IRREDUCIBLE SPACES OF MODULAR UNITS

DAVID E. ROHRLICH

Fix a prime $p \ge 7$, put $G = \text{PSL}(2, \mathbb{F}_p)$, and write U for the multiplicative group of modular units of level p . We shall determine the irreducible subspaces of the natural representation of G on U/U^p . The outcome of the calculation can be described as follows: Every irreducible nontrivial representation of G over \mathbb{F}_p occurs with multiplicity one in the maximal semisimple subspace of the "noncongruence part" of U/U^p (to be defined). Apart from the formulation and some slight differences arising from the choice of group $(PSL(2, \mathbb{F}_p))$ instead of $GL(2, \mathbb{F}_p)/{\{\pm 1\}}$, the result is already in Gross [2]. Presumably one can give conditions as in [6] and [7] which ensure that the unit group remains large after descent and specialization to a number field, but this problem will not be addressed here.

For the sake of perspective, it is useful to recall that the natural representation of G on the space of modular forms of weight 2 and level p was decomposed into irreducibles in two papers of Hecke [3], [4]. As one would expect, most of the work in these papers goes into decomposing the space of cusp forms, but it is actually the space of Eisenstein series – dealt with by Hecke in a few lines – which has some bearing on the present note. The reason is simple: if $f \in U$ then $(d \log f)/dz$ is an Eisenstein series of weight 2 and level p . In fact the space of all such Eisenstein series is simply $\mathbb{C} \otimes_{\mathbb{Z}} (d \log U)/dz$. Furthermore, since the kernel of $f \mapsto (d \log f)/dz$ is the subgroup of constant functions $\mathbb{C}^{\times} \subset U^{p}$, we see that U/U^{p} is isomorphic as an $\mathbb{F}_p[G]$ -module to $\mathbb{F}_p \otimes_{\mathbb{Z}} (d \log U)/dz$. Thus the representation of G on U/U^p arises via tensor product with \mathbb{F}_p from a G-stable Z-form of the space of Eisenstein series. It follows that the semisimplification of U/U^p can be computed directly from Hecke's decomposition of the space of Eisenstein series into irreducibles.

But the structure of U/U^p itself is another matter. To determine whether a given irreducible constituent of U/U^p actually occurs as a subspace we must turn to the work of Kubert and Lang [5], which reduces the problem to an elementary exercise. The present note is nothing more than a solution to the exercise: but however trite, it is nonetheless a heartfelt acknowledgment of an enormous personal debt to Serge Lang. I would also like to acknowledge the help provided by the referee of [7], whose suggestion for simplifying the proof of Proposition 7 of [7] turned out to be an essential ingredient of the present work.

1. The module of parameters

The $\mathbb{Z}[G]$ -module M introduced below is a first approximation to the domain of the Kubert-Lang map parametrizing U . Our goal is to decompose the associated representation of G on the vector space $V = M/pM$ over \mathbb{F}_p .

1.1. Preliminaries. The irreducible representations of G in characteristic p can be classified using a single invariant: their dimension. Indeed for each integer k satisfying $0 \leq k \leq (p-1)/2$ there is an absolutely irreducible representation σ_k of G over \mathbb{F}_p of dimension $2k + 1$, and σ_k is unique up to isomorphism. Furthermore every irreducible representations of G in characteristic p is isomorphic to some σ_k . In order to work with an explicit model we shall take σ_k to be the $(2k)$ th symmetric power of the tautological two-dimensional projective representation of G. Then the space of σ_k consists of binary homogeneous polynomials $f(x, y)$ of degree 2k over \mathbb{F}_p , and the action of G is given by the formula

(1)
$$
(\sigma_k(g)f)(x,y) = f(ax+cy,bx+dy),
$$

where q is the image in G of the element

$$
\tilde{g} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

of $SL(2, \mathbb{F}_p)$.

Put $R = \mathbb{F}_p^2 \setminus \{(0,0)\}.$ We define M to be the free Z-module of rank $(p^2-1)/2$ consisting of functions $m : R \to \mathbb{Z}$ such that $m(-r) = m(r)$ for $r \in R$. An action of G on M is given by the formula

(3)
$$
(g \cdot m)(r) = m(r\tilde{g}),
$$

where \tilde{g} is either of the two lifts of g to $SL(2, \mathbb{F}_p)$ and $r\tilde{g}$ is the product of the 1×2 row vector r and the matrix \tilde{q} . Of course this action is formally the same as (1), except that m is now an even function $R \to \mathbb{Z}$ rather than a homogeneous polynomial over \mathbb{F}_p .

Given a field F, put $V_F = F \otimes_{\mathbb{Z}} M$ and extend the action (3) by linearity to a representation τ_F of G on V_F . We can identify V_F with the vector space of dimension $(p^2-1)/2$ over F consisting of even functions $m: R \to F$, and then the action of G is again formally the same as in (1) and (3) . We are primarily interested in the case $F = \mathbb{F}_p$, and in this case we write V_F and τ_F simply as V and τ .

