
IRREDUCIBLE SPACES OF MODULAR UNITS

DAVID E. ROHRLICH

Fix a prime p > 7, put G = PSL(2,Fp), and write U for the multiplicative group
of modular units of level p. We shall determine the irreducible subspaces of the
natural representation of G on U/Up. The outcome of the calculation can be de-
scribed as follows: Every irreducible nontrivial representation of G over Fp occurs
with multiplicity one in the maximal semisimple subspace of the “noncongruence
part” of U/Up (to be defined). Apart from the formulation and some slight differ-
ences arising from the choice of group (PSL(2,Fp) instead of GL(2,Fp)/{±1}), the
result is already in Gross [2]. Presumably one can give conditions as in [6] and [7]
which ensure that the unit group remains large after descent and specialization to
a number field, but this problem will not be addressed here.

For the sake of perspective, it is useful to recall that the natural representation
of G on the space of modular forms of weight 2 and level p was decomposed into
irreducibles in two papers of Hecke [3], [4]. As one would expect, most of the work
in these papers goes into decomposing the space of cusp forms, but it is actually
the space of Eisenstein series – dealt with by Hecke in a few lines – which has some
bearing on the present note. The reason is simple: if f ∈ U then (d log f)/dz is an
Eisenstein series of weight 2 and level p. In fact the space of all such Eisenstein
series is simply C⊗Z (d logU)/dz. Furthermore, since the kernel of f 7→ (d log f)/dz
is the subgroup of constant functions C× ⊂ Up, we see that U/Up is isomorphic
as an Fp[G]-module to Fp ⊗Z (d logU)/dz. Thus the representation of G on U/Up

arises via tensor product with Fp from a G-stable Z-form of the space of Eisenstein
series. It follows that the semisimplification of U/Up can be computed directly
from Hecke’s decomposition of the space of Eisenstein series into irreducibles.

But the structure of U/Up itself is another matter. To determine whether a given
irreducible constituent of U/Up actually occurs as a subspace we must turn to the
work of Kubert and Lang [5], which reduces the problem to an elementary exercise.
The present note is nothing more than a solution to the exercise: but however trite,
it is nonetheless a heartfelt acknowledgment of an enormous personal debt to Serge
Lang. I would also like to acknowledge the help provided by the referee of [7],
whose suggestion for simplifying the proof of Proposition 7 of [7] turned out to be
an essential ingredient of the present work.

1. The module of parameters

The Z[G]-module M introduced below is a first approximation to the domain of
the Kubert-Lang map parametrizing U . Our goal is to decompose the associated
representation of G on the vector space V = M/pM over Fp.

1.1. Preliminaries. The irreducible representations of G in characteristic p can
be classified using a single invariant: their dimension. Indeed for each integer k
satisfying 0 6 k 6 (p− 1)/2 there is an absolutely irreducible representation σk of
G over Fp of dimension 2k + 1, and σk is unique up to isomorphism. Furthermore
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every irreducible representations of G in characteristic p is isomorphic to some σk.
In order to work with an explicit model we shall take σk to be the (2k)th symmetric
power of the tautological two-dimensional projective representation of G. Then the
space of σk consists of binary homogeneous polynomials f(x, y) of degree 2k over
Fp, and the action of G is given by the formula

(σk(g)f)(x, y) = f(ax+ cy, bx+ dy),(1)

where g is the image in G of the element

g̃ =
(
a b
c d

)
(2)

of SL(2,Fp).
Put R = F

2
p r {(0, 0)}. We define M to be the free Z-module of rank (p2 − 1)/2

consisting of functions m : R → Z such that m(−r) = m(r) for r ∈ R. An action
of G on M is given by the formula

(g ·m)(r) = m(rg̃),(3)

where g̃ is either of the two lifts of g to SL(2,Fp) and rg̃ is the product of the
1 × 2 row vector r and the matrix g̃. Of course this action is formally the same
as (1), except that m is now an even function R → Z rather than a homogeneous
polynomial over Fp.

Given a field F , put VF = F ⊗Z M and extend the action (3) by linearity to
a representation τF of G on VF . We can identify VF with the vector space of
dimension (p2 − 1)/2 over F consisting of even functions m : R→ F , and then the
action of G is again formally the same as in (1) and (3). We are primarily interested
in the case F = Fp, and in this case we write VF and τF simply as V and τ .

