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Artin representations of Q of

dihedral type

David E. Rohrlich

We prove an asymptotic formula for the number of Artin represen-
tations of Q of dihedral type with conductor below a given bound.

The representations described in the title are precisely the two-dimensional
irreducible monomial Artin representations of Q, and the number of iso-
morphism classes of such representations of conductor � x will be denoted
ϑim(x). Our aim is to derive an asymptotic formula for ϑim(x). Put

κ =
π

2

∑
K

d
−5/2
K ζK(0)2/ζK(2)2,

where K runs over imaginary quadratic fields (viewed here as subfields of
some fixed algebraic closure Q of Q), dK is the absolute value of the dis-
criminant of K, and ζK(s) is the Dedekind zeta function of K.

Theorem 1. ϑim(x) ∼ κx2.

Equivalently, for a positive integer N , the number of isomorphism classes
of two-dimensional irreducible monomial Artin representations of Q of con-
ductor N is on average κN . By contrast, if we replace “irreducible mono-
mial” by “irreducible primitive” then the average number of isomorphism
classes is conjecturally O(N ε) for every ε > 0, and in fact Bhargava and
Ghate [2] have proved the remarkable result that the number of octahedral
isomorphism classes of prime conductor and odd determinant (thus corre-
sponding to modular forms of weight one and prime level) is on average
bounded. Other work in this domain has focused on bounds for the number
of forms of a given level rather than on asymptotic averages over all levels;
cf. Serre [13], Duke [3], Wong [16], Michel and Venkatesh [11], Ellenberg
[4], Klüners [9], and Ganguly [6]. In particular, Michel and Venkatesh [11]
give the upper bound O(N1/2+ε) for the number of irreducible monomial
isomorphism classes of conductor N and fixed determinant. This estimate
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takes account of Maass forms of eigenvalue 1/4 as well as modular forms of
weight one.

More relevant to Theorem 1 than the literature just cited, however,
are the asymptotic formulas of Siegel [15] for class numbers of primitive
binary quadratic forms. Indeed let ϑio(x) be the number of isomorphism
classes of two-dimensional irreducible orthogonal – and hence in dimension
two automatically monomial – Artin representations of Q of conductor � x.
Thus ϑio(x) counts the representations which are dihedral (in other words,
the image is a dihedral group) rather than merely of dihedral type (the
image of the associated projective representation is a dihedral group). Put
λ = π/(36ζ(3)2), where ζ(s) = ζQ(s). Thus

λ = 4πζQ(−1)2/ζQ(3)
2.

Siegel’s formulas have the following corollary:

Theorem 2. ϑio(x) ∼ λx3/2.

We emphasize that our “proof” of Theorem 2 is simply a matter of
reinterpreting the formulas in [15], and the only reason for including The-
orem 2 here at all is to provide an appropriate context for Theorem 1. As
for Theorem 1 itself, our proof was inspired by the paper of Goldfeld and
Hoffstein [7], and the Dirichlet series B(s) and C(s) appearing in the proof
are closely related to Z−(s, s) and Z+(s, s) respectively, where Z±(ρ, w) is
the two-variable zeta function introduced in [7]. The proof of Theorem 1
will occupy Sections 1 through 6 of this note, and then in Section 7 we will
deduce Theorem 2 from [15].

1. Outline of the proof of Theorem 1

Throughout, number fields are regarded as subfields of a fixed algebraic
closure Q of Q. If K is a number field and ρ is an Artin representation of K
then the conductor of ρ is an an integral ideal q(ρ) of K, and its absolute
norm will be q(ρ). If K = Q then q(ρ) is the unique positive generator of
q(ρ), and we refer to q(ρ) itself as the conductor of ρ.

Now consider pairs (K, ξ), where K is a quadratic field and ξ is a one-
dimensional Artin representation of K, or in other words a character ξ :
Gal(Q/K) → C×. Let dK be the absolute value of the discriminant of K.
Since there are only finitely many pairs (K, ξ) such that dKq(ξ) lies below
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a given bound, we can put

α(x) =
∑
(K,ξ)

dKq(ξ)�x

1.

We define β(x) and γ(x) in the same way but with summation restricted
to pairs (K, ξ) such that K is imaginary quadratic or real quadratic respec-
tively.

Given a pair (K, ξ) as above, write indK/Qξ for the Artin representation
of Q induced by ξ. If we put ρ = indK/Qξ, then q(ρ) = dKq(ξ), and thus α(x)
counts pairs (K, ξ) such that q(ρ) � x. Since ϑim(x) counts isomorphism
classes of irreducible such ρ, there are three sources of discrepancy between
ϑim(x) and α(x):

(i) There exist pairs (K, ξ) for which indK/Qξ is reducible. Indeed let

ηK be the quadratic character of Gal(Q/Q) trivial on Gal(Q/K). A
reducible representation ρ is of the form indK/Qξ precisely when ρ ∼=
χ⊕ χηK with an arbitrary character χ of Gal(Q/Q). Furthermore, the
isomorphism class of ρ determines the pair (K, ξ) uniquely, because ηK
is the ratio of the direct summands χ and χηK in either order, and
then ηK determines K while ξ = χ|Gal(Q/K) = χηK |Gal(Q/K).

(ii) On the other hand, if ρ = indK/Qξ is irreducible, then there are pre-

cisely two characters of Gal(Q/K) which induce ρ, namely the direct
summands ξ and ξ′ in ρ|Gal(Q/K) ∼= ξ ⊕ ξ′.

