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Introduction

Starting with Riemann’s derivation of an “explicit formula” for the number of
primes below a given bound, the functional equation of an L-function has been
an indispensable tool in analytic number theory, and in more recent years it has
become a fundamental tool in automorphic forms as well via the method of converse
theorems pioneered by Hamburger and Hecke. The present lectures are concerned
with a third direction, näıve by comparison and more limited in scope, namely the
use of the functional equation to determine the parity of the order of vanishing of
an L-function at the center of its critical strip. While the insights gained from this
type of information are often only conditional (“... granting the conjecture of Birch
and Swinnerton-Dyer, we conclude that ...”), they are sometimes the first hint of
interesting new phenomena in arithmetic geometry.

Given our focus in these lectures, the key invariant is the root number, and the
first four lectures are devoted to issues that arise in computing it. The four lectures
correspond roughly to four possibilities for the underlying representation: global
of dimension one, local of dimension one, global of arbitrary dimension, and local
of arbitrary dimension. The fifth lecture addresses a question which is hinted at
from the outset: To what extent, or under what circumstances, should one expect
the order of vanishing of an L-function at the center of its critical strip to be the
smallest value permitted by its functional equation? Very little is known about this
question, and our remarks are largely speculative.

The main prerequisites for the lectures are basic algebraic number theory and
a familiarity with Dirichlet L-functions. Some prior encounters with L-functions
of elliptic curves are also desirable. More general classes of L-functions (Hecke
L-functions, Artin L-functions, motivic L-functions) will be introduced from first
principles as the lectures progress, but since references to unspecified “L-functions”
appear right from the beginning, it is essential to have some notion of what is being
talked about, namely an absolutely convergent Dirichlet series represented by an
Euler product in some right half-plane (thus holomorphic and nonvanishing there)
which is known or conjectured to extend to a meromorphic function on C and to
satisfy a functional equation modeled on the functional equation of the Riemann
zeta function. An acquaintance with Dirichlet L-functions and perhaps even with L-
functions of elliptic curves provides an adequate intuition for absorbing the concept
in general.
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4 DAVID E. ROHRLICH, PCMI LECTURE NOTES

Some vocabulary from group representation theory is also a prerequisite. Our
conventions are as follows. A representation ρ of a group G is always understood
to be finite-dimensional, and if G is a topological group then ρ is understood to be
continuous as well. Continuity is meaningful because the field of scalars of ρ will
be either C (the default) or else, where explicitly indicated, a λ-adic field with its
λ-adic topology or the algebraic closure of a finite field with the discrete topology.
A character is either a one-dimensional representation or the trace of a repre-
sentation of dimension greater than one, usually the former. Possible ambiguities,
when they arise, will be resolved by referring to a one-dimensional character.
A one-dimensional character is unitary if it takes values in the group of complex
numbers of absolute value 1. Note that elsewhere in the literature, particularly in
older treatments, the term quasicharacter is used for our “one-dimensional char-
acter” and the term character is reserved for our “unitary character.” Also the
“contragredient” of a representation ρ will be referred to as the dual of ρ and de-
noted ρ∨. To illustrate the definitions just made, note that if χ is a one-dimensional
character then χ∨ = χ−1, but if χ is unitary then also χ∨ = χ. The trivial character
of a group G will often be denoted by 1, or if G = Gal(K/K) then by 1K .

There is one simple fact about representations which comes up so often that
it deserves to be emphasized at the outset: A complex representation of a profi-
nite group is trivial on an open subgroup. To see why, observe first of all that
GLn(C) “has no small subgroups”: there is an open neighborhood U of the identity
in GLn(C) such that the only subgroup of GLn(C) which is contained in U is the
trivial subgroup. This property is easily verified using the exponential map, and it
actually characterizes real Lie groups among all locally compact groups (Hilbert’s
fifth problem). Suppose now that we are given a profinite group G and a represen-
tation ρ of G on a complex vector space V . Choose U ⊂ GL(V ) as above. Since the
open subgroups of G form a neighborhood basis at the identity, there is an open
subgroup H contained in ρ−1(U). Then ρ(H) is a subgroup of U , hence trivial.

Although we have made a point of proving this little fact about profinite groups,
in the pages that follow results both large and small will usually be stated without
proof. In particular we do not reproduce Tate’s proof of the functional equation
of Hecke L-functions or Deligne’s proof of the existence of local epsilon factors.
On the other hand, we do include some rather detailed proofs of statements for
which a convenient reference to the literature is lacking, and occasionally we also
include a proof to emphasize a point (as in the previous paragraph) or to illustrate
a technique. In the end, both the omission of most proofs and the inclusion of some
reflect our overall aim, which is to complement the literature rather than duplicate
it and to emphasize motivation rather than foundations.

It is a pleasure to record my indebtedness to many people: to the organizers of
the conference, Cristian Popescu, Karl Rubin, and Alice Silverberg; to the partici-
pants in the conference, especially Keith Conrad, Ralph Greenberg, Dick Gross,
Chan-Ho Kim, Myoungil Kim, Thomas de La Rochefoucauld, Álvaro Lozano-
Robledo, Rachel Newton, Sami Omar, Robert Pollack, and John Tate; and to
many other people whose help I solicited along the way, especially Avner Ash, Bar-
bara Beeton, Philippe Cassou-Noguès, Pierre Deligne, John Polking, and Fernando
Rodriguez Villegas. To all of them I extend my sincere thanks.



LECTURE 1

Trivial central zeros

Like many things in mathematics, the subject of root numbers begins with a
theorem of Gauss, who proved in 1805 that if p is an odd prime then

p−1∑
j=1

λ(j)e2πij/p =

{√
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4),

(1.1)

where λ is the Legendre symbol at p:

λ(j) =
(
j

p

)
.

A crude restatement of (1.1), and one that is much easier to prove, is that the
left-hand side is a square root of λ(−1)p. But by summarizing the result in this
way we lose the information that the square root at issue is the one with positive
real or imaginary part. In other words, the delicate point in (1.1) is precisely the
determination of the sign in front of the square root – the “root number.”

More generally, suppose that χ is any primitive Dirichlet character, say with
conductor N . The Gauss sum attached to χ is the quantity

τ(χ) =
N−1∑
j=0

χ(j)e2πij/N(1.2)

and the associated root number is given by

W (χ) =
τ(χ)
im
√
N
,(1.3)

where

m =

{
0 if χ(−1) = 1,
1 if χ(−1) = −1.

(1.4)

If χ is quadratic then τ(χ) is once again equal to
√
N or i

√
N according as χ is

even or odd. Equivalently, we can formulate the preceding statement as an assertion
about root numbers:

Theorem 1.1. If χ is a primitive quadratic Dirichlet character then W (χ) = 1.

In spite of our disclaimer in the introduction, we will actually give a proof
of Theorem 1.1 at the end of the lecture. But to begin with let us examine the
implications of the theorem for Dirichlet L-functions.
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6 LECTURE 1. TRIVIAL CENTRAL ZEROS

1. Nonexistence of trivial central zeros for Dirichlet L-functions

A trivial zero of an L-function is a zero which is immediately apparent from the
functional equation. Any L-function worthy of the name has infinitely many trivial
zeros, as one sees by playing off the holomorphy of the L-function in some right
half-plane against the poles of Γ(s) at nonpositive integers. For example, consider
the functional equation of the Riemann zeta function:

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).(1.5)

At s = −2,−4,−6, . . . the factor Γ(s/2) on the left-hand side has a simple pole,
whereas the right-hand side is holomorphic and nonvanishing. It follows that ζ(s)
has a zero (in fact a simple zero) at the negative even integers, whence these points
are trivial zeros of ζ(s).

On the other hand, ζ(s) does not have a trivial central zero. The latter term
refers to a trivial zero of an L-function at s = k/2, where the functional equation of
the L-function in question is a transformation law relative to s 7→ k−s. In the case
of ζ(s) we have k = 1; indeed if we write Z(s) for the left-hand side of (1.5), then
(1.5) becomes Z(s) = Z(1− s). Thus a trivial central zero of ζ(s) would be a zero
at s = 1/2 inherent in the equation Z(s) = Z(1 − s); but the latter equation says
merely that the function f(s) = Z(s+ 1/2) is even, and even functions, unlike odd
functions, need not vanish at s = 0. Thus there is no trivial reason why Z(s) must
vanish at s = 1/2 and hence none why ζ(s) itself must vanish there. The expansion

ζ(s) = (1− 21−s)−1(1− 2−s + 3−s − 4−s + . . . ) (<(s) > 0)

shows that in fact ζ(1/2) 6= 0.
More generally, no Dirichlet L-function has a trivial central zero. To verify

this statement, consider a primitive Dirichlet character χ of conductor N . The
functional equation of L(s, χ) is

Λ(s, χ) = W (χ)Λ(1− s, χ)(1.6)

with Λ(s, χ) = Ns/2 ΓR(s+m)L(s, χ). Here W (χ) and m are as in (1.3) and (1.4)
respectively, and

ΓR(s) = π−s/2Γ(s/2).(1.7)

We mention in passing that in addition to this “real gamma factor” there is also a
“complex gamma factor”

ΓC(s) = 2 · (2π)−sΓ(s),(1.8)

and with this notation the duplication formula takes the attractive form

ΓR(s)ΓR(s+ 1) = ΓC(s).(1.9)

Returning to the matter at hand, we consider three cases, namely (i) χ has order
> 3, (ii) χ = 1, and (iii) χ has order 2. In case (i), L(s, χ) 6= L(s, χ), whence
Λ(s, χ) 6= Λ(s, χ) and (1.6) has no direct bearing on the possible vanishing of
L(s, χ) at s = 1/2. In case (ii), L(s, χ) = ζ(s), and we have already seen that ζ(s)
does not have a trivial central zero. Finally, suppose that χ is quadratic. Then
(1.6) becomes Λ(s, χ) = W (χ)Λ(1− s, χ), and since W (χ) is 1 rather than −1 the
function f(s) = Λ(s + 1/2, χ) is even rather than odd. Hence in case (iii) there is
again no trivial central zero.
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Of course it is one thing to say that there is no trivial reason for L(s, χ) to
vanish at s = 1/2 and quite another to prove that L(1/2, χ) is not in fact zero. The
latter problem is the subject of an extensive literature (see for example [6], [20],
[46], [47], [69], [72], and [90]), and while the state of the art does not yet permit
us to assert that L(1/2, χ) 6= 0 for every Dirichlet character χ, that is certainly the
conjecture to which the evidence points.