1.2. Irreducible constituents. Write B for the image in G of the upper triangular
subgroup of SL(2,Fp) and N ⊂ B for the image of the strictly upper triangular
subgroup (i. e. the subgroup defined by the conditions c = 0, a = d = 1 in (2)). We
denote the trivial one-dimensional character of any group by 1, leaving both the
group and the implicit field of scalars to be inferred from context. In the following
proposition, for example, 1 is the trivial one-dimensional character of N with values
in F , and indGN1 is the representation of G over F which it induces.

Proposition 1. τF ∼= indGN1.

Proof. Take the space of indGN1 to consist of functions f : G→ F satisfying f(ng) =
f(g) for n ∈ N and g ∈ G, with G acting by right translation. As we have
already noted, VF is also a space of functions, namely the space of even functions
m : R → F . Furthermore, given f in the space of indGN1 we obtain an element
mf ∈ VF by setting mf (r) = f(g) if eg̃ = ±r, where e is the row vector (0, 1) ∈ R.
The map f 7→ mf is redily verified to be G-equivariant and injective, and its domain
and range both have dimension (p2 − 1)/2. �

We now take F = Fp and compute the semisimplification of τ :

Proposition 2. The multiplicity of σk as a constituent of τ is 1 if k = 0 or
k = (p− 1)/2 and 2 if 1 6 k 6 (p− 3)/2.

Proof. Given t ∈ F×p , let a(t) denote the image in B of the diagonal matrix with
diagonal entries t, t−1. The map t 7→ a(t) induces an isomorphism of quotient
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groups F×p /{±1} ∼= B/N , and we can compose the inverse of this isomorphism
with even powers of the Teichmüller character ω : F×p → Z

×
p to obtain characters

of B. More precisely, we define ξk : B → Q
×
p (0 6 k 6 (p− 3)/2) by setting

ξk(a(t)n) = ω(t)2k (t ∈ F×p , n ∈ N).

Then indBN1 ∼= ⊕(p−3)/2
k=0 ξk, whence Proposition 1 and the identification indGN1 =

indGB(indBN1) give

τQp
∼= ⊕(p−3)/2

k=0 πk(4)

with πk = indGBξk (cf. formula (22) of [3]). We remark that π0
∼= 1 ⊕ η with an

absolutely irreducible representation η of dimension p over Qp, while if p ≡ 1 mod 4
then π(p−1)/4 decomposes over Qp as the direct sum of two inequivalent irreducible
representations ζ and ζ ′ of dimension (p + 1)/2. Apart from these exceptions,
the direct summands in (4) are asbolutely irreducible (although not distinct, as
πk ∼= π(p−1−2k)/2 for 1 6 k 6 (p− 3)/2).

Put M = Zp ⊗ZM . Then M is a G-stable Zp-lattice in VQp and V = Fp ⊗M.
Hence the semisimplification of V can be read from (4) and the mod-p decomposi-
tion numbers of G. These decomposition numbers are implicit in Brauer-Nesbitt [1]
(p. 590) and explicitly computed in Srinivasan [8] (pp. 107 – 108). In applying [8],
note that for n = 1 her Φ(r0) and ϕ(r0) coincide. Hence taking r0 = 2k in formula
(3.5) of [8], we find that the character of our πk coincides on p-regular conjugacy
classes with the sum of the Brauer characters of our σk and σ(p−1−2k)/2. In the
first instance this conclusion holds only when 1 6 k 6 (p− 3)/2 and k 6= (p− 1)/4,
but in fact it holds also when k = 0 (by the first three lines on p. 108 of [8]) and
when k = (p − 1)/4 (by formula (3.7) of [8]). The upshot is that in all cases, the
semisimplification of the reduction modulo p of πk coincides with σk⊕σ(p−1−2k)/2.
Hence the proposition follows from (4). �

1.3. Irreducible subspaces and quotient spaces. Next we determine the multi-
plicity of σk as a quotient representation of τ . Given representations α and β of
a group H on vector spaces Wα and Wβ over a field F , write HomF [H](α, β) for
HomF [H](Wα,Wβ).