(iii) An irreducible ρ can sometimes be induced from more than one qua-
dratic field. We shall see that in this situation ρ can be induced from
precisely three quadratic fields, of which at least one is real quadratic.
Thus in addition to the two pairs (K, ξ) and (K, ξ′) corresponding to
ρ as in (ii), there are four more: two each for the other two quadratic
fields.

A two-dimensional irreducible monomial Artin representation of Q which
can be induced from more that one quadratic field will be referred to as
a Hecke-Shintani representation, because examples of such representations
were noted by Hecke [8] (see pp. 425-426 of the Math. Werke) and Shintani
[14], p. 158.

Let ϑrm(x) be the number of isomorphism classes of two-dimensional
reducible monomial Artin representations of Q of conductor � x, and let
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ϑHS(x) be the number of isomorphism classes of Hecke-Shintani representa-
tions of conductor � x. It follows from (i), (ii), and (iii) that

(1) α(x) = 2ϑim(x) + ϑrm(x) + 4ϑHS(x).

On the other hand, we also have

(2) α(x) = β(x) + γ(x)

(recall that β and γ counts pairs (K, ξ) with K imaginary and K real re-
spectively). We shall prove the following relations:

β(x) ∼ 2κx2,(3)

γ(x) = O(x2/ log x),(4)

ϑrm(x) = O(x(log x)3).(5)

Since every Hecke-Shintani representation can be induced from a real qua-
dratic field, it follows from (4) that

(6) ϑHS(x) = O(x2/ log x).

Theorem 1 now follows from (1), (2), (3), (4), (5), and (6).
After an elementary remark about Dirichlet series, we verify (3), (4),

and (5) in Sections 3, 4, and 5 respectively. In Section 6 we verify (iii), on
which both (1) and (6) depend.

2. A remark about Dirichlet series

Suppose that we are given a sequence of Dirichlet series Dν(s) =∑
n�1 aν(n)n

−s for ν � 1. We say that the series
∑

ν�1Dν(s) is formally
convergent if for each n there are only finitely many ν such that aν(n) �= 0. If
this condition holds then we can consider the finite sum a(n) =

∑
ν�1 aν(n),

and putting D(s) =
∑

n�1 a(n)n
−s, we say that

∑
ν�1Dν(s) is formally con-

vergent to D(s). We write
∑

ν�1Dν(s) = D(s) with the understanding that
this equation is merely a formal identity.

Let c be a real number. If the Dirichlet series Dν(s) converges (in the
analytic sense) for �(s) > c, then it defines a holomorphic function on the
right half-plane H defined by �(s) > c, and we can consider the series of
holomorphic functions

∑
ν�1Dν(s) on H. As usual, we say that

∑
ν�1Dν(s)

is normally convergent on compact subsets of H if for every compact subset
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Ω ⊂ H there is a sequence of real numbers Mν � 0 such that
∑

ν�1Mν

converges and |Dν(s)| � Mν for all ν � 1 and s ∈ Ω.

Proposition 1. Suppose that aν(n) � 0 for all ν, n � 1 and that as a Dirich-
let series, Dν(s) converges for s ∈ H. If

∑
ν�1Dν(s) is both formally con-

vergent to D(s) and normally convergent on compact subsets of H, then
D(s) converges as a Dirichlet series for s ∈ H and

∑
ν�1Dν(s) = D(s) as

holomorphic functions.

Proof. Our hypotheses imply that for s ∈ H the double sum
∑
ν�1

∑
n�1

aν(n)n
−s

is absolutely convergent, so the order of summation can be reversed. �

3. Imaginary quadratic fields

To begin with let K be an arbitrary number field. Write OK for the ring
of integers of K and q for an arbitrary nonzero ideal of OK . By class field
theory, the number of characters Gal(Q/K) → C× of conductor q equals the
number of primitive ray class characters of K of conductor q. We denote this
number h∗K(q).

Let hnarK (q) be the narrow ray class number of K to the modulus q.
Then hnarK (q) is the number of ray class characters of K to the modulus q, or
equivalently the number of primitive ray class characters of K of conductor
dividing q. Hence the usual inclusion-exclusion argument gives

(7) h∗K(q) =
∑
q′|q

μK(q′)hnarK (q/q′),

where μK(q) = (−1)t if q is the product of t distinct prime ideals and
μK(q) = 0 if q is divisible by the square of a prime ideal.

Put UK = O×K , and let U+
K(q) be the subgroup of UK consisting of totally

positive units congruent to 1 modulo q. Also put ϕK(q) = |(OK/q)×|, or
equivalently,

(8) ϕK(q) =
∑
q′|q

μK(q′)N(q/q′).

According to a classic formula (cf. [10], p. 127, Theorem 1),

(9) hnarK (q) = 2r1(K) · hK · ϕK(q)/[UK : U+
K(q)],
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where r1(K) is the number of real embeddings and hK the class number
of K.

Now suppose that K is an imaginary quadratic field. Then the wide
ray class number of K to the modulus q, which we denote simply hK(q), is
indistinguishable from hnarK (q), and (9) becomes

(10) hK(q) = hK · ϕK(q) · (wK(q)/wK),

where wK is the number of roots of unity in K and wK(q) is the number of
roots of unity congruent to 1 modulo q. From (8) we have

∑
q

ϕK(q)(Nq)−s = ζK(s− 1)/ζK(s),

so multiplying both sides of (10) by (Nq)−s and summing over q, we obtain

(11)
∑
q

hK(q) (Nq)−s = (hK/wK)ζK(s− 1)/ζK(s) + EK(s)

with

(12) EK(s) = (hK/wK)
∑
q

ϕK(q)(wK(q)− 1)(Nq)−s.

