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Abstract. We observe that Leopoldt’s conjecture is equivalent to a simple
statement in arithmetic statistics. This observation then leads to a comparison
of traditional and nontraditional counting functions.

We begin with an illustrative problem. Let Ẑ be the compact topological ring
of adelic integers, isomorphic to the direct product over all primes p of the p-
adic integer rings Zp, and let Q̂ be the unique Ẑ-extension of Q inside some fixed
algebraic closure Q of Q. Put Γ = Gal(Q̂/Q) and let X be the set of characters
of Γ. Characters are understood here to be complex-valued and one-dimensional,
so that X consist of continuous homomorphisms χ : Γ → C×. By the order of χ
we mean as usual the smallest positive integer n such that χn = 1. Since Ẑ, hence
Γ, is procyclic, there are only finitely many χ ∈ X of a given order n. In fact the
number of such characters is the number of characters of Z/nZ of order n, namely
ϕ(n), where ϕ is the Euler totient function. Let α(x) be the number of χ ∈ X of
order 6 x. The problem is to determine the asymptotic behavior of α(x).

The solution is straightforward. From the preceding remarks it follows that

α(x) =
∑
n6x

ϕ(n),

but the right-hand side is 3x2/π2 + O(xδ) with δ < 2 by a theorem of Dirichlet
(in fact O(xδ) can be replaced by O(x log x), a result of Mertens). In particular,
α(x) ∼ 3x2/π2.

The preceding example rests on the uniqueness of the Ẑ-extension of Q and hence
on the fact that Leopoldt’s conjecture holds for Q. In the case of an arbitrary
number field K we shall prove that Leopoldt’s conjecture for K is equivalent to
a statement similar to α(x) ∼ 3x2/π2 (Theorem 1). The equivalence is rather
formal, with little arithmetic content, but it accentuates our main theme, which
is the distinction between traditional and nontraditional arithmetic statistics. The
relation α(x) ∼ 3x2/π2 is an instance of the latter, because the counting function
α(x) is nontraditional. Indeed the elements χ ∈ X may be viewed as characters of
Gal(Q/Q) by composition with the quotient map Gal(Q/Q) → Γ, so the traditional
way of counting them would be to enumerate them by conductor. But instead we
have enumerated them by their order. For arbitrary characters of Gal(Q/Q) the
latter approach is not even possible, because for every n > 2 there are infinitely
many characters of Gal(Q/Q) of order n. But for characters of Γ, enumeration
by the order is legitimate, and therefore two questions arise: What happens if we
use the traditional enumeration by conductor – what asymptotic do we get then?
And over number fields, does the traditional enumeration have a connection to
Leopoldt’s conjecture also?
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Only the first question will be considered here. Let us say that a counting
function β has traditional asymptotics if there are real numbers a, b and c with
c > 0 such that β(x) ∼ cxa(log x)b as x goes to infinity. The terminology is meant
to reflect the fact that historically, the asymptotic behavior of counting functions
in number theory does tend to be of this type. For example:

(i) If ρ(x) is the number of lattice points inside a circle of radius
√
x then

ρ(x) ∼ πx.
(ii) If π(x) is the number of primes 6 x then π(x) ∼ x/ log x.
(iii) If δ(x) is the number of ordered pairs of positive integers (d, n), where d|n

and n 6 x, then δ(x) ∼ x log x.
(iv) If α(x) is the number of ordered pairs of positive integers (m,n) where m

is relatively prime to n and n 6 x, then α(x) ∼ 3x2/π2, as recalled above.
(v) If λ(x) is the number of integers 6 x which can be written as the sum of

two squares then λ(x) ∼ cx/
√

log x for some c > 0.

Of course these formulas are all classical: Example (i), or the problem of bounding
the associated error term, is the Gauss circle problem; (ii) is the prime number
theorem of Hadamard and de la Vallée Poussin; (iii) and (iv) are due to Dirichlet
and (v) to Landau. For a contemporary example one can cite Malle’s conjecture
on the enumeration of Galois groups [5], which again predicts an asymptotic of the
type cxa(log x)b. The key point here is that the nontraditional counting function
α(x) of the first paragraph has traditional asymptotics.