Proposition 3. For 0 6 k 6 (p− 1)/2,

dimFp HomFp[G](τ, σk) = 1.

Proof. Proposition 1 and Frobenius reciprocity give

HomFp[G](τ, σk) ∼= HomFp[N ](1, resGNσk).

Now N is generated by the element u corresponding to the choices a = b = d = 1
and c = 0 in (2), so it suffices to see that the subspace of vectors fixed by σk(u)
is one-dimensional. Let A be the matrix of σk(u) relative to the ordered basis
x2k, x2k−1y, . . . , y2k, and let aij be the (i, j)-entry of A for 1 6 i, j 6 2k + 1.
Using (1) to write (σk(u)f)(x, y) = f(x, x+ y), one readily verifies that A is upper
triangular, that aii = 1 for all i, and that ai,i+1 6= 0 for 1 6 i 6 k. It follows that
the Jordan normal form of A consists of a single Jordan block, whence x2k is the
unique eigenvector of σk(u) up to scalar multiples. �

A similar statement holds for subrepresentations:
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Proposition 4. For 0 6 k 6 (p− 1)/2,

dimFp HomFp[G](σk, τ) = 1.

Proof. In view of Proposition 3 it suffices to see that both σk and τ are self-dual.
The self-duality of σk follows from the fact that irreducible representations of G
over Fp are determined up to isomorphism by their dimension. The self-duality of
τ follows from the fact that the symmetric bilinear form

〈m,m′〉 =
∑
r∈R′

m(r)m′(r) (m,m′ ∈ V )(5)

is nondegenerate and G-invariant. �

1.4. Homogeneous components. Recall thatM = Zp⊗ZM and that ω : F×p → Z
×
p

is the Teichmüller character. We shall view the elements of M as even functions
m : R→ Zp. We define M(k) to be the Zp-submodule of M consisting of those m
such that

m(tr) = ω(t)2km(r)

for t ∈ F×p and r = (r1, r2) ∈ R, where tr = (tr1, tr2). The linear operators
e(k) :M→M given by

(e(k)m)(r) =
1

p− 1

∑
t∈F×p

ω−(k)(t)m(tr)(6)

(0 6 k 6 (p − 3)/2) form a family of orthogonal idempotents projecting M onto
the respective submodules M(k) and summing to the identity, so we have

M = ⊕(p−3)/2
k=0 M(k).(7)

In fact (7) is a decomposition into Zp[G]-submodules, because the idempotents e(k)

commute with the action of G. Hence the space of τ likewise decomposes into
G-stable subspaces:

V = ⊕(p−3)/2
k=0 V (k)(8)

with V (k) = Fp ⊗ZpM(k). Let τ (k) denote the representation of G on V (k).

Proposition 5. If 1 6 k 6 (p − 3)/2 then τ (k) has a unique irreducible subrepre-
sentation and a unique irreducible quotient representation, and they are equivalent
to σk and σ(p−1−2k)/2 respectively. On the other hand, τ (0) ∼= σ0 ⊕ σ(p−1)/2.

Proof. The first point is that the free Zp-module M(k) has rank p+ 1. Indeed for
each of the p+ 1 lines ` through the origin in F2

p, fix an element r` ∈ R which spans
`, and define a function f`,k ∈M(k) by

f`,k(r) =

{
ω(t)2k if r = tr` with t ∈ F×p
0 if r /∈ `.

For fixed k the p+1 functions f`,k have pairwise disjoint supports and are therefore
linearly independent over Zp. Hence M(k) has rank at least p + 1. But M has
rank (p+ 1)(p− 1)/2, so we deduce from (7) that M(k) has rank exactly p+ 1, as
claimed.

It follows that V (k) has dimension p+1 over Fp. But an irreducible representation
of G over Fp has dimension 6 p, so V (k) has a proper irreducible subspace and
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hence at least two irreducible constituents. On the other hand, V has exactly
p− 1 irreducible constituents (Proposition 2), so we deduce from (8) that V (k) has
exactly two constituents.