The error term EK(s) is a finite Dirichlet series, because if wK(q) �= 1 then
there is a root of unity ζ ∈ K, ζ �= 1, such that ζ ≡ 1 modulo q. Then q
divides ζ − 1, and consequently q divides 2 or 3. In fact if K �= Q(

√−3)
then q|2.

We would like to transform (11) into an expression for the Dirichlet series

(13) BK(s) =
∑
q

h∗K(q) (dKNq)−s.

From (7) we see that it suffices to divide both sides of (11) by dsKζK(s):

(14) BK(s) = (hK/wK)d−sK ζK(s− 1)/ζK(s)2 + d−sK EK(s)/ζK(s).

Let ηK be the primitive quadratic Dirichlet character determined by K, and
replace ζK(s− 1) by ζ(s− 1)L(s− 1, ηK) on the right-hand side of (14).
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The result is

(15) BK(s) = ζ(s− 1)LK(s) + FK(s)

with

(16) LK(s) = (hK/wK)d−sK L(s− 1, ηK)/ζK(s)2

and

(17) FK(s) = d−sK EK(s)/ζK(s).

Here we pause to note that we are in the situation of Propositon 1. Indeed it
follows from (13) and (14) that BK(s) has nonnegative coefficients and con-
verges for �(s) > 2. Furthermore, given n � 1 there are only finitely many
pairs (K, q) such that dKNq = n, and consequently

∑
K BK(s) is formally

convergent. Put

b(n) =
∑
(K,q)

dKNq=n

h∗K(q)

and B(s) =
∑

n�1 b(n)n
−s; then

∑
K BK(s) is formally convergent to B(s).

An alternative formula for b(n) is

b(n) =
∑
(K,ξ)

dKq(ξ)=n

1,

where ξ runs over characters Gal(Q/K) → C×. The latter formula shows
that β is the summatory function associated to B(s); in other words, β(x) =∑

n�x b(n). The significance of this remark is that we can determine the
asymptotic behavior of β(x) by applying a tauberian theorem (cf. [1], p. 154,
Theorem 7.7). Indeed (3) is now a consequence of the following statement:

Proposition 2. The Dirichlet series B(s) =
∑

n�1 b(n)n
−s converges in

the region �(s) > 2, whence B(s) is a holomorphic function in this half-
plane. Furthermore, B(s) extends to a meromorphic function for �(s) > 7/4,
and the only pole of B(s) in the latter region is a simple pole at s = 2 with
residue 4κ.

To prove Proposition 2, it suffices to show that
∑

K LK(s) and
∑

K FK(s)
are normally convergent on compact subsets of the region �(s) > 7/4. For
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then it follows from (15) that
∑

K BK(s) is normally convergent on com-
pact subsets of the region �(s) > 2. Consequently Proposition 1 gives the
convergence of B(s) as a Dirichlet series and the equality of holomorphic
functions B(s) =

∑
K BK(s). This equality is in the first instance valid

only for �(s) > 2, but since
∑

K LK(s) and
∑

K FK(s) are holomorphic
for �(s) > 7/4, Proposition 2 follows by analytic continuation, although the
residue of B(s) comes out as

∑
K LK(2). Setting s = 2 in (16) and mak-

ing the substitutions hK/wK = −ζK(0) and L(1, ηK) = −2πζK(0)/
√
dK , we

obtain the stated value 4κ.
It remains to prove that

∑
K LK(s) and

∑
K FK(s) are normally con-

vergent on compact subsets of the region �(s) > 7/4.

Lemma 1. hK <
√
dK log dK .

Proof. If K is Q(
√−3) or Q(

√−4) then hK = 1 and the inequality is satis-
fied, so we may assume that dK > 4. Now it is an elementary fact that for
a nonprincipal Dirichlet character χ to the modulus q,

(18) |L(1, χ)| < 2 + log q

(cf. [5], p. 262, Théorème 8.2). Taking χ to be ηK and applying Dirichlet’s
class number formula, we deduce from (18) that

(19) πhK/
√

dK < 2 + log dK .

As dK > 4 > e, we have 2 + log dK < 3 log dK , so the lemma follows
from (19). �

Lemma 2. Fix a compact subset Ω of the region �(s) � 7/4. For s ∈ Ω,

|L(s− 1, ηK)|
|ζK(s)|2 < cΩ d

1/4
K ,

where cΩ is a positive constant depending only on Ω, not on K.

Proof. For a nonprincipal Dirichlet character χ to the modulus q and �(s) �
3/4,

(20) |L(s, χ)| < 16(q|s|)1/4

(cf. [5], p. 260, Théorème 8.1). If s ∈ Ω then �(s− 1) � 3/4, and conse-
quently (20) holds with s replaced by s− 1. Taking χ = ηK , we deduce that
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if s ∈ Ω then

(21) |L(s− 1, ηK)| < bΩ d
1/4
K ,

where bΩ = maxs∈Ω 16|s− 1|1/4. On the other hand, for �(s) � 7/4,
|ζK(s)|−1 � c0 with c0 =

∏
pmax((1 + p−7/4)2, 1 + p−7/2). Thus we may take

cΩ = bΩc
2
0. �

Suppose now that Ω is a compact subset of the region �(s) > 7/4. Choose
ε > 0 so that Ω is contained in the region �(s) � 7/4 + ε. Using Lemmas 1
and 2 to estimate the right-hand side of (16), we find that for s ∈ Ω,

(22) |LK(s)| �
√

dK log dK · d−7/4−εK · cΩd1/4K .