1.2. Irreducible constituents. Write B for the image in G of the upper triangular subgroup of $SL(2, \mathbb{F}_p)$ and $N \subset B$ for the image of the strictly upper triangular subgroup (i. e. the subgroup defined by the conditions $c = 0$, $a = d = 1$ in (2)). We denote the trivial one-dimensional character of any group by 1, leaving both the group and the implicit field of scalars to be inferred from context. In the following proposition, for example, 1 is the trivial one-dimensional character of N with values in F , and $\text{ind}_{N}^{G}1$ is the representation of G over F which it induces.

Proposition 1. $\tau_F \cong \text{ind}_N^G 1$.

Proof. Take the space of $\text{ind}_{N}^{G}1$ to consist of functions $f: G \to F$ satisfying $f(ng) =$ $f(g)$ for $n \in N$ and $g \in G$, with G acting by right translation. As we have already noted, V_F is also a space of functions, namely the space of even functions $m: \overline{R} \to F$. Furthermore, given f in the space of $\text{ind}_{N}^{G}1$ we obtain an element $m_f \in V_F$ by setting $m_f(r) = f(g)$ if $e\tilde{g} = \pm r$, where e is the row vector $(0, 1) \in R$. The map $f \mapsto m_f$ is redily verified to be G-equivariant and injective, and its domain and range both have dimension $(p^2 - 1)/2$.

We now take $F = \mathbb{F}_p$ and compute the semisimplification of τ :

Proposition 2. The multiplicity of σ_k as a constituent of τ is 1 if $k = 0$ or $k = (p-1)/2$ and $2 \text{ if } 1 \leq k \leq (p-3)/2$.

Proof. Given $t \in \mathbb{F}_p^{\times}$, let $a(t)$ denote the image in B of the diagonal matrix with diagonal entries t, t^{-1} . The map $t \mapsto a(t)$ induces an isomorphism of quotient

MODULAR UNITS 3

groups $\mathbb{F}_p^{\times}/\{\pm 1\} \cong B/N$, and we can compose the inverse of this isomorphism with even powers of the Teichmüller character $\omega : \mathbb{F}_p^{\times} \to \mathbb{Z}_p^{\times}$ to obtain characters of B. More precisely, we define $\xi_k : B \to \mathbb{Q}_p^\times$ $(0 \leq k \leq (p-3)/2)$ by setting

$$
\xi_k(a(t)n) = \omega(t)^{2k} \qquad (t \in \mathbb{F}_p^{\times}, \ \ n \in N).
$$

Then $\text{ind}_{N}^{B} 1 \cong \bigoplus_{k=0}^{(p-3)/2} \xi_k$, whence Proposition 1 and the identification $\text{ind}_{N}^{G} 1 =$ $\text{ind}_{B}^{G}(\text{ind}_{N}^{B}1)$ give

$$
\tau_{\mathbb{Q}_p} \cong \oplus_{k=0}^{(p-3)/2} \pi_k
$$

with $\pi_k = \text{ind}_{B}^{G} \xi_k$ (cf. formula (22) of [3]). We remark that $\pi_0 \cong 1 \oplus \eta$ with an absolutely irreducible representation η of dimension p over \mathbb{Q}_p , while if $p \equiv 1 \mod 4$ then $\pi_{(p-1)/4}$ decomposes over $\overline{\mathbb{Q}}_p$ as the direct sum of two inequivalent irreducible representations ζ and ζ' of dimension $(p + 1)/2$. Apart from these exceptions, the direct summands in (4) are asbolutely irreducible (although not distinct, as $\pi_k \cong \pi_{(p-1-2k)/2}$ for $1 \leq k \leq (p-3)/2$.

Put $\mathcal{M} = \mathbb{Z}_p \otimes_{\mathbb{Z}} M$. Then \mathcal{M} is a G-stable \mathbb{Z}_p -lattice in $V_{\mathbb{Q}_p}$ and $V = \mathbb{F}_p \otimes \mathcal{M}$. Hence the semisimplification of V can be read from (4) and the mod- p decomposition numbers of G. These decomposition numbers are implicit in Brauer-Nesbitt [1] (p. 590) and explicitly computed in Srinivasan [8] (pp. 107 – 108). In applying [8], note that for $n = 1$ her $\Phi(r_0)$ and $\varphi(r_0)$ coincide. Hence taking $r_0 = 2k$ in formula (3.5) of [8], we find that the character of our π_k coincides on p-regular conjugacy classes with the sum of the Brauer characters of our σ_k and $\sigma_{(p-1-2k)/2}$. In the first instance this conclusion holds only when $1 \leq k \leq (p-3)/2$ and $k \neq (p-1)/4$, but in fact it holds also when $k = 0$ (by the first three lines on p. 108 of [8]) and when $k = (p-1)/4$ (by formula (3.7) of [8]). The upshot is that in all cases, the semisimplification of the reduction modulo p of π_k coincides with $\sigma_k \oplus \sigma_{(p-1-2k)/2}$. Hence the proposition follows from (4).