We can also consider a slightly weaker notion. Given functions f and g with
nonnegative values, write f(x) � g(x) for f(x) = O(g(x)), and f(x) � g(x) for
f(x) � g(x) � f(x). We say that β(x) has traditional growth if β(x) � xa(log x)b

for some a and b.
In particular, let β(x) be the number of elements χ ∈ X of conductor 6 x. By

applying standard tauberian theorems and also a result of de Bruijn [3], who appeals
to an unusual tauberian theorem of Hardy and Ramanujan [4], we shall prove that
β(x) does not have traditional growth (Theorem 2). In summary, the nontraditional
counting function α(x) has traditional asymptotics, but the traditional counting
function β(x) does not even have traditional growth.

This is not a new phenomenon. In [8], Sarnak shows that if equivalence classes
of primitive indefinite binary quadratic forms are enumerated by the size of the
associated fundamental totally positive unit – a decidedly nontraditional means of
enumeration – then the resulting asymptotics are traditional, but the best that
one can say about the traditional method of enumeration, namely by discriminant,
is that an asymptotic result is known only for the product of the class number
and the totally positive fundamental unit (Siegel [10]), not for the class number
alone. See also [9] and papers of Raulf [6], [7]. A more recent illustration of the
phenomenon at issue is provided by the work of Ambrose [1] and Zelinski [11]. Let
K be any number field other than Q or an imaginary quadratic field. The results
of [1] and [11] strongly suggest that when one-dimensional characters of Gal(K/K)
are enumerated by conductor then the resulting counting function does not have
traditional growth.

Returning to β(x) and the two questions about it raised earlier, we point out
that not only is the second question (about a possible connection to Leopoldt’s
conjecture) unanswered, but to some extent the first is as well. We shall prove that
β(x) has nontraditional growth, but the precise growth rate remains a mystery.
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1. Leopoldt’s conjecture

In this section we fix a number field K ⊂ Q. The notations Γ, X, and α
introduced below retain their original meaning if K = Q.

Put d = [K : Q]. Thus d = r1 + 2r2, where r1 is the number of field embeddings
σ : K ↪→ C with σ(K) ⊂ R and r2 is half the number of field embeddings σ : K ↪→ C
with σ(K) 6⊂ R. Let K̂ be the compositum of all Ẑ-extensions of K inside Q, or
equivalently, the compositum of all Zp-extensions of K as p varies over primes. Put
Γ = Gal(K̂/K) and

ν = r2 + 1.
By the theory of Zp-extensions of number fields, we have

(1) Γ ∼=
∏
p

Zνp
p

with ν 6 νp 6 d. Leopoldt’s conjecture is the assertion that νp = ν for all p.
Now let X be the set of characters of Γ, and write α(x) for the number of χ ∈ X

of order 6 x. We will reformulate Leopoldt’s conjecture as a statement about the
asymptotic growth of α(x). To do so, let a(n) be the number of χ ∈ X of order n,
so that

(2) α(x) =
∑
n6x

a(n).

In view of the self-duality of finite abelian groups, a(n) is also the number of
elements of Γ/nΓ of order n. Hence it follows from (1) that a(n) is a multiplicative
function of n and that

(3) a(pk) = pkνp − p(k−1)νp

for k > 1. In particular, a(n) 6 nd, whence the Dirichlet series and Euler product

(4)
∑
n>1

a(n)n−s =
∏
p

(1 +
∑
k>1

a(pk)p−ks)

converge for <(s) > d+ 1. Denote the left-hand side by A(s) and put

Ap(s) = 1 +
∑
k>1

a(pk)p−ks,

so that A(s) =
∏

pAp(s). Inserting (3) in Ap(s) and summing, we obtain

Ap(s) = 1 + (1− p−νp)
pνp−s

1− pνp−s

and thus

(5) Ap(s) =
1− p−s

1− pνp−s
.