To identify these constituents up to isomorphism, we introduce a Z[G]-submodule
Nk ofM for 0 6 k 6 (p−3)/2. Given m ∈M, let m : R→ Fp denote the reduction
of m modulo p. We define Nk ⊂ M to be the submodule consisting of all m such
that m coincides with a binary homogeneous polynomial of degree 2k over Fp.
Strictly speaking, we should say “coincides with the function R → Fp defined by”
such a polynomial, but the distinction is moot: a homogeneous polynomial of degree
< p which vanishes on R is zero. Thus the map m 7→ m determines an embedding
of Nk/(Nk ∩ pM) into the space of σk. In fact this embedding is surjective and
hence a G-isomorphism, because any even function R→ Fp can be lifted to an even
function R→ Zp.

Now put N (l)
k = e(l)Nk (0 6 l 6 (p − 3)/2). It is readily verified that if l 6= k

then the image of N (l)
k under m 7→ m is {0}. On the other hand, we have just

seen that the map m 7→ m gives a G-isomorphism of Nk/(Nk ∩ pM) onto the
space of σk. It follows that the domain of this G-isomorphism can be replaced
by N (k)

k /(N (k)
k ∩ pM(k)). But the latter can be viewed as a G-stable subspace

W (k) of V (k), and the representation of G on W (k) is therefore equivalent to σk.
Furthermore, we have seen that V (k) has exactly two irreducible constituents, so
the quotient V (k)/W (k) is also irreducible. Since its dimension is (p+1)−(2k+1) =
p− 2k, we deduce that the quotient representation is equivalent to σ(p−1−2k)/2. In
summary, the representation of G on W (k) and on V (k)/W (k) is equivalent to σk
and to σ(p−1−2k)/2 respectively.

To see that τ (0) ∼= σ0 ⊕ σ(p−1)/2, we observe that the set of indices k satisfying
1 6 k 6 (p − 3)/2 is stable under k 7→ (p − 1 − 2k)/2. It follows that σ0 and
σ(p−1)/2 occur as constituents of V (k) if and only if k = 0. On the other hand,
σ0 and σ(p−1)/2 occur not merely as constituents but as subrepresentations of τ
(Proposition 4). It follows that they occur as subrepresentations of τ (0), whence
τ (0) ∼= σ0 ⊕ σ(p−1)/2.

Finally, suppose that 1 6 k 6 (p− 3)/2. If W is an irreducible subspace of V (k)

then the representation of G on W is equivalent to an irreducible constituent of τ (k),
hence either to σk or to σ(p−1−2k)/2. But if W 6= W (k) then the first possibility
is excluded, because σk occurs as a subrepresentation of τ with multiplicity one
(Proposition 4). As for the second possibility, it coincides with the first (and is
therefore excluded when W 6= W (k)) if k = (p− 1)/4. Otherwise it is excluded by
Proposition 4 again, because σ(p−1−2k)/2 already occurs as a subrepresentation of
τ ((p−1−2k)/2), and the spaces V ((p−1−2k)/2) and V (k) are linearly independent. We
conclude that W (k) is the unique irreducible subspace of V (k), and since V (k) has
just two irreducible constituents it follows that V (k)/W (k) is the unique irreducible
quotient. �

2. The quadratic relations

To move a step closer to U we turn from M to the Z[G]-submodule Q of M
defined by the “quadratic relations” of Kubert and Lang. As before, our primary
concern is the representation of G on the associated vector space over Fp, which is
now the space V ′ = Q/pQ.
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2.1. Preliminaries. To define Q, recall that given m ∈ M we write m : R → Fp

for the reduction of m modulo p. We will also let N denote the Z[G]-submodule of
M consisting of all n for which n has the form

n(r) = ar2
1 + br1r2 + cr2

2(9)

with a, b, c ∈ Fp, where r = (r1, r2). Since N is a Z-form of the Zp[G]-module
previously denoted N1, it might be more logical to denote it N1, but for simplicity
we omit the subscript (and thereby void our previous convention that N is the
subgroup of G corresponding to strictly upper triangular matrices). We define Q
to consist of those m ∈M such that∑

r∈R
m(r)n(r) = 0(10)

for all n ∈ N .
It is immediate from this description that Q contains pM . Thus M/Q is a

quotient of the finite-dimensional vector space V = M/pM over Fp. In fact since
Q is defined by the vanishing of three linearly independent linear forms on M/pM
(namely those corresponding to the choices (a, b, c) = (1, 0, 0), (0, 1, 0), and (0, 0, 1)
in (9) and (10)) we see that M/Q has dimension three over Fp. In particular Q
has finite index in M , so by the Brauer-Nesbitt theorem, the representation τ ′ of
G on the space V ′ = Q/pQ has the same semisimplification as τ . In other words,
Proposition 2 holds with τ replaced by τ ′. However Proposition 5 must be modified
slightly.

