful triply monomial representation, the groups DT2k are the only ones
which are “triply generated” in the sense that they can be generated by 3 elements
but not 2. Thus they are “doubly triple.”

Proposition 18. Up to isomorphism, the almost abelian 2-groups with a faithful
irreducible representation of dimension 2 are D8, Q8, N2k , and DT2k , where k > 4.

Proof. It is easy to see that if G is one of these groups then Z(G) is cyclic and
G/Z(G) ∼= (Z/2Z)2. Conversely, suppose that G satisfies these conditions, and
assume first that G has a cyclic subgroup of index 2. Then G belongs to one of the
four infinite families mentioned above: Either G is a dihedral, hence isomorphic to

D2k = 〈a, b|a2k−1
= b2 = 1, bab = a−1〉

for k > 3, or G is a generalized quaternion group, hence isomorphic to

Q2k = 〈a, b|a2k−1
= 1, a2k−2

= b2, bab−1 = a−1〉
for k > 3, or G is quasidihedral, hence isomorphic to

QD2k = 〈a, b|a2k−1
= b2 = 1, bab = a2k−2−1〉

for k > 4, or G ∼= N2k for k > 4. However if G is D2k , Q2k , or QD2k and k > 4
then |Z(G)| = 2 and thus |Z(G)| < |G|/4, whence G/Z(G) 6∼= (Z/2Z)2. Hence only
D8, Q8, and N2k (k > 4) are almost abelian of degree 2.

Next suppose that G does not have a cyclic subgroup of index 2, and fix a
generator z of Z(G). Since G/Z(G) ∼= (Z/2Z)2, we see that if g ∈ G r Z(G)
then g2 does not generate Z(G), else g generates a cyclic subgroup of index 2 in
G. Hence g2 = z2n for some n ∈ Z, and consequently (gz−n)2 = 1. Thus the
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nonidentity cosets of Z(G) in G all have representatives of order 2. Choose two
such representatives, say a and b, for distinct nonidentity cosets of Z(G). Writing
〈x〉 for the cyclic group generated by an element x, we see that

G ∼= (Z(G)× 〈a〉)o 〈b〉.(22)

If |G| = 8 then G is isomorphic to D8. Otherwise |G| > 8, and by considering the
possible actions of 〈b〉 on Z(G)× 〈a〉 we see that G ∼= DT2k for some k > 4. �
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