1.3. Irreducible subspaces and quotient spaces. Next we determine the multiplicity of σ_k as a quotient representation of τ . Given representations α and β of a group H on vector spaces W_{α} and W_{β} over a field F, write $\text{Hom}_{F[H]}(\alpha, \beta)$ for $\text{Hom}_{F[H]}(W_\alpha, W_\beta)$.

Proposition 3. For $0 \le k \le (p-1)/2$,

$$
\dim_{\mathbb{F}_p} \text{Hom}_{\mathbb{F}_p[G]}(\tau, \sigma_k) = 1.
$$

Proof. Proposition 1 and Frobenius reciprocity give

$$
\mathrm{Hom}_{\mathbb{F}_p[G]}(\tau,\sigma_k) \cong \mathrm{Hom}_{\mathbb{F}_p[N]}(1,\mathrm{res}^G_N \sigma_k).
$$

Now N is generated by the element u corresponding to the choices $a = b = d = 1$ and $c = 0$ in (2), so it suffices to see that the subspace of vectors fixed by $\sigma_k(u)$ is one-dimensional. Let A be the matrix of $\sigma_k(u)$ relative to the ordered basis $x^{2k}, x^{2k-1}y, \ldots, y^{2k}$, and let a_{ij} be the (i, j) -entry of A for $1 \leq i, j \leq 2k+1$. Using (1) to write $(\sigma_k(u)f)(x, y) = f(x, x + y)$, one readily verifies that A is upper triangular, that $a_{ii} = 1$ for all i, and that $a_{i,i+1} \neq 0$ for $1 \leq i \leq k$. It follows that the Jordan normal form of A consists of a single Jordan block, whence x^{2k} is the unique eigenvector of $\sigma_k(u)$ up to scalar multiples.

A similar statement holds for subrepresentations:

Proposition 4. For $0 \le k \le (p-1)/2$,

 $\dim_{\mathbb{F}_n} \text{Hom}_{\mathbb{F}_n[G]}(\sigma_k, \tau) = 1.$

Proof. In view of Proposition 3 it suffices to see that both σ_k and τ are self-dual. The self-duality of σ_k follows from the fact that irreducible representations of G over \mathbb{F}_p are determined up to isomorphism by their dimension. The self-duality of τ follows from the fact that the symmetric bilinear form

(5)
$$
\langle m, m' \rangle = \sum_{r \in R'} m(r) m'(r) \qquad (m, m' \in V)
$$

is nondegenerate and G -invariant. \Box

1.4. Homogeneous components. Recall that $\mathcal{M} = \mathbb{Z}_p \otimes_{\mathbb{Z}} M$ and that $\omega : \mathbb{F}_p^{\times} \to \mathbb{Z}_p^{\times}$ is the Teichmüller character. We shall view the elements of M as even functions $m: R \to \mathbb{Z}_p$. We define $\mathcal{M}^{(k)}$ to be the \mathbb{Z}_p -submodule of M consisting of those m such that

$$
m(tr) = \omega(t)^{2k} m(r)
$$

for $t \in \mathbb{F}_p^{\times}$ and $r = (r_1, r_2) \in R$, where $tr = (tr_1, tr_2)$. The linear operators $e^{(k)} : \mathcal{M} \to \mathcal{M}$ given by

(6)
$$
(e^{(k)}m)(r) = \frac{1}{p-1} \sum_{t \in \mathbb{F}_p^{\times}} \omega^{-(k)}(t)m(tr)
$$

 $(0 \le k \le (p-3)/2)$ form a family of orthogonal idempotents projecting M onto the respective submodules $\mathcal{M}^{(k)}$ and summing to the identity, so we have

(7)
$$
\mathcal{M} = \bigoplus_{k=0}^{(p-3)/2} \mathcal{M}^{(k)}.
$$

In fact (7) is a decomposition into $\mathbb{Z}_p[G]$ -submodules, because the idempotents $e^{(k)}$ commute with the action of G. Hence the space of τ likewise decomposes into G-stable subspaces:

(8)
$$
V = \bigoplus_{k=0}^{(p-3)/2} V^{(k)}
$$

with $V^{(k)} = \mathbb{F}_p \otimes_{\mathbb{Z}_p} \mathcal{M}^{(k)}$. Let $\tau^{(k)}$ denote the representation of G on $V^{(k)}$.

Proposition 5. If $1 \le k \le (p-3)/2$ then $\tau^{(k)}$ has a unique irreducible subrepresentation and a unique irreducible quotient representation, and they are equivalent to σ_k and $\sigma_{(p-1-2k)/2}$ respectively. On the other hand, $\tau^{(0)} \cong \sigma_0 \oplus \sigma_{(p-1)/2}$.