2. Hecke characters and Hecke L-functions

While they do not occur for Dirichlet L-functions, trivial central zeros of L-functions
do exist. The first examples were found in 1966 by Birch and Stephens [9] and arose
in connection with elliptic curves over Q with complex multiplication by an imagi-
nary quadratic field. The L-function of such an elliptic curve is a Hecke L-function,
and Hecke’s functional equation allows one to exhibit cases in which an analogue
of (1.6) holds but with L(s, χ) = L(s, χ) and W (χ) = −1, so that the L-function
vanishes at the center of its critical strip. This phenomenon will be illustrated here
not using elliptic curves with complex multiplication by Q(i) as in [9] but rather
with the “Q-curves” of Gross [38], for which the field of complex multiplication
varies. But first of all we provide some background on Hecke characters and Hecke
L-functions. Throughout, K denotes a number field and O its ring of integers. We
also write I for the multiplicative group of nonzero fractional ideals of K and P
for the subgroup of principal fractional ideals. As usual, a “prime ideal of K” is a
nonzero prime ideal of O, and an “integral ideal of K” is any nonzero ideal of O.

2.1. Hecke characters
Given an integral ideal f of K, we say that a fractional ideal a ∈ I is relatively
prime to f if no prime ideal dividing f occurs in the factorization of a as a product
of prime ideals to nonzero integral powers. The multiplicative group consisting of
such a will be denoted I(f), and the subgroup P ∩ I(f) of principal fractional ideals
in I(f) will be denoted P (f). Note by the way that if f = O then I(f) = I and
P (f) = P . We say that an element α ∈ K× is relatively prime to f if αO ∈ P (f),
and we write K(f) for the subgroup of K× consisting of all such α. Thus K(f) is
(S−1O)×, the group of units of the localization of O at the multiplicative set

S =
⋂
p|f

(O r p)

(with S = Or{0} if f = O). Given α ∈ K×, we write α ≡ 1 mod∗f to mean that for
every prime ideal p dividing f we have vp(α− 1) > ordpf, where vp is the valuation
associated to p and ordpf the multiplicity of p in f. More succinctly, α ≡ 1 mod∗f
means α ≡ 1 mod f(S−1O). The set of all such α is a subgroup Kf of K(f), and we
write Pf for the subgroup of P (f) consisting of all αO ∈ P (f) with α ∈ Kf.

A Hecke character of K to the modulus f is a group homomorphism χ :
I(f)→ C

× with the following property: There exists a continuous homomorphism
χ∞ : (R ⊗Q K)× → C

× such that if α ∈ Kf then χ(αO) = χ−1
∞ (α). Here we are

identifying α ∈ K× with 1 ⊗ α ∈ (R⊗QK)×, as is often convenient. Without this
identification the condition on χ reads

χ(αO) = χ−1
∞ (1⊗ α) (α ∈ Kf).(1.10)

We call χ∞ the infinity type of χ. Thus a Hecke character to the modulus f is a
character of I(f) which is completely determined on Pf by its infinity type.
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Two points should be noted. First of all, χ∞ is a continuous homomorphism
if and only its reciprocal is, so the content of the definition would not change if
we omitted the exponent −1 on the right-hand side of (1.10). Nonetheless we
retain it for the sake of the correspondence between Hecke characters and idele
class characters to be discussed later. The second point is that the continuity of
χ∞ is an unambiguous concept, because all norms on the finite-dimensional real
vector space

R⊗Q K ∼= R
r1 × Cr2(1.11)

are equivalent. Here r1 and r2 have the usual meanings; in fact we may specify the
isomorphism in (1.11) – call it Ψ – by requiring that for α ∈ K we have

Ψ(1⊗ α) = (σ1(α), σ2(α), . . . , σr1+r2(α)),(1.12)

where σ1, . . . , σr1 are the distinct real embeddings of K and σr1+1, . . . , σr1+r2 are
chosen from the distinct pairs of conjugate complex embeddings. Using (1.11) and
(1.12), we may view χ∞ as a continuous homomorphism (R×)r1 × (C×)r2 → C

×.
Since Ψ(Kf) is dense in (R×)r1×(C×)r2 we see that (1.10) determines χ∞ uniquely.

As with Dirichlet characters, there is a notion of primitivity: A Hecke character
χ to the modulus f is primitive if there does not exist an integral ideal f′ properly
dividing f such that χ extends to a Hecke character to the modulus f′. Note that
I(f) ⊂ I(f′), so that the definition is meaningful. Given a Hecke character χ to the
modulus f, there exists a unique pair (χ′, f′) such that f′ is an integral ideal dividing
f and χ′ is a primitive Hecke character to the modulus f′ extending χ. We call f′

the conductor of χ and χ′ the primitive Hecke character determined by χ.
Thus a Hecke character is primitive if and only its modulus equals its conductor. If
χ is primitive, as we shall usually assume, then its conductor will be denoted f(χ).

2.2. Examples
The simplest examples are primitive Hecke characters χ with f(χ) = O, for then the
requirement in (1.10) is simply that χ(αO) = χ−1

∞ (1⊗α) for all α ∈ K×. Consider
for instance the power-of-the-norm map χ : I → C

× given by χ(a) = (Na)s0 ,
where s0 ∈ C is fixed and Na is the absolute norm of a. Viewing χ∞ as a character
(R×)r1 ⊗ (C×)r2 → C

×, we see that (1.10) holds with

χ∞(u1, u2, . . . , ur1+r2) = |u1u2 · · ·ur1 |−s0 · |ur1+1ur1+2 · · ·ur1+r2 |−2s0 .(1.13)

Note that apart from the trivial Hecke character (i. e. the case s0 = 0), the power-
of-the-norm map has infinite order.

Another example with f(χ) = O, this time of finite order, is an ideal class
character, in other words a character χ of the ideal class group I/P of K: if we
view χ as a character of I trivial on P then (1.10) holds with χ∞ equal to the
trivial character. Now if f is a nonzero integral ideal of K then the natural map
I(f)/P (f)→ I/P is an isomorphism, and therefore an ideal class character becomes
a Hecke character to the modulus f by restriction to I(f). In particular, if χ is any
Hecke character to the modulus f then so is χϕ, where ϕ is an ideal class character
of K. Note that (χϕ)∞ = χ∞ and that χϕ is primitive if and only if χ is. The
upshot is that whenever we have an example of a primitive Hecke character of a
given infinity type then we automatically have h such examples, where h is the class
number of K.



DAVID E. ROHRLICH, PCMI LECTURE NOTES 9

2.3. A nonexample
It may also be instructive to see a character of I which is not a Hecke character.
Since I is the free abelian group on the nonzero prime ideals of O, we can define a
homomorphism I → C

× simply by specifying its values on prime ideals. Thus we
get a character χ : I → {±1} (the “Liouville function” of K) by specifying that
χ(p) = −1 for every prime ideal p. Equivalently,

χ(a) = (−1)Ω(a),

where Ω(a) is the total number of prime ideals (taking account of multiplicities)
occurring in a factorization of a into prime ideals. But the set of α ∈ K× such that
Ω(αO) is even and the set of α such that Ω(αO) is odd are both dense in (R⊗QK)×.
Hence there does not exist a continuous homomorphism χ∞ : (R ⊗Q K)× → C

×

such that χ(αO) = χ−1
∞ (1 ⊗ α) for α ∈ K×, and consequently χ is not a Hecke

character.

2.4. Unitary Hecke characters
The L-function associated to a Hecke character is defined by a Dirichlet series, and
in preparation for writing down this Dirichlet series explicitly we prove a result
which will assure us that the series does converge in some right half-plane. If χ is
a one-dimensional character of a group then the associated unitary character χ/|χ|
will be denoted χunit, so that χ = χunit · |χ|.

Proposition 1.1. If χ is a Hecke character of K then there exists c ∈ R such that
|χ| = Nc, whence

χ = χunit ·Nc.

In particular, every Hecke character is a unitary Hecke character times a real power
of the norm.

Proof. Let R>0 denote the multiplicative group of positive real numbers. The
point requiring proof is that a Hecke character with values in R>0 coincides with
a real power of the norm. So after changing notation we may suppose that χ is a
Hecke character I(f) → R>0, and we must show that χ = Nc for some c ∈ R. It
will suffice to see that χ∞ has the form (1.13) with s0 ∈ R, for then we may take
c = s0. Indeed if c is so chosen then χ ·N−c is a character with values in R>0 which
factors through the finite group I(f)/Pf, and consequently χ ·N−c is trivial.

Put T = {eiθ : θ ∈ R}, so that we have topological group isomorphisms
R
× ∼= {±1}×R>0 and C× ∼= T×R>0. Any continuous homomorphism R>0 → R>0

raises the elements of R>0 to some fixed real exponent, which we can of course
choose to write as twice some other real exponent. Thus χ∞ has the form

χ∞(u1, u2, . . . , ur1+r2) =
r1∏
j=1

|uj |cj ·
r1+r2∏
j=r1+1

|uj |2cj(1.14)

with cj ∈ R for 1 6 j 6 r1 + r2. Now if ε ∈ O× ∩Kf then

χ−1
∞ (1⊗ ε) = χ(εO) = χ(O) = 1.