Since
∑

K d−1−εK log dK converges,
∑

K LK(s) is indeed normally convergent
on Ω. As for

∑
K FK(s), recall that wK(q)− 1 �= 0 only if q divides 2 or 3.

Hence the sum over q in (12) is bounded by an absolute constant c1, whence
|EK(s)| � c1hK . Referring to (17) and Lemma 1, we see that

|FK(s)| � c0c1d
−5/4−ε
K log dK ,

where c0 is as in the proof of Lemma 2. Again, the normal convergence of∑
K FK(s) on Ω follows.

4. Real quadratic fields

Now we repeat the argument with imaginary quadratic fields replaced by
real quadratic fields. But an asymptotic formula is out of our reach in this
case, so we do not bother with some of the niceties of Section 3.

All along we have regarded number fields as subfields of some fixed
algebraic closure Q of Q, but now we fix an embedding of Q in C as well.
Thus a real quadratic field K is a subfield of R, and one can speak of the
fundamental unit εK > 1 of K. In fact given any nonzero ideal q of OK , let
ε+K(q) > 1 be the fundamental totally positive unit congruent to 1 modulo
q, or in other words, the unique generator of U+

K(q) in the interval (1,∞).

Lemma 3. ε+K(q) > ((dK/4)Nq)1/4.

Proof. Write mK for the largest positive square-free divisor of dK , so that
mK is dK/4 or dK according as dK is 0 or 1 modulo 4. Then ε+K(q) = (a+
b
√
mK)/2 with rational integers a, b � 1 satisfying a2 − b2mK = 4. So a2 �
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4 +mK � 6, and consequently a � 3. Put n = (a− 2)2 − b2mK . Writing n =
(a2 − b2mK) + 4− 4a, we see that n = 8− 4a. Since a > 2 we deduce that
n < 0.

On the other hand, q divides ε+K(q)− 1, and therefore Nq divides
NK/Q(ε

+
K(q)− 1), which is n/4. Since n < 0 it follows that −n > 4Nq or

in other words that

(23) b2mK � 4Nq+ (a− 2)2.

Recall once again that a2 − b2mK = 4, whence a �
√
4 +mK . Put c =

√
3−√

2. Since
√
4 + x− 2 � c

√
x for x � 2 we have a− 2 � c

√
mK . Thus (23)

gives

(24) b2mK � 4Nq+ c2mK .

On the right-hand side of (24) we use the inequality A2 +B2 � 2AB with
A = 2

√
Nq and B = c

√
mK , and then we take the positive square root of

both sides:

(25) b
√
mK � 2

√
c(mKNq)1/4.

As a =
√

4 + b2mK > b
√
mK we see that (25) also holds (with strict in-

equality) when the left-hand side is replaced by a. So

(26) ε+K(q) = (a+ b
√
mK)/2 > 2

√
c(mKNq)1/4.

The assertion of the lemma is weaker than (26), because

√
c = (

√
3−

√
2)1/2 = 0.563770 · · · > 1/2

and 4mK � dK . �

We also need an analogue of Lemmas 1 and 2. As before, write ηK for
the primitive quadratic Dirichlet character associated to K.

Lemma 4. hK log εK <
√
dK log dK .

Proof. If dK = 5 then hK = 1 and εK = (1 +
√
5)/2, and the inequality is

immediate. Henceforth we assume dK � 8. Applying (18) with χ = ηK and
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recalling Dirichlet’s class number formula, we obtain

2hK log εK/
√

dK < 2 + log dK .

Since dK � 8 > e2, we have 2 + log dK � 2 log dK , and the lemma follows.
�

Lemma 5. Fix a compact subset Ω of the region �(s) � 7/4. For s ∈ Ω,

|L(s− 1, ηK)| < cΩd
1/4
K ,

where cΩ is a positive constant depending only on Ω, not on K.

Proof. Follow the proof of Lemma 2 up to (21), and take cΩ = bΩ. �

Our goal is to prove (4). By definition,

γ(x) =
∑
(K,q)

dKNq�x

h∗K(q),

where (K, q) runs over pairs consisting of a real quadratic field K and a
nonzero ideal q of OK . We can apply (9) here: Since h∗K(q) � hnarK (q) and
ϕK(q) � Nq while

[UK : U+
K(q)] = 2(log ε+K(q))/(log εK),

we obtain

γ(x) � 2
∑
(K,q)

dKNq�x

hKNq(log εK)/(log ε+K(q)).

Thus Lemmas 3 and 4 give

(27) γ(x) � 8
∑
(K,q)

dKNq�x

√
dK(log dK)Nq/ log((dK/4)Nq).

For n � 1 put

c(n) =
∑
(K,q)

dKNq=n

√
dK(log dK)Nq.
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Since dK � 5, we see that c(n) = 0 for n � 4. We shall prove the estimate

(28)
∑

5�n�x

c(n)/ log(n/4) = O(x2/ log x),

which in conjunction with (27) gives (4).
Consider the Dirichlet series C(s) =

∑
n�1 c(n)n

−s and the family of
Dirichlet series

CK(s) =
√

dK(log dK)
∑
q

(Nq)(dKNq)−s.

The sum
∑

K CK(s) is formally convergent to C(s), and each CK(s) is a
convergent Dirichlet series for �(s) > 2 because

(29) CK(s) =
√

dK(log dK)d−sK ζK(s− 1).