Proof. The first point is that the free \mathbb{Z}_p -module $\mathcal{M}^{(k)}$ has rank $p+1$. Indeed for each of the $p+1$ lines ℓ through the origin in \mathbb{F}_p^2 , fix an element $r_\ell \in R$ which spans ℓ , and define a function $f_{\ell,k} \in \mathcal{M}^{(k)}$ by

$$
f_{\ell,k}(r) = \begin{cases} \omega(t)^{2k} & \text{if } r = tr_{\ell} \text{ with } t \in \mathbb{F}_p^{\times} \\ 0 & \text{if } r \notin \ell. \end{cases}
$$

For fixed k the $p+1$ functions $f_{\ell,k}$ have pairwise disjoint supports and are therefore linearly independent over \mathbb{Z}_p . Hence $\mathcal{M}^{(k)}$ has rank at least $p+1$. But M has rank $(p+1)(p-1)/2$, so we deduce from (7) that $\mathcal{M}^{(k)}$ has rank exactly $p+1$, as claimed.

It follows that $V^{(k)}$ has dimension $p+1$ over \mathbb{F}_p . But an irreducible representation of G over \mathbb{F}_p has dimension $\leq p$, so $V^{(k)}$ has a proper irreducible subspace and

hence at least two irreducible constituents. On the other hand, V has exactly $p-1$ irreducible constituents (Proposition 2), so we deduce from (8) that $V^{(k)}$ has exactly two constituents.

To identify these constituents up to isomorphism, we introduce a $\mathbb{Z}[G]$ -submodule \mathcal{N}_k of M for $0 \leq k \leq (p-3)/2$. Given $m \in \mathcal{M}$, let $\overline{m}: R \to \mathbb{F}_p$ denote the reduction of m modulo p. We define $\mathcal{N}_k \subset \mathcal{M}$ to be the submodule consisting of all m such that \overline{m} coincides with a binary homogeneous polynomial of degree $2k$ over \mathbb{F}_p . Strictly speaking, we should say "coincides with the function $R \to \mathbb{F}_p$ defined by" such a polynomial, but the distinction is moot: a homogeneous polynomial of degree $< p$ which vanishes on R is zero. Thus the map $m \mapsto \overline{m}$ determines an embedding of $\mathcal{N}_k/(\mathcal{N}_k \cap p\mathcal{M})$ into the space of σ_k . In fact this embedding is surjective and hence a G-isomorphism, because any even function $R \to \mathbb{F}_p$ can be lifted to an even function $R \to \mathbb{Z}_p$.

Now put $\mathcal{N}_k^{(l)} = e^{(l)} \mathcal{N}_k$ $(0 \le l \le (p-3)/2)$. It is readily verified that if $l \ne k$ then the image of $\mathcal{N}_k^{(l)}$ $k_k^{(l)}$ under $m \mapsto \overline{m}$ is $\{0\}$. On the other hand, we have just seen that the map $m \mapsto \overline{m}$ gives a G-isomorphism of $\mathcal{N}_k/(\mathcal{N}_k \cap p\mathcal{M})$ onto the space of σ_k . It follows that the domain of this G-isomorphism can be replaced by $\mathcal{N}_k^{(k)}$ $\mathcal{K}_k^{(k)}/(\mathcal{N}_k^{(k)} \cap p\mathcal{M}^{(k)})$. But the latter can be viewed as a G-stable subspace $W^{(k)}$ of $V^{(k)}$, and the representation of G on $W^{(k)}$ is therefore equivalent to σ_k . Furthermore, we have seen that $V^{(k)}$ has exactly two irreducible constituents, so the quotient $V^{(k)}/W^{(k)}$ is also irreducible. Since its dimension is $(p+1)-(2k+1)$ $p-2k$, we deduce that the quotient representation is equivalent to $\sigma_{(p-1-2k)/2}$. In summary, the representation of G on $W^{(k)}$ and on $V^{(k)}/W^{(k)}$ is equivalent to σ_k and to $\sigma_{(p-1-2k)/2}$ respectively.

To see that $\tau^{(0)} \cong \sigma_0 \oplus \sigma_{(p-1)/2}$, we observe that the set of indices k satisfying $1 \leq k \leq (p-3)/2$ is stable under $k \mapsto (p-1-2k)/2$. It follows that σ_0 and $\sigma_{(p-1)/2}$ occur as constituents of $V^{(k)}$ if and only if $k = 0$. On the other hand, σ_0 and $\sigma_{(p-1)/2}$ occur not merely as constituents but as subrepresentations of τ (Proposition 4). It follows that they occur as subrepresentations of $\tau^{(0)}$, whence $\tau^{(0)} \cong \sigma_0 \oplus \sigma_{(p-1)/2}.$

Finally, suppose that $1 \leq k \leq (p-3)/2$. If W is an irreducible subspace of $V^{(k)}$ then the representation of G on W is equivalent to an irreducible constituent of $\tau^{(k)}$, hence either to σ_k or to $\sigma_{(p-1-2k)/2}$. But if $W \neq W^{(k)}$ then the first possibility is excluded, because σ_k occurs as a subrepresentation of τ with multiplicity one (Proposition 4). As for the second possibility, it coincides with the first (and is therefore excluded when $W \neq W^{(k)}$ if $k = (p-1)/4$. Otherwise it is excluded by Proposition 4 again, because $\sigma_{(p-1-2k)/2}$ already occurs as a subrepresentation of $\tau^{((p-1-2k)/2)}$, and the spaces $V^{((p-1-2k)/2)}$ and $V^{(k)}$ are linearly independent. We conclude that $W^{(k)}$ is the unique irreducible subspace of $V^{(k)}$, and since $V^{(k)}$ has just two irreducible constituents it follows that $V^{(k)}/W^{(k)}$ is the unique irreducible quotient.