Hence using the notation of (1.12) we deduce from (1.14) that
r1∏
j=1

|σj(ε)|cj ·
r1+r2∏
j=r1+1

|σj(ε)|2cj = 1.(1.15)
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But O×∩Kf has finite index in O×. Hence on taking the log of both sides of (1.15)
and applying the Dirichlet unit theorem, we deduce that the linear form on Rr1+r2

given by

(t1, t2, . . . , tr1+r2) 7→
r1∑
j=1

cjtj +
r1+r2∑
j=r1+1

2cjtj

vanishes identically on the hyperplane
∑r1
j=1 tj +

∑r1+r2
j=r1+1 2tj = 0. It follows that

cj is a constant c independent of j, whence (1.14) is indeed of the form (1.13) with
s0 = c, a real number. �

2.5. Hecke L-functions
If χ is a Dirichlet character to the modulus N then one puts χ(n) = 0 whenever
gcd(n,N) > 1, and by virtue of this convention the Dirichlet series for L(s, χ) can
be written either as a sum over integers prime to N or as a sum over all positive
integers. In the same way, given a Hecke character χ to the modulus f, one sets
χ(a) = 0 whenever a is not relatively prime to f, and one defines the associated
L-series L(s, χ) by

L(s, χ) =
∑

a

χ(a)(Na)−s,(1.16)

where a runs over all nonzero integral ideals of K or alternatively over the subset
of ideals relatively prime to f. For example, if χ is the trivial Hecke character to
the modulus O then L(s, χ) is the Dedekind zeta function

ζK(s) =
∑

a

(Na)−s(1.17)

of K, while if χ is more generally the power-of-the-norm character a 7→ (Na)s0 then
L(s, χ) = ζK(s − s0). For any χ, the definition (1.16) is meaningful in the sense
that the given Dirichlet series converges in some right half-plane. Indeed by writing
χ as in Proposition 1.1 we see that the Dirichlet series is absolutely convergent for
<(s) > c+ 1.

The basic analytic fact about L(s, χ), proved by Hecke, is that L(s, χ) extends
to a meromorphic function on C which is either entire (if χ is not of the form Ns0)
or holomorphic except for a simple pole at s = s0 + 1 (if χ = Ns0) and which
satisfies a functional equation relative to s 7→ 2c + 1 − s. We will say more about
the functional equation in Lecture 2, but returning for now to the right half-plane
of absolute convergence, we observe that L(s, χ) has an Euler product:

L(s, χ) =
∏
p

(1− χ(p)N(p)−s)−1,(1.18)

where p runs over the prime ideals of K or over the subset of prime ideals not
dividing f. The fact that the Dirichlet series in (1.16) is equal to the Euler product
in (1.18) is proved in much the same way as the corresponding equality for Dirichlet
L-functions. In the latter case, the key fact needed is the unique factorization of
positive integers into primes; in the case of Hecke L-functions one uses instead the
fact that every nonzero ideal of O has a unique factorization into prime ideals.
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2.6. Dirichlet characters as Hecke characters
The analogy between Dirichlet L-functions and Hecke L-functions is no coincidence,
for in the case K = Q there is a bijection χ 7→ χHec from the set of Dirichlet
characters to the set of Hecke characters of Q of finite order. The map χ 7→ χHec is
defined as follows: Given a Dirichlet character χ to the modulus N , take f = NZ
and set

χHec(a) = χ(a)(1.19)

for a ∈ I(f), where a is the unique positive generator of a. Contemplating (1.19),
we recognize that the subscript on χHec is superfluous, because the left-hand side of
(1.19) is a function of ideals whereas the right-hand side is a function of numbers.
Hence without risk of confusion we can write (1.19) in the form χ(a) = χ(a).
Furthermore, on making the identification (R⊗QK)× = R

× one readily verifies that
(1.10) holds with χ∞ equal to the trivial character or the sign character x 7→ x/|x|
according as χ is even or odd as a Dirichlet character. Thus χHec is indeed a Hecke
character. One can also check that L(s, χ) = L(s, χHec) and that χ is primitive if
and only if χHec is. Henceforth we drop the subscript on χHec.

2.7. Hecke characters on principal ideals
While the defining property (1.10) of a Hecke character χ refers only to χ|Pf, the
following proposition shows that one can also deduce something about χ|P (f). For
an integer n > 1 let µµµn ⊂ C× be the subgroup of nth roots of unity.

Proposition 1.2. Let χ : I(f) → C
× and χ∞ : (R ⊗Q K)× → C

× be respectively
a homomorphism and a continuous homomorphism. Then χ is a Hecke character
with infinity type χ∞ if and only if there is an integer n > 1 and a homomorphism
ε : (O/f)× → µµµn such that

χ(αO) = ε(α)χ−1
∞ (1⊗ α)

for α ∈ K(f). Here ε is viewed as a character of K(f) by composition with

K(f) −→ K(f)/Kf −→ (O/f)×,

the first arrow being the quotient map and the second the natural isomorphism.

Proof. Sufficiency is immediate, because ε is trivial on Kf. To prove necessity
let n be the order of K(f)/Kf. If χ is a Hecke character with infinity type χ∞
and α ∈ K(f) then αn ∈ Kf, whence χ(αnO) = χ−1

∞ (1 ⊗ αn) or in other words
χ((αO)n) = χ−1

∞ ((1⊗α)n). As both χ and χ∞ are homomorphisms it follows that
χ(αO) = ε(α)χ−1

∞ (1⊗ α) with an nth root of unity ε(α). At the same time we see
that ε : K(f) → C

× is a homomorphism trivial on Kf and so may be viewed as a
character of K(f)/Kf

∼= (O/f)×. �

Proposition 1.2 completes our discussion of Hecke characters in general. Next
we specialize to the case of imaginary quadratic fields.

3. A family of Hecke L-functions with trivial central zeros

Let K be an imaginary quadratic field. After fixing an embedding of K in C we
can identify R⊗Q K with C and hence (R⊗Q K)× with C×. Thus if χ is a Hecke
character of K then χ∞ is a continuous homomorphism from C

× to itself, and we
can ask whether χ∞ is the character z 7→ z−1. If it is then we say that χ is of
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type (1, 0). To demystify this terminology we add that if χ∞(z) = z−p(z)−q with
p, q ∈ Z then χ is said to be of type (p, q).

As we have already indicated, our goal is to exhibit the trivial central zeros
found by Gross [38] in his study of Q-curves. As a first step we exhibit the relevant
Hecke characters of K of type (1, 0). Let D be the absolute value of the discriminant
of K, so that K = Q(

√
−D). The set of Hecke characters at issue will be denoted

X(D). To defineX(D) precisely, let κ be the primitive quadratic Dirichlet character
of conductor D given by

κ(n) =
(
−D
n

)
,(1.20)

where the Kronecker symbol on the right is understood to equal −1 when n = −1
(in other words, the Kronecker symbol is viewed as a Dirichlet character rather than
as a norm residue symbol). Then X(D) consists of all primitive Hecke character χ
of K of type (1,0) satisfying three conditions:

(a) f(χ)|D∞. (In other words, f(χ) divides some power of D.)
(b) χ(nO) = κ(n)n for n ∈ Z prime to D.
(c) The values of χ on P (f(χ)) lie in K.

Let Φ be the set of ideal class characters of K. If χ ∈ X(D) then χϕ ∈ X(D) for
every ϕ ∈ Φ, so the cardinality of X(D) is a multiple of h(D), the class number of
K. Henceforth we assume that D 6= 3, 4.

Proposition 1.3.

|X(D)| =


h(D) if D is odd,
0 if 4||D,
2h(D) if 8|D.

Proof. Consider characters of the form ε : (O/f)× → {±1} with f|D∞. We
impose two conditions: First, ε(n) = κ(n) for n ∈ Z relatively prime to D, and
second, ε is primitive in the usual sense that ε does not factor through (O/f′)× for
any ideal f′ properly dividing f. The set of such ε will be denoted E. We claim that
the proposition is equivalent to the assertion

|E| =


1 if D is odd,
0 if 4||D,
2 if 8|D.

(1.21)

In other words, we claim that |X(D)| = |E|h(D).
To verify the claim, we use Proposition 1.2: The restriction to P (f(χ)) of any

χ ∈ X(D) has the form χ(αO) = ε(α)α for some character ε of (O/f(χ))× with
values in the nth roots of unity. As the values of χ on P (f(χ)) lie in K and
K 6= Q(

√
−3),Q(

√
−4) it follows that n can be taken to be 2. Thus we may view ε

as a character (O/f(χ))× → {±1}, necessarily primitive since χ is primitive. Since
χ(nO) = κ(n)n for n ∈ Z prime to D we deduce that ε ∈ E, and thus we obtain a
map X(D) → E. The fibers of the map have cardinality h(D), because there are
h(D) ways to extend a character of P (f(χ)) to a character of I(f(χ)). To see that
the map χ 7→ ε is surjective, let ε : (O/f)× → {±1} be a a given element of E. We
would like to define a character χ of P (f) by setting

χ(αO) = ε(α)α(1.22)
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for α ∈ K(f), but we must check that the right-hand side of (1.22) depends only
on the principal ideal αO and not on the choice of generator α. Since K 6=
Q(
√
−3),Q(

√
−4), the only other generator is−α; but ε(−α) = κ(−1)ε(α) = −ε(α)

by (1.20). Hence if α is replaced by −α then the right-hand side of (1.22) is un-
changed, so we obtain a well-defined character χ of P (f). Extending it arbitrarily
to I(f) we obtain an element of X(D).

We must now prove (1.21). Given ε ∈ E, write f(ε) for the ideal f such that ε
is a primitive character of (O/f)×. Also, if D||4 then let T denote the prime ideal
of O lying over 2. We claim that if ε ∈ E then

f(ε) is divisible by


√
−DO if D is odd,√
−DT if 4||D,

2
√
−DO if 8|D.

(1.23)

To verify (1.23) use the fact ε(n) = κ(n) for n ∈ Z prime to D. It follows that D
divides Z∩ f(ε), but one readily checks that an ideal a of O with the property that
D divides Z ∩ a is divisible by the right-hand side of (1.23).

At this point we consider the three cases in (1.21) one by one. Suppose first that
D is odd. If ε ∈ E then

√
−DO|f(ε) by (1.23), but also f(ε)|D∞ by assumption.