Therefore

(6) A(s) = ζ(s)−1 ·
∏
p

(1− pνp−s)−1,

where ζ(s) is the Riemann zeta function. The rationale for introducing A(s) is
apparent from (2): It is the Dirichlet series with summatory function α(x), so
from its analytic properties one can deduce the asymptotic behavior of α(x) via a
tauberian theorem.
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Theorem 1. Put ρ = ν + 1 = r2 + 2 and κ = (ρζ(ρ))−1. Then νp = ν for all p, or
in other words, Leopoldt’s Conjecture holds for K, if and only if α(x) ∼ κxρ.

Proof. If νp = ν for all p then (6) becomes A(s) = ζ(s − ν)/ζ(s). So A(s) has a
simple pole at s = ρ = ν + 1 with residue 1/ζ(ρ) and is otherwise holomorphic in
the region <(s) > 1. Thus it follows from Theorem 7.7 of [2] that α(x) ∼ κxρ.

Conversely, suppose that νp > ν + 1 for some prime p. We will show that the
relation α(x) ∼ κxρ does not hold. We consider three cases:

Case 1: There is a prime p such that νp > ν + 2.
Case 2: There is a unique prime p such that νp > ν + 1.
Case 3: There are distinct primes p and q such that νp, νq > ν + 1.

Of course Cases 2 and 3 cover all possibilities, but it is convenient to consider
Case 1 also. The awkwardness of the argument that follows arises from the fact
that Ap(s) has infinitely many poles on the line <(s) = νp, rendering the usual
tauberian method inapplicable in some spots.

Case 1: Given x� p, put `(x) = blogp xc, where logp(x) = (log x)/(log p). Then

`(x)∑
k=0

a(pk) = p`(x)νp

by (3). But α(x) is an upper bound for the left-hand side while p`(x) > x/p. So
α(x) � xνp . Since νp > ρ + 1, this lower bound for α(x) contradicts the relation
α(x) ∼ κxρ.

Case 2: We may assume that νp = ν+1 = ρ, else we are in Case 1. Let A∗(s) be
the Euler product A(s) with the Euler factor at p removed. Since p is the unique
prime for which νp 6= ν, we have

A∗(s) =
ζ(s− ν)
ζ(s)

· 1− pν−s

1− p−s
.

Put c = (p − 1)/(p − p−ν). Then A∗(s) has a simple pole at s = ν + 1 = ρ with
residue c/ζ(ρ) and is otherwise holomorphic in the region <(s) > 1. Therefore,
putting

α∗(x) =
∑
n6x
p-n

a(n),

we have α∗(x) ∼ cκxρ. In particular, α∗(x) � xρ. With `(x) as in Case 1, we have

α(x) =
`(x)∑
k=0

a(pk)α∗(x/pk)

and consequently, our lower bound for α∗(x) gives

α(x) � xρ +
`(x)∑
k=1

(pkρ − p(k−1)ρ)(x/pk)ρ

by (3). Since (pkρ − p(k−1)ρ) = (1 − p−ρ)pkρ, we conclude that α(x) � `(x)xρ,
whence α(x) � (log x)xρ. Again, this inequality is incompatible with the relation
α(x) ∼ κxρ.
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Case 3: We may assume that νp = νq = ν+1 = ρ, else we are in Case 1. Suppose
that q < p. Given x� p, let `(x) = blogp xc as before and λ(x) = blogq xc. Then

λ(x)∑
j=1

`(x/qj)∑
k=0

a(qjpk) =
λ(x)∑
j=1

(qjρ − q(j−1)ρ) · (1 +
`(x/qj)∑

k=1

(pkρ − p(k−1)ρ))

by (3) and the multiplicativity of a(n). The left-hand side is bounded above by
α(x), so we have

α(x) >
λ(x)∑
j=1

(qjρ − q(j−1)ρ)pρ`(x/qj)

Since (qjρ − q(j−1)ρ) = (1− q−ρ)qjρ, we find that

(7) α(x) �
λ(x)∑
j=1

qjρpρ`(x/qj).

Now `(x/qj) = blog(x/qj)/ log pc, so pρ`(x/qj) � (x/qj)ρ, whence (7) gives

α(x) � λ(x)xρ � (log x)xρ.