2. The quadratic relations

To move a step closer to U we turn from M to the $\mathbb{Z}[G]$ -submodule Q of M defined by the "quadratic relations" of Kubert and Lang. As before, our primary concern is the representation of G on the associated vector space over \mathbb{F}_p , which is now the space $V' = Q/pQ$.

6 DAVID E. ROHRLICH

2.1. Preliminaries. To define Q, recall that given $m \in M$ we write $\overline{m}: R \to \mathbb{F}_p$ for the reduction of m modulo p. We will also let N denote the $\mathbb{Z}[G]$ -submodule of M consisting of all n for which \overline{n} has the form

(9)
$$
\overline{n}(r) = ar_1^2 + br_1r_2 + cr_2^2
$$

with $a, b, c \in \mathbb{F}_p$, where $r = (r_1, r_2)$. Since N is a Z-form of the $\mathbb{Z}_p[G]$ -module previously denoted \mathcal{N}_1 , it might be more logical to denote it N_1 , but for simplicity we omit the subscript (and thereby void our previous convention that N is the subgroup of G corresponding to strictly upper triangular matrices). We define Q to consist of those $m \in M$ such that

(10)
$$
\sum_{r \in R} \overline{m}(r)\overline{n}(r) = 0
$$

for all $n \in N$.

It is immediate from this description that Q contains pM . Thus M/Q is a quotient of the finite-dimensional vector space $V = M/pM$ over \mathbb{F}_p . In fact since Q is defined by the vanishing of three linearly independent linear forms on M/pM (namely those corresponding to the choices $(a, b, c) = (1, 0, 0), (0, 1, 0),$ and $(0, 0, 1)$) in (9) and (10)) we see that M/Q has dimension three over \mathbb{F}_p . In particular Q has finite index in M, so by the Brauer-Nesbitt theorem, the representation τ' of G on the space $V' = Q/pQ$ has the same semisimplification as τ . In other words, Proposition 2 holds with τ replaced by τ' . However Proposition 5 must be modified slightly.

2.2. Homogeneous components, Put $\mathcal{Q} = \mathbb{Z}_p \otimes_{\mathbb{Z}} Q$. Then \mathcal{Q} is stable under $e^{(k)}$ (cf. (6) , (9) , and (10)). Hence

$$
\mathcal{Q}=\oplus_{k=0}^{(p-3)/2}\mathcal{Q}^{(k)}
$$

with $\mathcal{Q}^{(k)} = e^{(k)}\mathcal{Q}$. Thus putting $V'^{(k)} = \mathcal{Q}^{(k)}/p\mathcal{Q}^{(k)}$ we have

(11)
$$
V' = \bigoplus_{k=0}^{(p-3)/2} V'^{(k)},
$$

a decomposition of V' into G-stable subspaces. Let $\tau'^{(k)}$ denote the representation of G on $V'^{(k)}$.

Proposition 6. If $1 \le k \le (p-5)/2$ then $\tau^{(k)}$ has a unique irreducible subrepresentation and a unique irreducible quotient representation, and they are equivalent to σ_k and $\sigma_{(p-1-2k)/2}$ respectively. On the other hand, $\tau^{(0)} \cong \sigma_0 \oplus \sigma_{(p-1)/2}$ and $\tau'^{((p-3)/2)} \cong \sigma_1 \oplus \sigma_{(p-3)/2}.$

Proof. Suppose first that $k \neq (p-3)/2$. We claim that $\mathcal{M}^{(k)} \subset \mathcal{Q}$, whence $\mathcal{M}^{(k)} =$ $\mathcal{Q}^{(k)}$. To see this, take $m \in \mathcal{M}^{(k)}$ and $n \in \mathbb{N}$, and write

$$
\sum_{r \in R} \overline{m}(r)\overline{n}(r) = \sum_{\ell \in \Lambda} \sum_{r \in R \cap \ell} \overline{m}(r)\overline{n}(r),
$$

where Λ is the set of lines through the origin in \mathbb{F}_p^2 . For each $\ell \in \Lambda$ choose a vector $r_\ell \in R$ spanning ℓ . Then the inner sum on the right-hand side can be written as a sum over $t \in \mathbb{F}_p^{\times}$, with $r = tr_{\ell}$. The homogeneity of \overline{m} and \overline{n} then gives

$$
\sum_{r \in R} \overline{m}(r)\overline{n}(r) = \sum_{\ell \in \Lambda} \overline{m}(r_{\ell})\overline{n}(r_{\ell}) \sum_{t \in \mathbb{F}_p^{\times}} t^{2k+2}.
$$

MODULAR UNITS 7

Since $k \neq (p-3)/2$ the exponent of t on the right-hand side is $\langle p-1 \rangle$ and consequently the inner sum is 0. Thus $\mathcal{M}^{(k)} \subset \mathcal{Q}$ and $\mathcal{M}^{(k)} = \mathcal{Q}^{(k)}$, as claimed.