Thus if f(ε) is properly divisible by
√
−DO then (O/f(ε))× is a nontrivial extension

of (O/
√
−DO)× by a group of odd order, contradicting the fact that ε is both

quadratic and primitive. It follows that f(ε) =
√
−DO. But the natural map

(Z/DZ)× → (O/
√
−DO)× is an isomorphism, and ε(n) = κ(n) for n ∈ (Z/DZ)×.

Hence there is a unique choice for ε, and |E| = 1. At the same time we see that

f(χ) =
√
−DO(1.24)

for χ ∈ X(D), because it follows from (1.22) that f(χ) = f(ε).
Next suppose that 4||D. Then D = 4C with C ≡ 1 mod 4. If there exists an

ε ∈ E, then
√
−CT3|f(ε) by (1.23); we claim that in fact

f(ε) =
√
−CTk with k = 3 or 4.(1.25)

To see this, we first argue as in the case D odd: Since ε is quadratic and primitive,
the kernel of the reduction map (O/f(ε))× → (O/

√
−CT3)× has 2-power order. As

f(ε)|D∞ this already implies that f(ε) =
√
−CTk with k > 3. But one checks by

induction that if k > 5 then every element of the kernel of (O/Tk)× → (O/T5)× is a
square in (O/Tk)×, so again, the fact that ε is quadratic and primitive ensures that
k = 3, 4, or 5. Now choose a rational integer n such that n ≡ 5 mod 8 and n ≡ 1 mod
C. Then n represents the nontrivial element of the kernel of (O/T5)× → (O/T4)×;
but ε(n) = κ(n) = 1. Since ε is primitive, (1.25) follows.

To obtain a contradiction from (1.25), write

(O/
√
−CTk)× ∼= (O/Tk)× × (O/

√
−CO)×

and ε = ε′ε′′ with quadratic characters ε′ and ε′′ of (O/Tk)× and (O/
√
−CO)×

respectively. Then ε(−1) = κ(−1) = −1, but ε′′(−1) = 1 because C ≡ 1 mod 4, so
ε′(−1) = −1. This is a contradiction, because −1 is a square in (O/Tk)× for k = 4
and a fortiori for k = 3: indeed (2 +

√
−C)2 ≡ −1 mod 4O.

Finally, suppose that 8|D. Write T for the prime ideal of O lying over 2. As in
the case 4||D, if k > 5, then every element of the kernel of (O/Tk)× → (O/T5)× is
a square in (O/Tk)×. Appealing to (1.23) and arguing as before, we deduce that
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f(ε) = 2
√
−DO. Now write D = 8C, and let C be the product of the prime ideals of

O dividing C. We have (O/2
√
−DO)× ∼= (O/T5)× × (O/C)× and a corresponding

decomposition of characters ε = ε′ε′′. Also (Z/DZ)× ∼= (Z/8Z)× × (Z/CZ)× and
κ = κ′κ′′. Using the natural embedding of (Z/CZ)× in (O/C)× to identify these
two groups, we have ε′′ = κ′′, so ε′′ is uniquely determined and |E| is equal to the
number of possibilities for ε′. Now the natural embedding of (Z/8Z)× in (O/T5)×

realizes (Z/8Z)× as one summand in a direct sum decomposition of (O/T5)×, the
complementary summand being the cyclic group of order 4 generated by the coset
of 1 +

√
−2C. On the factor (Z/8Z)× the character ε′ coincides with κ′, and since

ε is quadratic there are exactly two possibilities for the value of ε′ on the coset of
1 +
√
−2C, namely ±1. Thus |E| = 2. Furthermore, we see that

f(χ) = 2
√
−DO(1.26)

for χ ∈ X(D), because if χ and ε are related as in (1.22) then f(χ) = f(ε). �

3.1. The functional equation
While we have not yet discussed the functional equation of Hecke L-functions over
arbitrary number fields, if K is imaginary quadratic and χ a primitive Hecke char-
acter of K of type (1, 0) then the functional equation is easily stated:

Λ(s, χ) = W (χ)Λ(2− s, χ)(1.27)

with |W (χ)| = 1 and

Λ(s, χ) = (DNf(χ))s/2ΓC(s)L(s, χ).(1.28)

Since χ is of type (0, 1), the definition of Λ(s, χ) is technically not covered by (1.28),
but it offers no surprises:

Λ(s, χ) = (DNf(χ))s/2ΓC(s)L(s, χ).(1.29)

The appearance of f(χ) in place of f(χ) on the right-hand side of (1.29) is not a
misprint; one readily checks that f(χ) = f(χ). Now take χ ∈ X(D) with D either
odd or divisible by 8. We shall give explicit formulas for the factors that go into
the functional equation of L(s, χ). One such factor has already been made explicit
(cf. (1.24) and (1.26)):

Proposition 1.4. If χ ∈ X(D) then

f(χ) =

{√
−DO if D is odd,

2
√
−DO if 8|D.

The root number W (χ) can also be computed. First consider the case D odd.
The proof of the following proposition is as in Gross ([38], pp. 60 – 63) and will be
reproduced in Lecture 2.

Proposition 1.5. If D is odd and χ ∈ X(D) then

W (χ) =
(

2
D

)
.

Next recall that if 8|D then |X(D)| = 2h(D). A proof of the following statement
(albeit a proof in a more general context) can be found in [76], pp. 538 – 541, and
a proof in the present setting will be outlined in Exercise 2.4.



DAVID E. ROHRLICH, PCMI LECTURE NOTES 15

Proposition 1.6. Suppose that 8|D, and put

X±(D) = {χ ∈ X(D) : W (χ) = ±1}.
Then |X±(D)| = h(D). In fact if χ ∈ X±(D) then X±(D) = {χϕ : ϕ ∈ Φ}, where
Φ is the set of ideal class characters of K.

In spite of Propositions 1.5 and 1.6, we cannot conclude that our “canonical”
family of Hecke L-functions exhibits trivial central zeros until we have verified that
Λ(s, χ) = Λ(s, χ). But if we think of L(s, χ) as the Dirichlet series

∑
χ(a)(Na)−s

then the desired identity L(s, χ) = L(s, χ) is an immediate consequence of the
equivariance of χ with respect to complex conjugation:

Proposition 1.7. If χ ∈ X(D) then

χ(a) = χ(a)

for a ∈ I(f(χ)).

Proof. Put n = Na, so that aa = nO. Then

χ(a)χ(a) = χ(nO) = κ(n)n = n,

because the Kronecker symbol κ is trivial on norms from K. Thus χ(a)χ(a) = Na,

and it suffices to see that χ(a)χ(a) = Na or in other words that

|χ(a)| =
√

Na.(1.30)

Now in contrast to the identity χ(a)χ(a) = Na, which depended on the relation
ε(n) = κ(n), (1.30) is a general property of Hecke characters of type (1,0). In fact
since both sides of (1.30) are positive, it suffices to verify that equality holds after
both sides are raised to the power h(D)|K(f)/Kf|, where f = f(χ). Thus we may
assume that a = αO with α ∈ Kf. But then χ(a) = α and (1.30) is immediate. �

Thus if χ ∈ X(D) then the functional equation (1.27) becomes

Λ(s, χ) = W (χ)Λ(2− s, χ),(1.31)

and we can talk about trivial central zeros. (Note by the way that quite apart from
Propositions 1.5 and 1.6, the fact that W (χ) = ±1 is clear a priori from (1.31).)
Now −D is a discriminant, so if D is odd then D is 3 mod 4 and in particular
either 3 or 7 mod 8. Hence Propositions 1.5 and 1.6 imply that L(s, χ) has a trivial
central zero if and only if either D ≡ 3 mod 8 or else 8|D and χ ∈ X−(D). In the
remaining cases, when D ≡ 7 mod 8 or 8|D and χ ∈ X+(D), there is no trivial
reason for L(s, χ) to vanish at s = 1, and we can ask the same question as with
Dirichlet L-functions: Is L(1, χ) in fact nonzero? Actually, even if W (χ) = −1 we
can ask the analogous question about L′(1, χ), for while L(s, χ) vanishes to odd
order at s = 1, there is no trivial reason for the order of vanishing to be > 1.

Theorem 1.2.

ords=1L(s, χ) =

{
0 if W (χ) = 1,
1 if W (χ) = −1.

For the proof see Montgomery-Rohrlich [66] or Miller-Yang [65] according as
W (χ) is 1 or −1. We mention just one aspect of these proofs and of others like
them, namely the key role played by the fact that

{χσ : σ ∈ Aut(C/K)} = {χϕ : ϕ ∈ Φ}(1.32)
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for χ ∈ X(D). Here χσ is the character defined by χσ(a) = χ(a)σ for a ∈ I(f),
where f = f(χ). As the values of χ on principal ideals lie in K, it follows that χ
and χσ coincide on principal ideals, and consequently the left-hand side of (1.32)
is contained in the right-hand side. Thus to prove that equality holds it suffices
to see that the cardinality of the left-hand side of (1.32) is > h(D). Given a ∈
I(f), let n be its order in the ideal class group I(f)/P (f); then an = αO for some
α ∈ K(f), and consequently χ(a)n = ±α. One readily deduces that χ(a) generates
an extension of K of degree n. Now choose ideals a1, a2, . . . , at ∈ I(f) such that
I/P is the direct sum of the cyclic subgroups generated by the classes of the ideals
ai. Then h(D) = n1n2 · · ·nt, where ni is the order of the class of ai. Given these
observations, it is not hard to believe or to prove that the extension of K generated
by χ(a1), χ(a2), . . . , χ(at) has degree h(D) over K. It follows that the left-hand
side of (1.32) has cardinality > h(D), whence equality holds and (1.32) follows.