As before, this lower bound is incompatible with the relation α(x) ∼ κxρ. �

2. Arithmetic statistics

We return to the notation of the introduction. Thus Q̂ is the unique Ẑ-extension
of Q inside Q and X is the set of characters of the group Γ = Gal(Q̂/Q). But this
time we consider the traditional counting function

(8) β(x) =
∑
n6x

b(n),

where b(n) is the number of characters in X of conductor n.
We claim that for odd primes p,

(9) b(pk) =


(p− 1)pk−2 if k > 2,
1 if k = 0,
0 if k = 1.

Indeed if χ is a nontrivial character of the unique Zp-extension of Q and the con-
ductor of χ is pk then k > 2 and the order of χ is pk−1. Hence the number of such
characters is ϕ(pk−1). The reasoning is the same for p = 2, except that the first
layer of the Z2-extension of Q is the extension Q(

√
2)/Q of conductor 8. Thus

(10) b(2k) =


2k−3 if k > 3,
1 if k = 0,
0 if k = 1 or k = 2.

Since the multiplicativity of b(n) is immediate from its definition, (9) and (10)
determine b(n) uniquely.

Given functions f(x) and g(x) which go to infinity with x, we say that g grows
faster than f(x), or that f grows more slowly than g, if f(x) = o(g(x)), in other
words if limx→∞ f(x)/g(x) = 0. The following statement implies that β(x) has
nontraditional growth, as asserted in the introduction.
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Theorem 2. The function β(x) grows faster than x logm x for every positive integer
m but more slowly than x1+ε for every ε > 0.

As a first step toward proving the theorem, we consider the set N of positive
integers n such that b(n) 6= 0. It follows from (9) and (10) that n ∈ N if and only
if two conditions hold:

(i) 2|n⇒ 8|n.
(ii) If p is an odd prime, then p|n⇒ p2|n.

Given (i), we can of course omit the word odd in (ii). By the radical of a positive
integer n we mean the product of the distinct prime factors of n, where the empty
product is understood to be 1. Denote the radical of n by rad(n), and put

(11) rad∗(n) =

{
rad(n) if n is odd,
2 rad(n) if n is even.

We claim that

(12) b(n) =

{
ϕ(n)/rad∗(n) if n ∈ N ,
0 otherwise.

It suffices to observe that both sides are multiplicative and that by (9) and (10)
they agree if n is a prime power.

We are now in a position to derive the upper bound in Theorem 2 from a result
of de Bruijn [3]. By (12),

(13) β(x) =
∑
n6x
n∈N

ϕ(n)/rad∗(n).

Since ϕ(n) 6 n and rad(n) 6 rad∗(n), it follows that

(14) β(x) 6 x
∑
n6x

rad(n)−1,

where the sum now runs over all positive integers n 6 x. Call this sum γ(x), so
that (14) becomes

(15) β(x) 6 xγ(x).

By Theorem 1 of [3], log γ(x) ∼ `(x), where `(x) =
√

8 log x/
√

log log x for x > e.
In particular we have, say, log γ(x) < 2`(x) for large x, so that β(x) < xe2`(x) by
(15). But e2`(x) grows more slowly than xε for every ε > 0.

We now turn to the lower bound in Theorem 2. The proof involves four Dirichlet
series, to be denoted Dk(s), D(s), Z(s), and Dk(s).

Let S be the set of square-free odd positive integers, and observe that if n ∈ S
and k > 2 then nk ∈ N . For <(s) > 1 consider the Dirichlet series

(16)
∑
n∈S

ϕ(n)nk−2n−ks =
∏
p6=2

(1 + (p− 1)pk−2p−ks).

We denote this Dirichlet series Dk(s) and write δk(s) for the associated summatory
function:

(17) δk(x) =
∑

nk6x
n∈S

ϕ(n)nk−2.
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It follows from (9) that if n ∈ S then b(nk) = ϕ(n)nk−2, whence δk(x) 6 β(x).
Next, D(s) is the Dirichlet series

(18)
∑
n∈S

ϕ(n)n−s =
∏
p6=2

(1 + (p− 1)p−s).