It follows that if $k \neq (p-3)/2$ then $\tau^{(k)} \cong \tau^{(k)}$, whence the assertions at hand reduce to those of Proposition 5. To handle the remaining case $k = (p-3)/2$, we recall that τ and τ' have isomorphic semisimplifications and are direct sums of their respective homogeneous components $\tau^{(k)}$ and $\tau'^{(k)}$. Since $\tau'^{(k)} \cong \tau^{(k)}$ for $k \neq (p-3)/2$, we deduce that the semisimplifictions of τ' ^{((p-3)/2)} and $\tau^{((p-3)/2)}$ are likewise isomorphic. Thus by Proposition 5, τ' ^{((p-3)/2)} has exactly two irreducible constituents, namely $\sigma_{(p-3)/2}$ and σ_1 .

Now $\mathcal M$ and $\mathcal Q$ are also the direct sums of their homogeneous components $\mathcal M^{(k)}$ and $\mathcal{Q}^{(k)}$, and we have seen that the vector space $\mathcal{M}/\mathcal{Q} = M/Q$ has dimension three over \mathbb{F}_p (cf. (9) and (10)) while $\mathcal{M}^{(k)} = \mathcal{Q}^{(k)}$ for $k \neq (p-3)/2$. Consequently $\mathcal{M}^{((p-3)/2)}/\mathcal{Q}^{((p-3)/2)}$ is also three-dimensional over \mathbb{F}_p , as is therefore the subspace $Y = p\mathcal{M}^{((p-3)/2)}/p\mathcal{Q}^{((p-3)/2)}$ of $V'^{((p-3)/2)}$. Since $\tau'^{((p-3)/2)}$ has just the two irreducible constituents σ_1 and $\sigma_{(p-3)/2}$ of dimensions 3 and $p-2$ respectively, we deduce that the representation of G on Y is σ_1 . Thus σ_1 is a subrepresentation of τ' ^{((p-3)/2)} and σ _{(p-3)/2} is the corresponding quotient representation.

It remains to see that σ_1 is also a quotient representation of $\tau'^{((p-3)/2)}$, whence $\sigma_{(p-3)/2}$ is a subrepresentation and $\tau^{(p-3)/2} \cong \sigma_1 \oplus \sigma_{(p-3)/2}$. To this end, consider the bilinear pairing $\prec *, * \succ : Q \times N \to \mathbb{Z}$ given by

$$
\prec m, n \succ = \frac{1}{p} \sum_{r \in R} m(r)n(r) \qquad (m \in Q, \ n \in N).
$$

Write L for the $\mathbb{Z}[G]$ -submodule of Q consisting of those m such that

$$
\prec m, n \succ \equiv 0 \pmod{p}
$$

for all $n \in N$. Put $\mathcal{L} = \mathbb{Z}_p \otimes_{\mathbb{Z}} L$. Then \mathcal{L} is stable under $e^{(k)}$, so putting $\mathcal{L}^{(k)} = e^{(k)} \mathcal{L}$ we have

$$
\mathcal{L}=\oplus_{k=0}^{(p-3)/2}\mathcal{L}^{(k)}.
$$

We claim that $\mathcal{L}^{((p-3)/2)}$ contains $p\mathcal{Q}^{((p-3)/2)}$ and that the quotient space $Z =$ $\mathcal{Q}^{((p-3)/2)}/\mathcal{L}^{((p-3)/2)}$ of $V^{(p-3)/2}$ is of positive dimension ≤ 3 . An immediate consequence of the claim is that the representation of G on Z is equivalent to σ_1 , so verifying the claim will complete the proof.

It is immediate from the definitions that L contains pQ and hence that L contains pQ. On the other hand, $\mathcal L$ does not contain p $\mathcal M$: for if $m \in M$ is the function taking the value 1 on $(\pm 1, 0)$ and 0 elsewhere then $\prec pm, n \succ \neq 0 \mod p$ for any $n \in N$ satisfying (9) with $a \neq 0$. It follows that for some k with $0 \leq k \leq (p-3)/2$ we have $p\mathcal{M}^{(k)} \not\subset \mathcal{L}^{(k)}$. But we have seen that $p\mathcal{Q} \subset \mathcal{L}$ and that $p\mathcal{Q}^{(k)} = p\mathcal{M}^{(k)}$ for $k \neq (p-3)/2$. Hence $\mathcal{L}^{((p-3)/2)}$ does not contain $p\mathcal{M}^{((p-3)/2)}$, and we deduce that $\mathcal{L}^{((p-3)/2)}/p\mathcal{Q}^{((p-3)/2)}$ is a subspace of $V'^{((p-3)/2)}$ of positive codimension. On the other hand, the codimension is ≤ 3 , because the subspace is defined by the vanishing of three linear forms on $V'^{((p-3)/2)}$ (namely the forms $m + pQ^{((p-3)/2} \mapsto m, n \succ$ with n as in (9) and $(a, b, c) = (1, 0, 0), (0, 1, 0),$ and $(0, 0, 1)$. Our claim follows.