The significance of (1.32) is that it meshes well with algebraicity results for
special values of L-functions. In the case case W (χ) = 1, results of Shimura [87],
[88] imply that if L(1, χ) = 0 then L(1, χσ) = 0 for all σ ∈ Aut(C), whence
h(D)−1

∑
ϕ∈Φ L(1, χϕ) = 0 by (1.32). Similarly, in the case W (χ) = −1 the Gross-

Zagier formula [39] implies that if L′(1, χ) = 0 then h(D)−1
∑
ϕ∈Φ L

′(1, χϕ) = 0.
Thus to prove the theorem it suffices to show that h(D)−1

∑
ϕ∈Φ L(1, χϕ) 6= 0 or

that h(D)−1
∑
ϕ∈Φ L

′(1, χϕ) 6= 0 according as W (χ) = 1 or W (χ) = −1. The point
of this reduction is that as a Dirichlet series, L(s, χ) is the sum

∑
χ(a)(Na)−s over

all nonzero ideals ofO, and in particular over ideals belonging to all ideal classes. By
contrast, h(D)−1

∑
ϕ∈Φ L(s, χϕ) is the sum

∑
χ(a)(Na)−s taken over the principal

ideals only. Analytically the latter sum is a much more tractable object.

3.2. Gross’s Q-curves
The significance of Hecke characters of type (1, 0) is that they correspond to elliptic
curves with complex multiplication, and the significance of the Hecke characters
χ ∈ X(D) is that the corresponding elliptic curves are the canonical examples
of Gross’s “Q-curves.” To make this precise, recall that the modular invariant j
can be evaluated not only on elliptic curves but also on lattices in C: in fact if
A is an elliptic curve over C and L its period lattice relative to a nonzero regular
differential then j(A) = j(L). In particular, since we are viewing K as a subfield
of C we may take L to be O, and then an elliptic curve with invariant j(O) has
complex multiplication by O. Putting F = Q(j(O)) and H = K(j(O)), we see that
F is the minimal field of definition for an elliptic curve with invariant j(O) and H
the minimal field of definition for its complex multiplication.

Now if D is odd then the set X(D) picks out a canonical isogeny class of
elliptic curves over F with invariant j(O), any member of which will be denoted
A(D). Similarly, if 8|D then the sets X+(D) and X−(D) each pick out such isogeny
classes, say with members A+(D) and A−(D) respectively. We then have

L(s,A(D)) =
∏

χ∈X(D)

L(s, χ) (D odd)(1.33)

and

L(s,A±(D)) =
∏

χ∈X±(D)

L(s, χ) (8|D).(1.34)
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We emphasize that the isogeny classes at issue all contain more than one isomor-
phism class over F , so that A(D), A+(D), and A−(D) have not been specified up to
isomorphism. It is possible to do so, at least in the case of A(p) with a prime p ≡ 3
mod 4 (p > 3), by a consideration of minimal discriminants (Gross [38], p. 35), but
for the validity of (1.33) and (1.34) this refinement is unnecessary: the L-function
of an elliptic curve depends only on its isogeny class. Incidentally, if A is any one
of A(D), A+(D), and A−(D) then the isogeny class of A over H is defined over Q
in the sense that A is isogenous over H to all of its Galois conjugates. This is the
reason for the term “Q-curve.”

Combining Proposition 1.7 and Theorem 1.2 with (1.33) and (1.34), and apply-
ing either Rubin’s generalization [78] of the Coates-Wiles theorem (if W (χ) = 1)
or the Gross-Zagier formula [39] and the theorem of Kolyvagin-Logachev [54]
supplemented by either Bump-Friedberg-Hoffstein [14] or Murty-Murty [70] (if
W (χ) = −1), we obtain:

Theorem 1.3. If D is odd then the rank of A(D)(F ) is 0 or h(D) according as D
is 7 or 3 modulo 8. If D is divisible by 8 then the rank of A+(D) over F is 0 and
the rank of A−(D) over F is h(D).

In the case of a prime p ≡ 7 mod 8, the fact that A(p)(F ) has rank 0 was
proved by Gross [38] several years before Theorem 1.2 using descent.

3.3. Yang’s simplest abelian varieties
While we have seen that X(D) = ∅ if 4||D, the exclusion of this case was nonetheless
a peculiar anomaly for several years. However Yang [101] has shown that the case
4||D can be incorporated into the theory if on the geometric side elliptic curves
are replaced by abelian varieties and on the arithmetic side the requirement that
the values of χ on principal ideals lie in K – condition (c) in the original definition
of X(D) – is replaced by conditions (c) and (d) below. Let K be an imaginary
quadratic field and D the absolute value of its discriminant. We consider the set
Y (D) of primitive Hecke characters υ of K of type (1,0) satisfying the following
conditions:

(a) f(υ)|D∞.
(b) υ(nO) = κ(n)n for n ∈ Z prime to D.
(c) Let T be the extension of K generated by the values of υ. Then [T : K]

is minimal subject to (a) and (b).
(d) Also Nf(υ) is minimal subject to (a) and (b).

Suppose once again that D 6= 3, 4. Yang associates an isogeny class of abelian
varieties over K with complex multiplication by T to the Galois orbit of an element
υ ∈ Y (D), and he shows that these abelian varieties are in a natural sense the
“simplest” among all abelian varieties over K with complex multiplication by T .
If D is odd or divisible by 8 then Y (D) = X(D), and if we fix a Galois orbit of
elements of this set then Yang’s abelian variety B is related to Gross’s Q-curve A
via Weil’s restriction-of-scalars functor: B = resH/KA. (In the case where D is a
prime congruent to 3 mod 4 this restriction of scalars figured prominently already
in [38].) But if 4||D then B need not be the restriction of scalars of any elliptic
curve over H. Nonetheless, Yang proves analogues for all of the results already
mentioned for X(D). The proof of Yang’s analogue of Theorem 1.2 is particularly
daunting, because one no longer has (1.32): the Galois conjugates of χ are not all
of the form χϕ with ϕ ∈ Φ.
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4. An open problem

In a nutshell, the problem is to prove an analogue of Theorem 1.2 with χ replaced
by a power of χ. Let w be a positive integer and take χ in X(D). If w is odd
then χw is still primitive of conductor f(χ), but if w is even then χw extends to a
Hecke character to the modulus O and so is no longer primitive. We are primarily
concerned with the case where w is odd, but to carry along both cases for one
moment longer, write χw to mean χw if w is odd and the primitive Hecke character
determined by χw if w is even. Then Hecke’s functional equation for L(s, χw) is

Λ(s, χw) = W (χw)Λ(w + 1− s, χw)(1.35)

with

Λ(s, χw) =

{
(DNf(χ))s/2ΓC(s)L(s, χw) if w is odd
Ds/2ΓC(s)L(s, χw) if w is even

(1.36)

and

W (χw) =

{
(−1)(w−1)/2W (χ) if w is odd
1 if w is even

(1.37)

(see Exercise 2.5). We note in particular that the center of symmetry of the func-
tional equation is (w + 1)/2. Thus if w is odd then the center is an integer, and in
fact a critical integer in the sense of Deligne [24].

Problem 1. Suppose that w is odd and relatively prime to h(D). Show that

ords=(w+1)/2L(s, χw) =

{
0 if W (χ) = 1,
1 if W (χ) = −1.

(1.38)

An example of Rodriguez Villegas shows that the assumption gcd(w, h(D)) = 1
cannot be omitted if (1.38) is to hold without exception ([74], p. 437, Remark 2),
but we would also like a variant of the problem in which the coprimality hypothesis
is eliminated at the expense of a weaker conclusion. However to begin with let us
consider the problem as stated. A basic result in this domain is the theorem of
Liu and Xu [58], who have shown that if w is given then there exists a constant
c(w) such that (1.38) is satisfied for D > c(w). As is common in papers of this sort
(cf. [59], [60], [75], and [102]), the authors actually prove the stronger statement
that (1.38) remains valid when L(s, χw) is replaced by L(s, χwµ) with a primitive
quadratic Dirichlet character µ of sufficiently small conductor d relative to D (the
precise condition in [58] is d � D1/12−ε for any ε > 0; of course D must still be
sufficiently large relative to w). On the other hand, if W (χ) = 1 then the constant
c(w) implicit in [58] is ineffective, so that the validity of (1.38) for all D is not
reduced to a finite number of verifications even when w is fixed. However in the
case where D is a prime p, necessarily with p ≡ 3 mod 4, Boxer and Diao [10]
have recently proved a result which is not only effective but also remarkably tidy:
If W (χ) = 1 and p > 13(w − 1)2/8 then L((w + 1)/2, χw) 6= 0. Using Proposition
1.5 and (1.37), one readily verifies that when D = p the condition W (χ) = 1 is
equivalent to w ≡ (−1)(p+1)/4 mod 4, so the result of Boxer and Diao is as explicit
as can be. Even so, the validity of (1.38) for all D and all odd w prime to h(D)
remains an open problem.

If the condition gcd(w, h(D)) = 1 is dropped then the problem is not only
open but open-ended in the sense that we lack a conjecture to guide us. The most
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optimistic conjecture would be that (1.38) holds for all but finitely many triples
(w,D, χ) with χ ∈ X(D), but the evidence is as yet too weak to support this
hope. The underlying problem here is that most attempts to prove (1.38) begin by
showing that (1.38) holds for some χ ∈ X(D), and if the characters χwϕ with ϕ ∈ Φ
are all Galois-conjugate (in other words, if χ can be replaced by χw in (1.32)) then
one deduces that (1.38) holds for all χ ∈ X(D). The deduction here is based on
Shimura [87] as before if W (χw) = 1 and on Zhang [105] rather than Gross-Zagier
[39] if W (χw) = −1 with w > 3. But if gcd(w, h(D)) > 1 then the argument
falls apart, because the characters χwϕ are simply not all Galois-conjugate. Let
hw(D) be the order of the quotient of the ideal class group by its subgroup of
elements of order dividing w. Then the size of a Galois orbit of {χwϕ : ϕ ∈ Φ}
is hw(D), so the fact that (1.38) holds for one element of X(D) implies only that
(1.38) holds for at least hw(D) elements. By estimating hw(D) using the recent
bounds of Ellenberg and Venkatesh [28] on torsion in ideal class groups, Masri
[60] deduces that the number of characters χ ∈ X(D) satisfying (1.38) for fixed
w and D = p is � pδ for some δ > 0 (for instance if w = 3 then δ can be any
number < 1/6). If w > 5 then the results of [28] and hence of [60] depend on
the generalized Riemann hypothesis, but Masri’s papers [59] and [60] also give a
second method which is based on the subconvexity results of Duke, Friedlander,
and Iwaniec [27] and is independent of the generalized Riemann hypothesis. See
also Masri-Yang [61]. The implicit constant c(w) in [60] such that (1.38) holds for
at least pδ characters if p > c(w) is ineffective, but once again Boxer and Diao [10]
give an effective result: If W (χw) = 1 and D = p > 13(w − 1)2/8 then the number
of good characters is at least hw(D).