It is introduced here to facilitate the calculations: Referring to (16), we see that

(19) Dk(s) = D(ks− k + 2).

Using (18), we define a branch of logD(s) for <(s) > 2 by

logD(s) =
∑
p6=2

(p− 1)p−s +
∑
p6=2

∑
n>2

(−1)n−1 (p− 1)np−ns

n

so that

(20) logD(s) =
∑
p6=2

p1−s −
∑
p6=2

p−s +
∑
p6=2

∑
n>2

(−1)n−1 (p− 1)np−ns

n
.

The middle sum converge absolutely for <(s) > 1, while the double sum converges
absolutely at least for <(s) > 3/2: Indeed if <(s) = 3/2 + ε with ε > 0 then

|(p− 1)np−ns/n| < pn(1−s) = p−n(1/2+ε),

whence

|
∑
n>2

(−1)n−1(p− 1)np−ns/n| < p−1−2ε

1− p−(1/2+ε)
.

The right-hand side is bounded by cṗ−1−2ε, where c is a constant independent of
p. For example, we can take c = 1/(1− 2−(1/2+ε)). It follows that the double sum
is convergent for <(s) > 3/2 as claimed. Returning to (20), we conclude that

(21) logD(s) =
∑
p6=2

p1−s + f(s),

where f(s) is holomorphic in the region <(s) > 3/2.
Next we put Z(s) = (1− 21−s)ζ(s− 1) and

logZ(s) =
∑
p6=2

p1−s +
∑
p6=2

∑
n>2

pn(1−s)

n

for <(s) > 2. Again, the double sum converges absolutely in the region <(s) > 3/2,
because if s = 3/2 + ε with ε > 0 then

|pn(1−s)/n| 6 p−n(1/2+ε),

whence
|
∑
n>2

pn(1−s)/n| 6 cp−1−2ε

with c = 1/(1− 2−(1/2+ε)) as before. Thus

(22) logZ(s) =
∑
p6=2

p1−s + g(s),

where g(s) is holomorphic in the region <(s) > 3/2.
Finally, we subtract (22) from (21) and exponentiate both sides of the resulting

equation. We obtain D(s) = Z(s)eh(s), where h(s) is f(s) − g(s) and thus is
holomorphic in the region <(s) > 3/2. To recover Dk(s), precompose the functions
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D, Z, and h with s 7→ ks − k + 2, which maps the region <(s) > 1 bijectively
onto the region <(s) > 2 and and the region <(s) > 1− 1/(2k) bijectively onto the
region <(s) > 3/2. Recalling (19), we obtain

Dk(s) = (1− 2−(ks−k+1))ζ(ks− k + 1)eh(ks−k+2).

Note that the pole at s = 1 of ζ(ks − k + 1) gives a pole of Dk(s), because the
residue eh(2)/(2k) is nonzero. We summarize these facts as follows:

Proposition 1. The holomorphic function Dk(s), initially defined for <(s) > 1,
extends to a meromorphic function in the region <(s) > 1− 1/(2k) having a simple
pole at s = 1 and no other singularities.

Recalling (17), we can now deduce that δk(x) ∼ κx, where κ > 0 is the residue of
Dk(s) at s = 1. And since β(x) > δk(x) we obtain β(x) � x. But for the stronger
assertion in Theorem 2 we need to go one step further.

Choose a vector k = (k1, k2, . . . , km) where the kµ are integers > 2 satisfying

(23) k1 + k2 + · · ·+ kµ < kµ+1

for 1 6 µ 6 m − 1. We claim that the value of a subsum of the k’s uniquely
determines the set of summands in the subsum. Or to state the claim more formally:

Lemma. Given a vector k = (k1, k2, . . . , km) as above, suppose that

(24) kµ1 + kµ2 + · · ·+ kµi = kν1 + kν2 + · · ·+ kνj

with µ1 < µ2 < · · · < µi and ν1 < ν2 < · · · < νj. Then i = j and µl = νl for
1 6 l 6 i = j.