Furthermore, writing (29) in the form CK(s) = ζ(s− 1)MK(s) with

MK(s) =
∑
K

√
dK(log dK)d−sK L(s− 1, ηK),

we have C(s) = ζ(s− 1)
∑

K MK(s), and if Ω is a compact subset of the
region �(s) > 7/4 then we can bound MK(s) on Ω using Lemma 5 just
as we bounded LK(s) on Ω using Lemma 2 in (22). The upshot is that∑

K MK(s) is normally convergent on compact subsets of �(s) > 7/4. Ap-
pealing to Proposition 1 as before, we conclude that C(s) is a convergent
Dirichlet series for �(s) > 2, equal to

∑
K CK(s) as a holomorphic function.

Thus:

Proposition 3. C(s) extends to a meromorphic function for �(s) > 7/4
which is holomorphic in this region except for a simple pole at s = 2.

Put γ̃(x) =
∑

n�x c(n). It follows from Proposition 3 that γ̃(x) ∼ cx2

for some constant c > 0. In particular, γ̃(x) = O(x2). But Abel summation
gives

(30)
∑

5�n�x

c(n)/ log(n/4) =
γ̃(x)

log(x/4)
+

∫ x

5

γ̃(t)

t(log(t/4))2
dt.

Since γ̃(x) = O(x2), the right-hand side of (30) is O(x2/ log x), proving (28)
and hence (4).
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5. The reducible case

Let X be the set of characters Gal(Q/Q) → C×, H the subset of quadratic
characters, and Θrm the set of isomorphism classes of Artin representations
of Q of the form χ⊕ χη, with χ ∈ X and η ∈ H. We define a map X ×H →
Θrm by

(31) (χ, η) �→ [χ⊕ χη],

where [∗] denotes the isomorphism class of ∗. If (χ, η) and (χ′η′) have the
same image under (31), then either χ′ = χ and χ′η′ = χη, in which case
(χ, η) and (χ′, η′) are equal, or else χ′ = χη and χ′η′ = χ, in which case
(χ′, η′) = (χη, η). Thus (31) is a two-to-one surjective map.

Now putN = H ∪ {1}, where 1 denotes the trivial character of Gal(Q/Q).
We consider the Dirichlet series

D(s) =
∑

(χ,ν)∈X×N
(q(χ)q(χν))−s

and the associated summatory function

δ(x) =
∑

(χ,ν)∈X×N
q(χ)q(χν)�x

1.

Writing

D(s) =
∑

(χ,η)∈X×H
(q(χ)q(χη))−s +

∑
χ∈X

q(χ)−2s

and passing to the summatory functions corresponding to the three Dirichlet
series in this equation, we obtain the relation

(32) δ(x) = 2ϑrm(x) + θ(x1/2),

where θ(x) is the number of complex-valued characters of Gal(Q/Q) of con-
ductor � x and the factor 2 in 2ϑrm(x) takes account of the two-to-one
map (31).

Proposition 4. The Dirichlet series D(s) converges for �(s) > 1, whence
D(s) is a holomorphic function in this region. Furthermore, D(s) extends
to a meromorphic function for �(s) > 3/4, and the only pole of D(s) in the
latter region is a pole of order 4 at s = 1.
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Granting the proposition, we deduce that δ(x) ∼ cx(log x)3 with c >
0. On the other hand, θ(x) ∼ 18x2/π4 (cf. [12], p. 461), whence θ(x1/2) ∼
18x/π4 and in particular θ(x1/2)=O(x). Thus (32) gives ϑrm(x)∼cx(log x)3/
2 and (5) follows. It remains to prove Propostion 4.

Let Xp ⊂ X be the subset of characters unramified outside p and ∞.
Every element χ ∈ X can be written in a unique way as a product

∏
p χp

with χp ∈ Xp and χp = 1 for all but finitely many p. Likewise each ν ∈ N
has a unique decomposition ν =

∏
p νp with νp ∈ Np, where Np = N ∩Xp.

It follows that D(s) =
∏

pDp(s) with

(33) Dp(s) =
∑

(χp,νp)∈Xp×Np

(q(χp)q(χpνp))
−s.

Since we haven’t yet checked convergence, the decomposition D(s) =∏
pDp(s) should be regarded for the moment as a purely formal identity.
Now fix p and consider the pth Euler factor in (33). To begin with we

assume that p is odd. Then Np = {1, ηp}, where ηp is the unique quadratic
character of Gal(Q/Q) unramified outside p and ∞. The following four cases
constitute a partition of Xp ×Np:

(i) If (χp, νp) = (1, 1) then q(χp)q(χpνp) = 1.

(ii) If (χp, νp) = (1, ηp) or (ηp, ηp), then q(χp)q(χpνp) = p.

(iii) If (χp, νp) = (ηp, 1) then q(χp)q(χpνp) = p2.

(iv) If χp /∈ Np then q(χp)q(χpνp) = q(χp)
2.

Consequently

(34) Dp(s) = 1 + 2p−s + p−2s + 2(p− 3)p−2s + 2
∑
k�2

ψ(pk)p−2ks,

where ψ(pk) = (p− 1)2p(k−2). Note that if k � 2 then ψ(pk) is the number
of elements of Xp of conductor pk, while p− 3 is the number of elements of
Xp �Np of conductor p. The 2 in 2(p− 3) and 2ψ(pk) is |Np|.