All of this meshes well with the example of Rodriguez Villegas [74] mentioned
above, in which D = 59, w = 3, and L(2, χ3) = 0 for some χ ∈ X(D), despite
the fact that W (χ3) = 1. The point is that h(D) = 3 in this case, in line with
the preceding discussion. (Incidentally, Rodriguez Villegas deduces the vanishing
of L(2, χ3) from a calculation and an a priori bound on the denominator of the
special value.) One might imagine that in this example there are infinitely many
w divisible by 3 such that W (χw) = 1 but L((w + 1)/2, χw) = 0 for some χ ∈
X(D). However this possibility is excluded by a general theorem of Greenberg
[36], valid for any imaginary quadratic field K and any primitive Hecke character
of K of type (w, 0). In our setting, the theorem asserts that if we fix χ ∈ X(D)
then there are only finitely many odd positive integers w such that W (χw) = 1
but L((w + 1)/2, χw) = 0. Pondering this statement, we realize that Problem 1
is subsumed in a larger problem, still to be formulated, in which the hypothesis
gcd(w, h(D)) = 1 is omitted but the conclusion (1.38) is asserted to hold for as
large a set of characters as possible. An optimal description of this set is the point
that remains open-ended.

5. Evaluation of the quadratic Gauss sum

For the sake of contrasting two different techniques, we give a self-contained proof
of Theorem 1.1 here and a proof of a more general statement in the next lecture.
To get started we record a few facts about the “Fourier transform” on Z/NZ.
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Let V be the complex vector space consisting of C-valued functions on Z/NZ.
The Fourier transform on Z/NZ is the linear automorphism f 7→ f̂ of V , where

f̂(x) =
∑

y∈Z/NZ

f(y)e2πixy/N .

Sometimes we write f̂ as f .̂ That f 7→ f̂ is an automorphism follows from the
identity (f )̂̂ (x) = Nf(−x), which in turn is a consequence of the calculation

(f )̂̂ (x) =
∑

y∈Z/NZ

f̂(y)e2πixy/N =
∑

z∈Z/NZ

f(z)
∑

y∈Z/NZ

e2πi(x+z)y/N

(observe that the inner sum is N or 0 according as z is or is not −x). The main
fact about the Fourier transform which is needed for the proof of Theorem 1.1 is a
formula for χ̂, where χ is a primitive Dirichlet character of conductor N . Here we
are viewing χ as a character of (Z/NZ)× and hence as a function on Z/NZ via the
usual convention that χ(x) = 0 if the residue class x ∈ Z/NZ is not invertible.

The formula that we need is

χ̂ = τ(χ)χ.(1.39)

To verify (1.39), we take x ∈ Z/NZ and compute χ̂(x) from the definition:

χ̂(x) =
∑

y∈(Z/NZ)×

χ(y)e2πixy/N .(1.40)

There are two cases to consider, according as x is a nonunit or a unit.
Suppose first that x ∈ MZ/NZ, where M is a divisor of N and M > 1. To

prove (1.39) in this case we must see that the right-hand side of (1.40) is 0. Put
G = (Z/NZ)× and let H be the kernel of the map from (Z/NZ)× to (Z/(N/M)Z)×

given by reduction modulo N/M . Write y = gh, where h ∈ H and g runs over a
set of coset representatives for H in G. Then χ(y) = χ(g)χ(h), and since χ is
primitive χ|H is nontrivial. If we write the right-hand side of (1.40) as a double
sum consisting of an inner sum over h and an outer sum over g, then the inner sum
is 0 for each g, because χ|H is nontrivial and e2πixgh/N is independent of h.

Next suppose that x ∈ (Z/NZ)×. Then in the sum over y we can replace y
by yx−1, and referring to the definition (1.2) we see that χ̂(x) = τ(χ)χ(x). This
completes the proof of (1.39).

An immediate corollary of (1.39), given the relation (f )̂̂ (x) = Nf(−x), is that

τ(χ)τ(χ) = χ(−1)N.(1.41)

It follows in particular that if χ is quadratic then τ(χ)2 = χ(−1)N . Thus the
validity of (1.1) up to sign is easy, as already mentioned. Returning to the case
of an arbitrary primitive χ, and observing that (1.39) and (1.40) together give
τ(χ) = χ(−1)τ(χ), we deduce from (1.41) that

|τ(χ)| =
√
N.(1.42)

Of course both (1.41) and (1.42) can be reformulated in terms of root numbers:
Applying the definition (1.3), we obtain

W (χ)W (χ) = 1(1.43)

and

|W (χ)| = 1(1.44)
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respectively.
So much for general orientation. We turn now to the proof of Theorem 1.1

itself. The key step is the special case (1.1), for which we use an argument of
Schur.

5.1. Schur’s proof
Now take N = p and write F for the Fourier transform f 7→ f̂ on V . To prove (1.1)
we put

Q =
detF
|detF|

.(1.45)

and compute Q in two different ways.
The first way is to use the ordered basis δ0, δ1, . . . , δp−1 for V , where δj(y) = 1

if y is j mod p and δj(y) = 0 otherwise. The matrix of F relative to this basis has
e2πijk/p as its (j, k) entry, and consequently detF is a Vandermonde determinant:

detF =
∏

06j<k6p−1

(e2πik/p − e2πij/p).(1.46)

To compute Q we can replace detF in (1.45) by any positive scalar multiple of
detF . In particular, the factors in (1.46) with j = 0 can be removed from (1.46),
because the factors corresponding to (0, k) and (0, p − k) are complex conjugates,
hence their product is positive. Now the remaining factors correspond to pairs (j, k)
with 1 6 j < k 6 p− 1, and the map (j, k) 7→ (p− k, p− j) is an involution on the
set of such pairs. Furthermore the fixed points are precisely the pairs (j, p− j) with
1 6 j 6 (p− 1)/2, and if (j, k) is not a fixed point then the factor corresponding to
(p− k, p− j) is the negative of the complex conjugate of the factor corresponding
to (j, k). The upshot of these remarks is that Q = R/|R| with

R = (−1)(p−1)(p−3)/4
∏

16j6(p−1)/2

(e−2πij/p − e2πij/p).

But (p− 1)(p− 3)/4 is even, so the factor (−1)(p−1)(p−3)/4 can be removed. Then

Q = (−i)(p−1)/2,(1.47)

because e−2πij/p − e2πij/p = −2i sin(2πj/p) and sin(2πj/p) > 0 for 1 6 j < p/2.
On the other hand, we obtain most of a second basis for V from the characters

χ : F×p → C
× of F×p . In conformity with a convention established earlier, if χ is

nontrivial then we extend it to a function on Fp by setting χ(0) = 0. We also
extend the trivial character χ0 by setting χ0(0) = 1. Now let

χ1, χ1, χ2, χ2, . . . , χ(p−3)/2, χ(p−3)/2(1.48)

be an enumeration of the conjugate pairs of nontrivial nonquadratic characters of
F
×
p . Then

λ, δ0, χ0, χ1, χ1, χ2, χ2, . . . , χ(p−3)/2, χ(p−3)/2(1.49)

is an ordered basis for V . Let us compute the matrix of F relative to this basis.
Since λ is quadratic we have Fλ = τ(λ)λ by (1.39). Furthermore Fδ0 = χ0,

whence Fχ0 = pδ0 by the relation (F2f)(x) = pf(−x). Thus the matrix of F
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relative to the basis (1.49) is block-diagonal: The entry τ(λ) in the upper left-hand
corner is followed by the 2× 2 block

B0 =
(

0 p
1 0

)
,

which is followed in turn by the 2× 2 blocks – here we are using (1.39) again –

Bj =
(

0 τ(χj)
τ(χj) 0

)
for 1 6 j 6 (p−3)/2. Now detB0 = −p by inspection while detBj = −χj(−1)p for
1 6 j 6 (p− 3)/2 by (1.41). Computing modulo positive real numbers, we deduce
that

Q =
τ(λ)
√
p

(−1)(p−1)/2

(p−3)/2∏
j=1

χj(−1),

and comparing this result with (1.47) we obtain

τ(λ)
√
p

= i(p−1)/2

(p−3)/2∏
j=1

χj(−1).

Equivalently,

τ(λ)
√
p

= i(p−1)/2(−1)ν ,(1.50)

where ν is the number of odd characters among the χj (1 6 j 6 (p− 3)/2). Since
χ is odd if and only if χ is odd, we can also say that ν is half the number of odd
characters among the characters listed in (1.48).

If p ≡ 1 mod 4 then all (p− 1)/2 odd characters of F×p occur in (1.48), because
neither χ0 nor λ is odd. Hence ν = (p− 1)/4 and the right-hand side of (1.50) is 1.
If p ≡ 3 mod 4 then λ is odd, and consequently only (p−3)/2 of the odd characters
of F×p occur in (1.48). Hence ν = (p − 3)/4 and the right-hand side of (1.50) is i.
This completes Schur’s proof of (1.1).