Proof. If µi > νj then (23) ensures that kµi
is strictly greater that the right-hand

side of (24). If µi < νj then kνj is strictly greater than the left-hand side of (24).
Therefore µi = νj , and after subtracting kµi (= kνj ) from both sides of (24) we can
complete the argument by induction. �

Next we put

(25) Dk(s) =
m∏

µ=1

Dkµ(s)

and write
Dk(s) =

∑
n>1

dk(n)n−s

and

(26) δk(x) =
∑
n6x

dk(n).

By Proposition 1, Dk(s) has a pole of order m at s = 1 and no other singularities
in the region <(s) > 1 − 1/(2km). Applying a standard tauberian theorem, we
deduce that δk(x) ∼ κx(log x)m−1 for some positive constant κ. We shall prove
that β(x) > δk(x). Granting this, we have β(x) � x(log x)m−1. And since m
is arbitary we can replace m by m + 2 and conclude that β(x) grows faster then
x(log x)m for any m. It remains to prove:

Proposition 2. δk(x) 6 β(x).
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Proof. In view of the definitions (8) and (26), it suffices to show that dk(n) 6 b(n)
for all n. Since this is vacuously true if dk(n) = 0, we may assume that

(27) n =
m∏

µ=1

nkµ
µ

for some integers nµ ∈ S. We fix a choice of such integers for which (27) holds. A
key point to be proved is that only one such choice is possible.

Write the prime factorization of n as

(28) n =
∏
p

pλp ,

where the product is taken over all primes p, with λp = 0 for all but finitely many
p. Any subtletly in verifying that dk(n) 6 b(n) stems from the fact that there may
be a prime p which occurs with positive exponent in (28) and which divides two
different factors nµ and nν with µ 6= ν. If this is not the case, in other words if the
nµ are pairwise relatively prime, then each nonzero exponent in (28) is equal to kµ

for a unique µ, and consequently

nµ =
∏

p∈Pµ

pkµ

with Pµ = {p : λp = kµ}. Thus the factors nµ in (27) are uniquely determined by
n, so that dk(n), instead of being a sum of products of coefficients contributed by
the series Dkµ(s), is equal to a single such product:

(29) dk(n) =
m∏

µ=1

ϕ(nµ)nkµ−2
µ .

And because the factors nν are coprime in pairs, the right-hand side of (29) is also
b(n). Here we are using (9) and the multiplicativity of b(∗) as well as the fact that
the elements of S are odd. Thus if the nµ are pairwise relatively prime then the
desired relation dk(n) 6 b(n) holds with equality.

Now consider the general case. Let p be a prime dividing n. Then

(30) λp = kµ1 + kµ2 + · · ·+ kµi ,

where {µ1, µ2, . . . , µi} is the set of indices µ such that p divides nµ. Now initially we
simply fixed a choice of the nµ for which (27) held. But λp is uniquely determined
by n via (28). And µ1, µ2, . . . , µi are uniquely determined by λp thanks to (30)
and the lemma. In other words, µ1, µ2, . . . , µi are uniquely determined by n and p,
and they are characterized as the indices µ for which the square-free integer nµ is
divisible by p. Since this is true for every prime p dividing n, we conclude that the
factors n1, n2, . . . , nm in (27) are uniquely determined by n. We deduce as before
that dk(n) is the single product shown in (29), not a sum of such products. But
this time the factors nµ in (27) are not necessarily relatively prime in pairs.

To deal with this problem, we use the elementary fact that for arbitrary positive
integers v and w,

(31) ϕ(v)ϕ(w) 6 ϕ(vw)

and

(32) rad(vw) 6 rad(v)rad(w)
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with equality if v and w are relatively prime. Put ψ(v) = ϕ(v)/rad(v). It follows
from (31) and (32) that

(33) ψ(v)ψ(w) 6 ψ(vw).

Now since the elements of S are square-free, (29) can be written

(34) dk(n) =
m∏

µ=1

ψ(nkµ
µ ).

On the other hand, recalling once again that the elements of S are odd, so that the
first alternative holds in (11), we see by (12) that

(35) b(n) = ψ(
m∏

µ=1

nkµ
µ )

The proposition follows from (33), (34), and (35). �
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