2.2. Homogeneous components, Put Q = Zp ⊗Z Q. Then Q is stable under e(k)

(cf. (6), (9), and (10)). Hence

Q = ⊕(p−3)/2
k=0 Q(k)

with Q(k) = e(k)Q. Thus putting V ′(k) = Q(k)/pQ(k) we have

V ′ = ⊕(p−3)/2
k=0 V ′

(k)
,(11)

a decomposition of V ′ into G-stable subspaces. Let τ ′(k) denote the representation
of G on V ′

(k).

Proposition 6. If 1 6 k 6 (p− 5)/2 then τ ′
(k) has a unique irreducible subrepre-

sentation and a unique irreducible quotient representation, and they are equivalent
to σk and σ(p−1−2k)/2 respectively. On the other hand, τ ′(0) ∼= σ0 ⊕ σ(p−1)/2 and
τ ′

((p−3)/2) ∼= σ1 ⊕ σ(p−3)/2.

Proof. Suppose first that k 6= (p− 3)/2. We claim thatM(k) ⊂ Q, whenceM(k) =
Q(k). To see this, take m ∈M(k) and n ∈ N , and write∑

r∈R
m(r)n(r) =

∑
`∈Λ

∑
r∈R∩`

m(r)n(r),

where Λ is the set of lines through the origin in F2
p. For each ` ∈ Λ choose a vector

r` ∈ R spanning `. Then the inner sum on the right-hand side can be written as a
sum over t ∈ F×p , with r = tr`. The homogeneity of m and n then gives∑

r∈R
m(r)n(r) =

∑
`∈Λ

m(r`)n(r`)
∑
t∈F×p

t2k+2.
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Since k 6= (p − 3)/2 the exponent of t on the right-hand side is < p − 1 and
consequently the inner sum is 0. Thus M(k) ⊂ Q and M(k) = Q(k), as claimed.

It follows that if k 6= (p− 3)/2 then τ ′
(k) ∼= τ (k), whence the assertions at hand

reduce to those of Proposition 5. To handle the remaining case k = (p − 3)/2,
we recall that τ and τ ′ have isomorphic semisimplifications and are direct sums
of their respective homogeneous components τ (k) and τ ′

(k). Since τ ′(k) ∼= τ (k) for
k 6= (p−3)/2, we deduce that the semisimplifictions of τ ′((p−3)/2) and τ ((p−3)/2) are
likewise isomorphic. Thus by Proposition 5, τ ′((p−3)/2) has exactly two irreducible
constituents, namely σ(p−3)/2 and σ1.

NowM and Q are also the direct sums of their homogeneous componentsM(k)

and Q(k), and we have seen that the vector space M/Q = M/Q has dimension
three over Fp (cf. (9) and (10)) whileM(k) = Q(k) for k 6= (p− 3)/2. Consequently
M((p−3)/2)/Q((p−3)/2) is also three-dimensional over Fp, as is therefore the subspace
Y = pM((p−3)/2)/pQ((p−3)/2) of V ′((p−3)/2). Since τ ′

((p−3)/2) has just the two
irreducible constituents σ1 and σ(p−3)/2 of dimensions 3 and p− 2 respectively, we
deduce that the representation of G on Y is σ1. Thus σ1 is a subrepresentation of
τ ′

((p−3)/2) and σ(p−3)/2 is the corresponding quotient representation.
It remains to see that σ1 is also a quotient representation of τ ′((p−3)/2), whence

σ(p−3)/2 is a subrepresentation and τ ′((p−3)/2) ∼= σ1⊕σ(p−3)/2. To this end, consider
the bilinear pairing ≺ ∗, ∗ �: Q×N → Z given by

≺ m,n �=
1
p

∑
r∈R

m(r)n(r) (m ∈ Q, n ∈ N).