5.2. The general case
Now suppose that χ is an arbitrary primitive quadratic Dirichlet character, and
let N be the conductor of χ. If N is an odd prime then Theorem 1.1 has just
been proved, and if N = 4 or N = 8 then the theorem is easily verified by explicit
calculation. Putting these cases aside, and keeping in mind that N is the conductor
of a primitive quadratic Dirichlet character, we can write N = N1N2 and χ = χ1χ2

with coprime integers N1 and N2 and primitive quadratic Dirichlet characters χ1

and χ2 of conductors N1 and N2 respectively. The numbers

j = j1N2 + j2N1 (0 6 j1 6 N1 − 1, 0 6 j2 6 N2 − 1)(1.51)

represent the distinct residue classes moduloN , and when j is written in this way we
have j/N = (j1/N1) + (j2/N2), χ1(j) = χ1(j1)χ1(N2), and χ2(j) = χ2(j2)χ2(N1).
Hence inserting (1.51) in (1.2), we obtain

τ(χ) = χ1(N2)χ2(N1) · τ(χ1)τ(χ2).(1.52)
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At this point it is convenient to write the integer m of (1.4) as m(χ) to indicate its
dependence on χ. Dividing both sides of (1.52) by

√
N im(χ) and applying the law

of quadratic reciprocity in the form

χ1(N2)χ2(N1) = im(χ1χ2)−m(χ1)−m(χ2),

we obtain W (χ) = W (χ1)W (χ2). Hence Theorem 1.1 follows by induction on the
number of distinct prime factors of N .

6. Exercises

Exercise 1.1. We have observed that the negative even integers are trivial zeros
of ζ(s). Generalize this remark in two directions:

• Determine the trivial zeros of the Dedekind zeta function ζK(s). Your
answer will depend on the number of real and complex embeddings of the
number field K. (See Theorem 2.1 for the functional equation of ζK(s).)
• Determine the trivial zeros of L(s, χ) for an arbitrary primitive Dirichlet

character χ. Your answer will depend on the parity of χ.
The assumption that χ is primitive is natural when one talks about trivial zeros of
L(s, χ), because imprimitivity perturbs the functional equation. Note however that
trivial central zeros are unaffected: If χ is an imprimitive Dirichlet character and
χ′ is the primitive Dirichlet character determined by χ then L(s, χ) differs from
L(s, χ′) by a factor which does not vanish at s = 1/2. On the other hand, what
happens at s = 0?

Exercise 1.2. Let χ be a primitive Dirichlet character of order > 3. To see that
L(s, χ) does not have a trivial central zero, we argued that the functional equation
could have no bearing on ords=1/2L(s, χ) because χ 6= χ and hence L(s, χ) 6=
L(s, χ). Implicit in this argument is a basic analytic fact:

If two Dirichlet series
∑
n>1 a(n)n−s and

∑
n>1 b(n)n−s coincide as holo-

morphic functions in some right half-plane in which they both converge
absolutely then a(n) = b(n) for all n > 1.

Verify this assertion by proving an equivalent statement:
If a Dirichlet series

∑
n>1 a(n)n−s is identically 0 in some right half-plane

in which the series is absolutely convergent then a(n) = 0 for all n > 1.
Then explain why Proposition 1.7 does imply that L(s, χ) = L(s, χ) for χ ∈ X(D),
even though in this case χ 6= χ.

Exercise 1.3. Apart from the identities W (χ)W (χ) = 1 and |W (χ)| = 1, which
appeared as equations (1.43) and (1.44) in the prolegomena to the proof of Theorem
1.1, we have said nothing at all aboutW (χ) when χ is a primitive Dirichlet character
of order > 3. In this problem we assume that χ is not only primitive of order > 3 but
also of prime conductor p. The easier case (easier in the sense that more complete
results can be given) is actually the case of prime-power conductor pν with ν > 2,
for which see Exercises 1.4, 1.5, and 1.6 below.

(a) Stickelberger’s theorem (see for example [55], p. 97, Theorem 10) gives
a factorization of τ(χ)p−1 as a product of prime ideals in the cyclotomic field
Q(e2πi/(p−1)). Using this factorization, show that W (χ) is not an algebraic in-
teger, and in particular not a root of unity, in spite of the fact that |W (χσ)| = 1
for every automorphism σ of C.



24 LECTURE 1. TRIVIAL CENTRAL ZEROS

(b) (Literature search.) In the case where χ has order 3 or 4, Matthews [62],
[63] expresses τ(χ) in terms of values of the Weierstrass ℘-function at quadratic
imaginary arguments. Furthermore, Heath-Brown and Patterson [41] prove the
equidistribution (relative to Lebesgue measure on the unit circle) of the numbers
W (χ) as χ runs over primitive Dirichlet characters of order 3 and prime conductor.
What is known about possible generalizations of the results of Matthews and of
Heath-Brown and Patterson to Dirichlet characters of orders greater than 3 or 4?

Exercise 1.4. The purpose of this exercise and the two that follow is to show that
if χ is a primitive Dirichlet character of conductor pν with ν > 2 then W (χ) is a
root of unity (in contrast to part (a) of Exercise 1.3).

(a) Suppose that χ is of p-power order (and hence of order dividing pν−1). Using
the defining formula (1.2) and (1.42), show that τ(χ) is an element of Z[e2πi/pν ] of
absolute value pν/2 in every complex embedding of Q(e2πi/pν ). Deduce that τ(χ)2

is a root of unity times pν , and conclude that W (χ) is a root of unity.
(b) Deduce that if χ is primitive of conductor 2ν then W (χ) is a root of unity.

Exercise 1.5. With notation as in Exercise 1.4, suppose that ν is even, and put
n = ν/2. Observe that χ(1 + pn(x+ y)) = χ(1 + pnx)χ(1 + pny) for x, y ∈ Z/pnZ,
and deduce that W (χ) is a root of unity. (Hint: Put G = (Z/pνZ)× and let H be
the kernel of (Z/pνZ)× → (Z/pnZ)×. Express (1.2) as a sum over j = gh, where
h ∈ H and g runs over a set of coset representatives for H in G. Then write the
sum over j as a double sum over g and h, and show that the inner sum over h is 0
for all but one value of g.)

Exercise 1.6. With notation as in Exercise 1.4, suppose that ν is odd and hence
> 3, and put m = (ν − 1)/2. Since the case p = 2 has already been dealt with in
part (b) of Exercise 1.4, we may assume that p is odd.

(a) Using the binomial theorem, show that (1 +pmx)p ≡ 1 +pm+1x mod pν for
arbitrary x ∈ Z.

(b) Using the hint for Exercise 1.5 with n = m+ 1, show that there is a unique
element c ∈ Z/Zpm such that χ(1 + pnx) = e2πicx/pm for x ∈ Z/pmZ. Deduce that
τ(χ) is a root of unity times pmS, where S is the sum

S =
∑
x∈Fp

χ(1 + pmx)e2πig0x/p
n

and g0 ∈ Z/Zpn is any element which reduces mod pm to −c.
(c) Using (a), show that χ(1 + pmx)e2πig0x/p

n

is a pth root of unity, whence
S ∈ Z[e2πi/p]. Show that S has absolute value p1/2 in every complex embedding of
Q(e2πi/p), and conclude as in Exercise 1.4 that W (χ) is a root of unity.

Exercise 1.7. (Literature search.) While it is widely expected that Dirichlet L-
functions do not vanish at s = 1/2, the history of this conjecture deserves to be
elucidated. Is it correct to say that the first mention of the conjecture (at least in the
quadratic case) is in Chowla [18]? Soundararajan [90] notes that the nonvanishing
of L(1/2, χ) would follow from the conjectured Q-linear independence of the set

{γ : L(1/2 + iγ, χ) = 0, γ > 0},
but what is the history of the latter conjecture?
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Local formulas

In principle, we could derive the explicit formula for W (χ) in Proposition 1.5
by calculating directly from formula (45) of Hecke’s original paper [42]. However
Hecke’s formula is expressed in terms of “ideal numbers,” an extrinsic construction
long superseded by the intrinsically defined “ideles” of Chevalley and Weil. Rather
than rescue ideal numbers from desuetude, we prefer to emphasize the correspon-
dence between Hecke characters and idele class characters and the use of Tate’s
local formulas.

1. The idele class group

Let K be a number field. The ring of adeles of K is the restricted direct product

A =
∏
v

′
Kv,(2.1)

where v runs over the standard set of places of K and Kv is the completion of K
at v. If we wish to indicate the dependence of A on K then we write AK . The
restriction (indicated by the prime) is that an element x = (xv) of the usual direct
product belongs to A if and only if xv ∈ Ov for all but finitely many finite v, where
Ov is the ring of integers of Kv. Since K is naturally embedded in each of its
completions, we may view it as a subring of A via the diagonal embedding. In
other words, we identify x ∈ K with the adele (xv) such that xv = x for all v.

If v in (2.1) runs over the finite places only then the resulting ring Afin is called
the ring of finite adeles of K. Putting A∞ =

∏
v|∞Kv, we may write the full

adele ring A as the ordinary direct product of its finite and infinite components:

A = Afin × A∞.(2.2)

Of course A∞ ∼= R
r1 × Cr2 ∼= R⊗Q K, where r1 and r2 have their usual meaning.

Next consider the ring of adelic integers of K, defined as the direct product

Ô =
∏
v-∞

Ov(2.3)

and viewed as a subring of Afin. We topologize Afin by imposing two requirements:
• Ô is open in Afin, and the relative topology on Ô induced by Afin is the

usual product topology coming from (2.3).
• For each a ∈ Afin, the map x 7→ a + x is a homeomorphism from Afin to

itself.
One can check that there is a unique topology on Afin satisfying these conditions
and that with this topology Afin becomes a topological ring. The topology on A
is then the direct product topology afforded by (2.2), where A∞ has its standard
topology as the finite-dimensional real vector space R⊗Q K.