The case p = 2 is similar but more tedious. Let η4 denote the quadratic
character of Gal(Q/Q) of conductor 4, and let η+8 and η−8 denote respectively
the even and odd quadratic characters of Gal(Q/Q) of conductor 8. We have
the following division into cases:

(i) If (χ2, ν2) = (1, 1) then q(χ2)q(χ2ν2) = 1.

(ii) If (χ2, ν2) = (1, η4) or (η4, η4), then q(χ2)q(χ2ν2) = 4.
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(iii) If (χ2, ν2) = (1, η) or (η, η) with η = η±8 then q(χ2)q(χ2ν2) = 8.

(iv) If (χ2, ν2) = (η4, 1) then q(χ2)q(χ2ν2) = 16.

(v) If (χ2, ν2) = (η, ηη4) or (η4, η) with η = η±8 then q(χ2)q(χ2ν2) = 32.

(vi) If (χ2, ν2) = (η, 1) or (η, η4) with η = η±8 then q(χ2)q(χ2ν2) = 64.

(vii) If χ2 /∈ N2 then q(χ2)q(χ2ν2) = q(χ2)
2.

Note that χ2 /∈ N2 if and only if q(χ2) is divisible by 16. Consequently

D2(s) = 1 + 2 · 4−s + 4 · 8−s + 16−s + 4 · 32−s(35)

+ 4 · 64−s + 4
∑
k�4

ψ(2k)2−2ks,

where ψ(2k) = 2k−2.
We are ready to verify the convergence of D(s) for �(s) > 1. Say �(s) �

1 + ε, where ε > 0. Since ψ(pk) < pk, elementary estimates show that the
series (34) and (35) converge and that Dp(s) = 1 +O(p−1−ε), where the
implicit constant does not depend on p or s (or even on ε). It follows that
as an Euler product and Dirichlet series, D(s) converges for �(s) > 1.

Now consider the larger right half-plane �(s) � 3/4 + ε. The series (34)
and (35) still converge in this region, and for p odd, (34) gives

(36) Dp(s) = 1 + 2p−s + 2p1−2s +O(p−3/2−2ε) +O(p−1−4ε),

Here O(p−3/2−2ε) and O(p−1−4ε) are bounds for −5p−2s and

2
∑
k�2

ψ(pk)p−2ks

respectively, but we shall henceforth assume that ε < 1/4, so the term
O(p−3/2−2ε) can be absorbed by O(p−1−4ε). Once again the implicit con-
stant is independent of p and s.

It follows from (36) that if p is sufficiently large then |Dp(s)− 1| < 1,
whence Dp(s) is in the domain of the principal branch of the logarithm.
Thus

(37) logDp(s) = 2p−s + 2p1−2s +O(p−1−4ε).
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The right-hand side of (37) represents only the linear term of the relevant
Taylor series, but for p sufficiently large we have

∑
k�2

(2p−s + 2p1−2s +O(p−1−4ε))k = O(p−1−4ε),

so the higher-order terms can be absorbed by the term O(p−1−4ε).
On the other hand, the Euler factor at p of the function

(38) E(s) =
ζ(s)2ζ(2s− 1)2

ζ(2s)2ζ(4s− 2)2

is the function Ep(s) = (1 + p−s)2(1 + p1−2s)2. In particular, for �(s) �
3/4 + ε and p sufficiently large, we have |Ep(s)− 1| < 1 and

(39) logEp(s) = 2p−s + 2p1−2s +O(p−1−4ε).

Let p0 be a prime such that both (37) and (39) are in force for p � p0. Then

(40)
∏
p�p0

Dp(s)/Ep(s) = ef(s)

where f(s) is holomorphic for �(s) > 3/4 + ε. So (40) gives an analytic con-
tinuation of the left-hand side to this region. Now for any given p, and in par-
ticular for p < p0, the Euler factors Dp(s) are holomorphic in the half-plane
�(s) > 3/4 + ε and do not vanish at s = 1, while the Euler factors Ep(s) are
holomorphic and nonvanishing throughout the region �(s) > 3/4 + ε. Hence
if we put g(s) =

∏
p�p0

Dp(s)/Ep(s), then (40) becomes

(41) D(s) = g(s)ef(s)E(s)

with f(s) and g(s) holomorphic for �(s) > 3/4 + ε and g(1) �= 0. Since ε
can be chosen arbitrarily small, Proposition 4 follows from (38), (41), and
the familiar analytic properties of ζ(s), from which those of E(s) follow.

6. Hecke-Shintani representations

If G is a group and H and H ′ are distinct subgroups of G, both of index
2, then (G/H)× (G/H ′) is the Klein four-group and H ∩H ′ is the kernel
of the natural map G → (G/H)× (G/H ′), so there is a third subgroup of
index 2 in G containing H ∩H ′. Underlying assertion (iii) of Section 1 is an
elementary remark about this situation:
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Proposition 5. Let ρ be a faithful two-dimensional irreducible complex
representation of a finite group G, and suppose that ρ can be induced from
two different subgroups of index 2 in G, say H and H ′. Then ρ can be induced
from precisely three subgroups of index 2 in G, namely the three index-two
subgroups containing H ∩H ′.

Proof. Let H ′′ denote the third subgroup of index 2 in G containing H ∩
H ′. We must show that ρ is induced from H ′′ but not from any index-two
subgroup of G besides H, H ′, and H ′′.