8 DAVID E. ROHRLICH

3. The Kubert-Lang map

Now let H denote the complex upper half-plane. Given a matrix $\tilde{\gamma} \in SL(2,\mathbb{Z}),$ we identify its image $\gamma \in \text{PSL}(2,\mathbb{Z})$ with the fractional linear transformation of H defined by γ . Thus if f is a function on H and $\tilde{\gamma}$ is the right-hand side of (2) then $f \circ \gamma$ is the function $z \mapsto f((az + b)/(cz + d))$. As usual, $\Gamma(p)$ denotes the subgroup of $SL(2, \mathbb{Z})$ defined by the conditions $a \equiv d \equiv 1$ and $b \equiv c \equiv 0 \mod p$, and the group that we are denoting U – namely the multiplicative group of modular units of level p – consists of modular functions for $\Gamma(p)$ which are holomorphic and nowhere vanishing on H. We make U into a $\mathbb{Z}[G]$ -module via the action

$$
g \cdot f = f \circ \gamma^{-1} \qquad (g \in G, \ f \in U),
$$

where $\gamma \in \text{PSL}(2,\mathbb{Z})$ is any lift of g. The resulting representation of G on the vector space $V'' = U/U^p$ over \mathbb{F}_p will be denoted τ'' .

Given $a \in p^{-1}\mathbb{Z}^2$ with $a \neq (0,0)$, define the Siegel function g_a as in [5], p. 29. For $r \in R$ we put $f_r = g_a^{12}$, where $a \in p^{-1}\mathbb{Z}^2$ is chosen so that r coincides with the residue class of pa modulo $p\mathbb{Z}^2$. Since a can be replaced by any element of the coset $a + \mathbb{Z}^2$, the function g_a^{12} is determined only up to multiplication by a pth root of unity ([5], p. 28, Formula K2), but the coset f_rU^p is uniquely determined by r because U^p contains \mathbb{C}^{\times} . Furthermore, if $m \in Q$ then the function

$$
f^m := \prod_{r \in R} f_r^{m(r)}
$$

belongs to U ([5], p. 76, Theorem 5.2). Hence the assignment $m + pQ \mapsto f^m U^p$ defines an \mathbb{F}_p -linear map $\Phi: V' \to V''$.

Proposition 7. The map Φ is surjective with one-dimensional kernel, and it intertwines τ' with τ'' .

Proof. The argument echos the proof of Proposition 0 of [7], which in turn merely assembles a number of results from [5]. Let us at least recall the relevant citations: The surjectivity of Φ follows from [5], p. 83, Theorem 1.3, because p is prime to 12 and thus the map $fU^p \mapsto f^{12}U^p$ is an automorphism of U/U^p . That the kernel of Φ is one-dimensional follows from the surjectivity, because V' has dimension $(p^2 - 1)/2$ over \mathbb{F}_p while V'' has dimension $(p^2 - 3)/2$ ([5], p. 42, Theorem 3.2). Finally, the G-equivariance of Φ follows from [5], p. 27, Formula K1.

Put $V''^{(k)} = \Phi(V'^{(k)})$, so that

$$
V'' = \oplus_{k=0}^{(p-3)/2} V''^{(k)},
$$

and let $\tau''^{(k)}$ denote the representation of G on $V''^{(k)}$.

Proposition 8. If $1 \le k \le (p-5)/2$ then $\tau''^{(k)}$ has a unique irreducible subrepresentation and a unique irreducible quotient representation, and they are equivalent to σ_k and $\sigma_{(p-1-2k)/2}$ respectively. On the other hand, $\tau''^{(0)} \cong \sigma_{(p-1)/2}$ and $\tau''^{((p-3)/2)} \cong \sigma_1 \oplus \sigma_{(p-3)/2}.$

Proof. Combine Propositions 6 and 7 and observe that V' has exactly one G -stable subspace of dimension one.

We conclude with some remarks which will lead to a slight reformulation of Proposition 8. Since $p \ge 7$, the two direct summands of $\tau''^{((p-3)/2)}$ are inequivalent,

MODULAR UNITS 9

so there is a unique subspace $W''^{((p-3)/2)}$ of $V'''^{((p-3)/2)}$ on which the representation of G is equivalent to $\sigma_{(p-3)/2}$. We shall refer to the subspace

$$
V''_{\text{nc}} = \left(\bigoplus_{k=0}^{(p-5)/2} V''^{(k)}\right) \oplus W''^{((p-3)/2)}
$$

of V'' as the noncongruence part of V'' . The congruence part of V'' is the unique subspace V''_{c} of $V''^{((p-3)/2)}$ on which the representation of G is equivalent to σ_1 . Thus

$$
(12) \t\t V'' = V''_{\text{nc}} \oplus V''_{\text{c}}.
$$

To explain the terminology, let $\mathfrak K$ be the field of modular functions for $\Gamma(p)$ and let \mathfrak{K}^{cc} be the "congruence closure" of \mathfrak{K} , in other words the union of the modular function fields for all congruence subgroups of $SL(2, \mathbb{Z})$. Given any subspace W of V'' , we write \mathfrak{K}_W for the Kummer extension of $\mathfrak K$ obtained by adjoining the pth roots of all $f \in U$ such that $fU^p \in W$. (Note that $\mathfrak{K}^{\times p} \cap U = U^p$, so that we can apply Kummer theory with $\mathfrak{K}^{\times}/\mathfrak{K}^{\times p}$ replaced by U/U^p : in particular, $[\mathfrak{K}_W : \mathfrak{K}] = |W|$.) We claim that