Write L for the Z[G]-submodule of Q consisting of those m such that

≺ m,n �≡ 0 (mod p)

for all n ∈ N . Put L = Zp⊗ZL. Then L is stable under e(k), so putting L(k) = e(k)L
we have

L = ⊕(p−3)/2
k=0 L(k).

We claim that L((p−3)/2) contains pQ((p−3)/2) and that the quotient space Z =
Q((p−3)/2)/L((p−3)/2) of V ′(p−3)/2 is of positive dimension 6 3. An immediate
consequence of the claim is that the representation of G on Z is equivalent to σ1,
so verifying the claim will complete the proof.

It is immediate from the definitions that L contains pQ and hence that L contains
pQ. On the other hand, L does not contain pM: for if m ∈M is the function taking
the value 1 on (±1, 0) and 0 elsewhere then ≺ pm, n �6≡ 0 mod p for any n ∈ N
satisfying (9) with a 6= 0. It follows that for some k with 0 6 k 6 (p − 3)/2 we
have pM(k) 6⊂ L(k). But we have seen that pQ ⊂ L and that pQ(k) = pM(k) for
k 6= (p− 3)/2. Hence L((p−3)/2) does not contain pM((p−3)/2), and we deduce that
L((p−3)/2)/pQ((p−3)/2) is a subspace of V ′((p−3)/2) of positive codimension. On the
other hand, the codimension is 6 3, because the subspace is defined by the vanishing
of three linear forms on V ′

((p−3)/2) (namely the forms m+ pQ((p−3)/2 7→≺ m,n �
with n as in (9) and (a, b, c) = (1, 0, 0), (0, 1, 0), and (0, 0, 1)). Our claim follows. �
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3. The Kubert-Lang map

Now let H denote the complex upper half-plane. Given a matrix γ̃ ∈ SL(2,Z),
we identify its image γ ∈ PSL(2,Z) with the fractional linear transformation of
H defined by γ. Thus if f is a function on H and γ̃ is the right-hand side of (2)
then f ◦ γ is the function z 7→ f((az + b)/(cz + d)). As usual, Γ(p) denotes the
subgroup of SL(2,Z) defined by the conditions a ≡ d ≡ 1 and b ≡ c ≡ 0 mod p, and
the group that we are denoting U – namely the multiplicative group of modular
units of level p – consists of modular functions for Γ(p) which are holomorphic and
nowhere vanishing on H. We make U into a Z[G]-module via the action

g · f = f ◦ γ−1 (g ∈ G, f ∈ U),

where γ ∈ PSL(2,Z) is any lift of g. The resulting representation of G on the vector
space V ′′ = U/Up over Fp will be denoted τ ′′.

Given a ∈ p−1
Z

2 with a 6= (0, 0), define the Siegel function ga as in [5], p. 29.
For r ∈ R we put fr = g12

a , where a ∈ p−1
Z

2 is chosen so that r coincides with
the residue class of pa modulo pZ2. Since a can be replaced by any element of the
coset a+Z2, the function g12

a is determined only up to multiplication by a pth root
of unity ([5], p. 28, Formula K2), but the coset frUp is uniquely determined by r
because Up contains C×. Furthermore, if m ∈ Q then the function

fm :=
∏
r∈R

fm(r)
r

belongs to U ([5], p. 76, Theorem 5.2). Hence the assignment m + pQ 7→ fmUp

defines an Fp-linear map Φ : V ′ → V ′′.

Proposition 7. The map Φ is surjective with one-dimensional kernel, and it in-
tertwines τ ′ with τ ′′.

Proof. The argument echos the proof of Proposition 0 of [7], which in turn merely
assembles a number of results from [5]. Let us at least recall the relevant citations:
The surjectivity of Φ follows from [5], p. 83, Theorem 1.3, because p is prime to
12 and thus the map fUp 7→ f12Up is an automorphism of U/Up. That the kernel
of Φ is one-dimensional follows from the surjectivity, because V ′ has dimension
(p2 − 1)/2 over Fp while V ′′ has dimension (p2 − 3)/2 ([5], p. 42, Theorem 3.2).
Finally, the G-equivariance of Φ follows from [5], p. 27, Formula K1. �

Put V ′′(k) = Φ(V ′(k)), so that

V ′′ = ⊕(p−3)/2
k=0 V ′′

(k)
,

and let τ ′′(k) denote the representation of G on V ′′
(k).