First we show that ρ is induced fromH ′′. Since ρ is faithful, so is ρ|H, and
as ρ|H is the direct sum of two characters of H, it gives an embedding of H
into the diagonal subgroup of GL2(C). Hence H is abelian, and by the same
reasoning, H ′ is abelian. Let h and h′ be representatives for the nonidentity
cosets ofH ∩H ′ inH andH ′ respectively; then h and h′ commute with every
element of H ∩H ′, whence hh′ does too. As hh′ represents the nonidentity
coset of H ∩H ′ in H ′′ we conclude that H ′′ is abelian. But H ′′ is not central,
because G is nonabelian whereas a group which is cyclic modulo a central
subgroup is abelian. It follows that ρ|H ′′ is the direct sum of two distinct
characters of H ′′ and consequently that ρ is induced from H ′′.

The argument just given also shows that H ∩H ′ is contained in the
center of G. Indeed H ∩H ′ is abelian, and h and h′ commute with every el-
ement of H ∩H ′. Since h, h′, and hh′ are representatives for the nonidentity
cosets of H ∩H ′ in G, it follows that H ∩H ′ is central.

Now let J be an arbitrary index-two subgroup of G from which ρ is
induced. Then J contains the center of G: for otherwise the nonidentity coset
of J in G is represented by some element of the center, say z, and conjugation
by z does not interchange the two distinct characters of J occurring in ρ|J .
Thus J is an index-two subgroup of G containing the center of G and in
particular containing H ∩H ′. Consequently J is H, H ′, or H ′′. �

We return to assertion (iii) of Section 1. Suppose that ρ is a Hecke-
Shintani representation, so that ρ ∼= indK/Qξ and ρ ∼= indK′/Qξ

′ with one-
dimensional Galois characters ξ and ξ′ of distinct quadratic fields K and K ′.
Let K ′′ be the third quadratic field contained in KK ′. Then Proposition 5
implies that ρ ∼= indK′′/Qξ

′′ with some Galois character ξ′′ of K ′′. At least
one of K, K ′, and K ′′ is real, and assertion (iii) of Section 1 follows.

Example. (Cf. Hecke [8].) Put L = Q(
√−4, 121/4) and G = Gal(L/Q).

Then G is isomorphic to the dihedral group of order 8. Hence up to iso-
morphism G has a unique two-dimensional irreducible representation ρ, and
ρ can be induced from Q(

√−4), Q(
√−12), and Q(

√
12).
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7. Siegel’s formulas

Earlier it was convenient to speak of ray class groups, but henceforth an
adelic language will be more efficient. We denote the group of ideles of a
number field K by A×K , and we view idele class characters as characters of
A×K trivial on K× ⊂ A×K .

Let K denote a quadratic field and q > 0 a rational integer. The number
of finite-order idele class characters of K of conductor dividing qOK which
are trivial on A×Q will be denoted hnarK/Q(q) and referred to as the narrow

(or strict) ring class number of K to the modulus q. If K is imaginary then
the superscript “nar” and the words “narrow” or “strict” can be omitted.
We also write h∗K/Q(q) for the number of finite-order idele class characters

of K of conductor equal to qOK which are trivial on A×Q . Underlying these
definitions is the elementary fact that the conductor of a finite-order idele
class character of K which is trivial on A×Q has the form qOK with q ∈ Z.

The formulas of Siegel referred to in the introduction are

(42)
∑

dKq2�x
K imaginary

hK/Q(q) = πx3/2/(18ζ(3)) + O(x log x)

([15], p. 671, formula (22)) and

(43)
∑

dKq2�x
K real

hnarK/Q(q) log ε
+
K,q = π2x3/2/(18ζ(3)) + O(x log x)

([15], p. 667, formula (2)), where ε+K,q is the fundamental totally positive
unit of the order OK,q = Z+ qOK . Strictly speaking, in [15] the role of
hnarK/Q(q) and hK/Q(q) is played by the narrow class number of primitive

binary quadratic forms of discriminants dKq2 and −dKq2 respectively, but
it is a standard remark that these coincide with hnarK/Q(q) and hK/Q(q) (cf.

[12], p. 472, Proposition 5.7).
The connection between Siegel’s formulas and ϑio(x) arises as follows.

An Artin representation ρ of Q is dihedral – in other words, two-dimensional,
irreducible, and orthogonal – if and only if ρ ∼= indK/Qξ for some quadratic

fieldK and some character ξ of Gal(Q/K) satisfying two conditions: first, the
order of ξ is � 3, and second, ξ ◦ tranK/Q = 1, where 1 is the trivial character

and tranK/Q is the transfer from Gal(Q/Q)ab to Gal(K/Q)ab. Using class

field theory, we identify ξ with an idele class character ξ̂ of finite order
� 3, and then the condition ξ ◦ tranK/Q = 1 coincides with the previous
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condition ξ̂|A×Q = 1. Furthermore, the map sending the pair (K, ξ) to the
isomorphism class of indK/Qξ is two-to-one; indeed the inverse image of this
isomorphism class consists precisely of the pairs (K, ξ) and (K, ξ−1). Lest
this last assertion appear to conflict with the existence of Hecke-Shintani
representations, note that ξ is required to have order � 3 (thus of the 6
pairs (K, ξ) corresponding to a dihedral Hecke-Shintani representation, we
deduce that exactly 4 have the property that ξ is quadratic). In any case, it
follows from the preceding remarks that

(44) 2ϑio(x) =
∑
(K,q)

dKq2�x

(h∗K/Q(q)− e(K, q)),

where e(K, q) is the number of idele class characters of K of conductor qOK

and order � 2 which are trivial on A×Q .
To apply Siegel’s formulas, it is convenient to write (44) in the form

(45) 2ϑio(x) =
∑

dKq2�x
K imaginary

h∗K/Q(q) +
∑

dKq2�x
K real

h∗K/Q(q)−
∑

dKq2�x

e(K, q),

where the third sum runs over both real and imaginary quadratic fields. Call
the three sums on the right-hand side Ix, IIx, and IIIx, so that

(46) 2ϑio(x) = Ix + IIx − IIIx.