(13)
$$
\mathfrak{K}_{V''} \cap \mathfrak{K}^{\mathrm{cc}} = \mathfrak{K}_{V''_{\mathrm{c}}}.
$$

Together, (12) and (13) justify the designation "noncongruence part" for V''_{nc} .

To prove (13), we recall from the proof of Proposition 6 that the subspace of $V^{(\ell p-3)/2)}$ on which G acts via σ_1 is pM/pQ (strictly speaking we should identify this subspace as $p\mathcal{M}^{((p-3)/2)}/p\mathcal{Q}^{((p-3)/2)}$, not pM/pQ , but $\mathcal{M}^{(k)} = \mathcal{Q}^{(k)}$ for $k \neq$ $(p-3)/2$). Thus $\Phi(pM/pQ) = V''_c$. It follows (see [7], Proposition 2, p. 12) that $\mathfrak{K}_{V''_{c}}$ is the field of modular functions for $\Gamma(p^2)$, whence the right-hand side of (13) is contained in the left-hand side. For the reverse inclusion, put

$$
\Gamma = \{ \gamma \in SL(2, \mathbb{Z}) : f \circ \gamma = f \text{ for all } f \in \mathfrak{K}_{V''} \cap \mathfrak{K}^{\mathrm{cc}} \}.
$$

Then the field of modular functions for Γ is the left-hand side of (13). In particular, since the left-hand side of (13) is a subfield of $\mathfrak{K}^{\scriptscriptstyle{cc}}$ it follows that Γ is a congruence subgroup. But the least common multiple of the cusp amplitudes of Γ divides p^2 , because the field $\mathfrak{K}_{V''}$ is generated over \mathfrak{K} by pth roots of elements of \mathfrak{K} . Thus the Wohlfahrt level of Γ divides p^2 , and since Γ is a congruence subgroup its Wohlfahrt level equals its congruence level by the Fricke-Wohlfahrt theorem [9]:

(14)
$$
\Gamma(p^2) \subset \Gamma.
$$

Taking modular function fields of the two sides of (14) reverses the inclusion and thus gives the inclusion of the left-hand side of (13) in the right-hand side.

Now put $W''^{(0)} = V''^{(0)}$, and for $1 \le k \le (p-5)/2$ let $W''^{(k)}$ be the unique irreducible subspace of $V''^{(k)}$. Then the maximal semisimple subspace of V''_{nc} is $\bigoplus_{k=0}^{(p-3)/2} W''^{(k)}$, and we obtain:

Proposition 9. The representation of G on the maximal semisimple subspace of V''_{nc} is equivalent to $\bigoplus_{k=1}^{(p-1)/2} \sigma_k$.

REFERENCES

- [1] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556 – 590.
- [2] B. H. Gross, Representation theory and the cuspidal group of $X(p)$, Duke Math. J. 54 (1987), 67 – 75.

10 DAVID E. ROHRLICH

- [3] E. Hecke, Über ein Fundamentalproblem aus der Theorie der elliptischen Modulfunktionen, Abh. Math. Sem. Hamb. 6 (1928), 235 – 257 (= Math. Werke $\#$ 28, 525 – 547).
- [4] E. Hecke, Über das Verhalten der Integrale 1. Gattung bei Abbildungen, insbesondere in der Theorie der elliptischen Modulfunktionen, Abh. Math. Sem. Hamb. 8 (1930), 271 – 281 (= Math. Werke $# 29, 548 - 558$.
- [5] D. S. Kubert and S. Lang, Modular Units, Springer-Verlag, Grundlehren Math. Wissen. vol. 244, 1981.
- [6] A. Lozano-Robledo, On the surjectivity of Galois representations attached to elliptic curves over number fields, Acta Arith. 117 (2005), 283 – 291.
- [7] D. E. Rohrlich, Modular units and the surjectivity of a Galois representation, J. of Number Thy. 107 (2004), $8 - 24$.
- [8] B. Srinivasan, On the modular characters of the special linear group $SL(2, p^n)$, Proc. London Math. Soc. 14 (1964), 101 –114.
- [9] K. Wohlfahrt, An extension of F. Klein's level concept, Ill. J. Math. 8 (1964), 529 535.

Department of Mathematics and Statistics, Boston University, Boston, MA 02215 E-mail address: rohrlich@math.bu.edu