Proposition 8. If 1 6 k 6 (p − 5)/2 then τ ′′
(k) has a unique irreducible subrep-

resentation and a unique irreducible quotient representation, and they are equiva-
lent to σk and σ(p−1−2k)/2 respectively. On the other hand, τ ′′(0) ∼= σ(p−1)/2 and
τ ′′

((p−3)/2) ∼= σ1 ⊕ σ(p−3)/2.

Proof. Combine Propositions 6 and 7 and observe that V ′ has exactly one G-stable
subspace of dimension one. �

We conclude with some remarks which will lead to a slight reformulation of
Proposition 8. Since p > 7, the two direct summands of τ ′′((p−3)/2) are inequivalent,
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so there is a unique subspace W ′′((p−3)/2) of V ′′((p−3)/2) on which the representation
of G is equivalent to σ(p−3)/2. We shall refer to the subspace

V ′′nc =
(
⊕(p−5)/2
k=0 V ′′

(k)
)
⊕W ′′((p−3)/2)

of V ′′ as the noncongruence part of V ′′. The congruence part of V ′′ is the unique
subspace V ′′c of V ′′((p−3)/2) on which the representation of G is equivalent to σ1.
Thus

V ′′ = V ′′nc ⊕ V ′′c .(12)

To explain the terminology, let K be the field of modular functions for Γ(p) and
let Kcc be the “congruence closure” of K, in other words the union of the modular
function fields for all congruence subgroups of SL(2,Z). Given any subspace W of
V ′′, we write KW for the Kummer extension of K obtained by adjoining the pth roots
of all f ∈ U such that fUp ∈ W . (Note that K×p ∩ U = Up, so that we can apply
Kummer theory with K×/K×p replaced by U/Up: in particular, [KW : K] = |W |.)
We claim that

KV ′′ ∩ Kcc = KV ′′c .(13)

Together, (12) and (13) justify the designation “noncongruence part” for V ′′nc.
To prove (13), we recall from the proof of Proposition 6 that the subspace of

V ′
((p−3)/2) on which G acts via σ1 is pM/pQ (strictly speaking we should identify

this subspace as pM((p−3)/2)/pQ((p−3)/2), not pM/pQ, but M(k) = Q(k) for k 6=
(p − 3)/2). Thus Φ(pM/pQ) = V ′′c . It follows (see [7], Proposition 2, p. 12) that
KV ′′c is the field of modular functions for Γ(p2), whence the right-hand side of (13)
is contained in the left-hand side. For the reverse inclusion, put

Γ = {γ ∈ SL(2,Z) : f ◦ γ = f for all f ∈ KV ′′ ∩ Kcc}.
Then the field of modular functions for Γ is the left-hand side of (13). In particular,
since the left-hand side of (13) is a subfield of Kcc it follows that Γ is a congruence
subgroup. But the least common multiple of the cusp amplitudes of Γ divides p2,
because the field KV ′′ is generated over K by pth roots of elements of K. Thus the
Wohlfahrt level of Γ divides p2, and since Γ is a congruence subgroup its Wohlfahrt
level equals its congruence level by the Fricke-Wohlfahrt theorem [9]:

Γ(p2) ⊂ Γ.(14)

Taking modular function fields of the two sides of (14) reverses the inclusion and
thus gives the inclusion of the left-hand side of (13) in the right-hand side.

Now put W ′′(0) = V ′′
(0), and for 1 6 k 6 (p − 5)/2 let W ′′(k) be the unique

irreducible subspace of V ′′(k). Then the maximal semisimple subspace of V ′′nc is
⊕(p−3)/2
k=0 W ′′

(k), and we obtain:

Proposition 9. The representation of G on the maximal semisimple subspace of
V ′′nc is equivalent to ⊕(p−1)/2

k=1 σk.
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