We shall see that IIx and IIIx are o(x3/2) and that

(47) Ix ∼ πx3/2/(18ζ(3)2),

whence Theorem 2 follows from (46).
First consider IIx. Since h∗K/Q(q) � hnarK/Q(q) and ε+K,q > q

√
d/2, we have

(48) IIx �
∑

5�n�x

1

log(
√
n/2)

∑
dKq2=n
K real

hnarK/Q(q) log ε
+
K,q.

Let w(n) be the inner sum on the right-hand side, so that (48) becomes

IIx �
∑

5�n�x

w(n)/ log(
√
n/2).
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Also put ω(t) =
∑

5�n�tw(n). Then Abel summation gives

∑
5�n�x

w(n)/ log(
√
n/2) = ω(x)/ log(

√
x/2) +

∫ x

5

ω(t)

2t(log(
√
t/2))2

dt.

Since ω(x) coincides with the left-hand side of (43), we deduce that

(49) IIx = O(x3/2/ log x).

Note that we have used (43) only as an upper bound, not as an asymptotic
equality.

Next consider IIIx. We claim that

(50)
∑

dKq2�x

e(K, q) � ϑrm(x),

whence

(51) IIIx = O(x(log x)3)

by (5). To verify (50), let ξ̂ be an idele class character of K counted by
e(K, q), so that ξ̂2 = 1, ξ̂|A×Q = 1, and q(ξ̂) = qOK . Let ξ be the character

of Gal(Q/K) corresponding to ξ̂. It suffices to show that the representation
ρ = indK/Qξ is reducible, because then the pair (K, ξ) – hence also the pair

(K, ξ̂) – is uniquely determined by the isomorphism class of ρ (recall (i)
of Section 1). Let σ be the nonidentity element of Gal(K/Q), viewed as
acting on A×K . Since ξ̂|A×Q = 1, we have ξ̂(xσ+1) = 1 for all x ∈ A×K , but then

ξ̂(xσ−1) = 1 also because ξ̂2 = 1. It follows that ξ̂ is trivial on the kernel of
the idelic norm NK/Q : A×K → A×Q , whence ξ̂ = χ̂ ◦NK/Q for some idele class

character χ̂ of Q. The corresponding character χ of Gal(Q/Q) then satisfies
χ|Gal(Q/K) = ξ, and consequently ρ = indK/Qξ is reducible.

It remans to deal with Ix. Define Dirichlet series H(s) and H∗(s) by

H(s) =
∑

K imaginary
q�1

hK/Q(q)(dKq2)−s

and

H∗(s) =
∑

K imaginary
q�1

h∗K/Q(q)(dKq2)−s
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Since hK/Q(q) =
∑

r|q h
∗
K/Q(r), it follows that

(52) H(s) = H∗(s)ζ(2s).

The significance of (52) is that Ix is the summatory function associated to
H∗(s).

Proposition 6. The Dirichlet series H∗(s) converges for �(s) > 3/2,
whence H∗(s) is a holomorphic function in this region. Furthermore, H∗(s)
extends to a meromorphic function for �(s) > 1 which is holomorphic except
for a simple pole at s = 3/2 with residue π/(12ζ(3)2).

Granting the proposition, we deduce the validity of (47), and then The-
orem 2 follows from (46), (47), (49), and (51). It remains to prove Proposi-
tion 6.

The argument is standard, given (42). For n � 1 put

(53) h(n) =
∑

dKq2=n
K imaginary

hK/Q(q),

so that H(s) =
∑

n�1 h(n)n
−s. (Note by the way that there is at most one

summand on the right-hand side of (53), because K is determined by n
via the equality K = Q(

√−n).) Let η(t) =
∑

n�t h(n). Then η(x) coincides
with the left-hand side of (42), and

∑
n�x

h(n)n−s = η(x)x−s + s

∫ x

1

η(t)

ts+1
dt.

by Abel summation. Thus (42) gives

(54)
∑
n�x

h(n)n−s =
πs(1− x−(s−3/2))
18ζ(3)(s− 3/2)

+ x3/2−sO(1) + s

∫ x

1

O(log t)

ts
dt,

where the O(∗) terms do not depend on s. Letting x go to infinity, we obtain
first the convergence of H(s) as a Dirichlet series for �(s) > 3/2 and then
the continuation of H(s) to a meromorphic funtion for �(s) > 1 which is
holomorphic in this region apart from a simple pole at s = 3/2 with residue
π/(12ζ(3)). Proposition 6 now follows from (52) and the known analytic
properties of ζ(s).
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A. Fröhlich ed. Academic Press (1977), 193–268. (=Oeuvres vol. III,
no. 110.)



Artin representations 1789

[14] T. Shintani, On certain ray class invariants of real quadratic fields.
J. Math. Soc. Japan, 30 (1978), 139–167.

[15] C. L. Siegel, The average measure of quadratic forms with given deter-
minant and signature. Ann. of Math., 45 (1944), 667–685.

[16] S. Wong, Automorphic forms on GL(2) and the rank of class groups.
J. reine angew. Math., 515 (1999), 125–153.

Department of Mathematics and Statistics, Boston University

Boston, MA 02215, USA

E-mail address: rohrlich@math.bu.edu

Received March 12, 2014