25
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The multiplicative group A× of A is known as the group of ideles of K. It
too is a restricted direct product:

A
× =

∏
v

′
K×v ,(2.4)

but this time the restriction is that an element x = (xv) of the unrestricted direct
product belongs to A× if and only if xv ∈ O×v for all but finitely many finite v.
The topology on A× is not the relative topology from A, but it can nonetheless be
defined in a similar way. Indeed consider the multiplicative group of Ô:

Ô× =
∏
v-∞

O×v .(2.5)

The topology on Afin is characterized by two properties:
• Ô× is open in A×fin, and the relative topology on Ô× induced by A×fin is

the usual product topology coming from (2.5).
• For each a ∈ A×fin, the map x 7→ ax is a homeomorphism from A

×
fin to

itself.
Once again, there is a unique topology on A×fin satisfying these conditions, and with
this topology A×fin becomes a topological group. To topologize A× we use (2.2) to
write

A
× = A

×
fin × A

×
∞,(2.6)

and then we give A× the direct product topology corresponding to (2.6).
While A×∞ can be identified either with (R ⊗Q K)× or with

∏
v|∞K×v , it will

frequently be viewed as the subgroup of A× consisting of ideles x = (xv) such that
xv = 1 for v -∞. If A×fin is similarly identified with the subgroup of A× consisting of
ideles x = (xv) such that xv = 1 for v|∞ then (2.6) expresses A× as a direct product
of two subgroups. The associated projection functions will be written x 7→ xfin and
x 7→ x∞ respectively, so that x = xfinx∞.

Since K× is naturally embedded in each of its completions, we may view it as
a subgroup of A× via the diagonal embedding, just as K was viewed as a subring
of A. Thus an element x ∈ K× is identified with the idele (xv) such that xv = x
for all v. The quotient group A×/K× is called the idele class group of K.

2. Idele class characters

Let v be a place of K, finite or infinite, and let p 6 ∞ be the place of Q below v.
We write | ∗ |v for the absolute value on Kv which extends the standard absolute
value | ∗ |p on Qp, and we define the local norm || ∗ ||v on K×v by setting

|| ∗ ||v = | ∗ |[Kv :Qp]
v .(2.7)

For example, if Kv
∼= C then p =∞ and || ∗ ||v = | ∗ |2v.

If v is finite then a character χv : K×v → C
× is ramified or unramified

according as the restriction χv|O×v is nontrivial or trivial. Now O×v is precisely the
set {x ∈ K×v : |x|v = 1}, and if we temporarily denote this set by O×v even when v
is an infinite place then we obtain a seamless extension of the notions ramified and
unramified to the infinite places: In all cases, O×v is a subgroup of K×v (coinciding
with {±1} if v is real and with the circle group if v is complex), and in all cases we
call χv ramified or unramified according as χv|O×v is nontrivial or trivial.
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The “seamless extension” just described is often useful, particularly when one
wants to distinguish between “narrow ray class characters” and “wide ray class
characters” in class field theory. But this distinction is tangential to the matter at
hand, and henceforth we will speak of ramified and unramified characters only at
the finite places, reserving the notation O×v for the finite places also.

By an idele class character of K we mean a continuous homomorphism
χ : A× → C

× which is trivial on the diagonally embedded subgroup K×. Such a
character necessarily factors as a product of local characters,

χ =
∏
v

′
χv,(2.8)

where the prime indicates that χv is unramified for all but finitely many finite v.
It is only by virtue of this last property that (2.8) has a meaning, for we interpret
(2.8) to mean that if x = (xv) ∈ A× then χ(x) =

∏
v χv(xv), and the product

is finite precisely because for all but finitely many finite v we have xv ∈ O×v and
χv|O×v = 1 . When χv is unramified we also say that χ is unramified at v.

By definition, an idele class character of K factors through the idele class group
A
×/K×, whence the term idele class character. In fact one often identifies idele

class characters with characters of A×/K×.
As an example of an idele class character, consider the idelic norm, defined

as the product of the local norms:

||x|| =
∏
v

||xv||v (x = (xv) ∈ A×K).(2.9)

This product is meaningful, because for all but finitely many finite v we have
xv ∈ O×v and hence ||xv||v = 1. It is immediately verified that the idelic norm is
a continuous character of A×, and by the so-called “Product Formula” it is trivial
on K×, hence an idele class character.

2.1. Hecke characters as idele class characters
The L-function of an idele class character χ of K is defined by the formula

L(s, χ) =
∏
v-∞

χv unram

(1− χv(πv)q−sv )−1,(2.10)

where the Euler product on the right-hand side runs over the finite places of K
at which χ is unramified, qv being the order of the residue class field of Ov and
πv ∈ Ov a uniformizer. The fact that χv is unramified means precisely that χv(πv)
is independent of the choice of πv, so the right-hand side of (2.10) is well defined at
least as a formal product. But in fact the product converges in some right half-plane
and hence defines a holomorphic function there.

This last assertion may sound familiar, because the very same claim was made
in connection with the L-function of a Hecke character. This is no coincidence: an
idele class character is essentially the same thing as a primitive Hecke character.
More precisely, there is a map χ 7→ χA from Hecke characters of K to idele class
characters of K which is a bijection when restricted to primitive Hecke characters.
The map χ 7→ χA comes about as follows.

Given a nonzero integral ideal f of O, let Af ⊂ A×fin be the subgroup consisting
of all elements x = (xv) ∈ A×fin such that xv ∈ 1 + fOv whenever v = vp with p|f.
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By the Artin-Whaples approximation theorem (or simply the Chinese remainder
theorem), we can write

A
× = K× · Af · (R⊗Q K)×(2.11)

with

K× ∩ (Af(R⊗Q K)×) = Kf.(2.12)

Suppose now that χ is a Hecke character of K to the modulus f and with infinity
type χ∞. Given x ∈ A×, we use (2.11) to write

x = α · y · r(2.13)

with α ∈ K×, y ∈ Af, and r ∈ (R⊗Q K)×. Then we set

χA(x) = χ(ay)χ∞(r),(2.14)

where

ay =
∏
v-∞

pordvyv
v(2.15)

and pv is the prime ideal of O underlying v. The definition of A× as a restricted
direct product ensures that ordvyv = 0 for all but finitely many v, whence (2.15) is
meaningful. As y ∈ Af we have ay ∈ I(f), and therefore χ(ay) is defined.

By (2.12), the definition (2.14) is unambiguous provided the right-hand side is
trivial whenever x = 1, y = α−1

fin , and r = α−1
∞ with α ∈ Kf. In other words if

α ∈ Kf then we must have χ(αO) = χ∞(1 ⊗ α)−1. This is precisely the defining
property (1.10) of a Hecke character.

By construction, χA is trivial on K×. To see that it is continuous, put

Ôf = Af ∩ Ô×.(2.16)

If y in (2.13) belongs to Ôf then ay = O, whence (2.14) becomes χA(x) = χ∞(r).
Furthermore, if x belongs to the open subgroup Ôf × (R ⊗Q K)× of A× then we
can take y = xfin and r = x∞ in (2.13), whence the restriction of χA to this open
subgroup is the function x 7→ χ∞(x∞). As χ∞ is continuous by assumption, the
continuity of χA on all of A× follows from the fact that a group homomorphism is
continuous if and only if its restriction to some open subgroup is.

Thus χA is an idele class character. A review of the construction shows that if
f had been replaced by an ideal divisible by f then χA would have been unchanged.
It follows that χA depends only on the primitive Hecke character determined by
χ. Furthermore, once one has the notion of a “conductor” (still to come), one can
verify that every idele class character has the form χA for a unique primitive χ.

In practice, since χ and χA can be distinguished by their arguments – ideals
and ideles respectively – the subscript on χA will usually be omitted. For example,
(2.14) can be written χ(x) = χ(ay)χ∞(r).

2.2. Local components of idele class characters
For some calculations it is useful to be able to go directly from a Hecke character
χ written as in Proposition 1.2 to the local components χv in (2.8). The following
proposition helps us to do so. Let χ be a primitive Hecke character ofK of conductor
f and infinity type χ∞, and let ε be the character of (O/f)× such that

χ(αO) = ε(α)χ−1
∞ (1⊗ α)(2.17)
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for α ∈ K(f). (As in Proposition 1.2, we are viewing ε as a character of K(f) via
the identification K(f)/Kf

∼= (O/f)×.) By the Chinese remainder theorem we can
write

(O/f)× =
∏
p|f

(O/pn(p))×,(2.18)

where the product runs over the distinct prime ideals dividing f and n(p) is the
multiplicity of p in f. There is a corresponding decomposition

ε =
∏
p|f

εp,(2.19)

where εp is a character of (O/pn(p))×. If v = vp is the place of K corresponding
to p then we write εv for the character of O×v obtained by composing εp with the
natural map of O×v onto (O/pn(p))×.

Proposition 2.1. Let p be a prime ideal of K and v = vp the corresponding finite
place. Let πv ∈ Ov be a uniformizer.

(a) If p - f then χv is unramified and χv(πv) = χ(p).
(b) If p|f then χv|O×v = ε−1

v , whence χv is in particular ramified. Furthermore,
suppose that for some β ∈ O the principal ideal βO is a power of p. Then

χv(β) = χ−1
∞ (β) ·

∏
q|f

q 6=p

εq(β),

where q runs over prime ideals dividing f but different from p.

Proof. Throughout the proof, w denotes an arbitrary place of K.
(a) Given z ∈ O×v , take x = (xw) to be the idele with xv = z and xw = 1 for

w 6= v. Then we may take α = r = 1 and y = x in (2.13), whence ay = O. So
(2.14) and (2.8) give χv(z) = χ(x) = 1, and we conclude that χv is unramified. On
the other hand, choosing x = (xw) to be the idele with xv = πv and xw = 1 for
w 6= v, we may again take α = r = 1 and y = x in (2.13), but this time we get
ay = p and consequently χv(πv) = χ(p).

(b) Given z ∈ O×v , take x = (xw) to be the idele with xv = z and xw = 1
for w 6= v. Applying the Chinese remainder theorem and the notation of (2.18),
we choose α ∈ O so that α ≡ z mod pn(p)Ov and also α ≡ 1 mod qn(q) for all
prime ideals q dividing f but different from p. Then α−1

fin x ∈ Af, so we may take
y = α−1

fin x and r = α−1
∞ in (2.13). Then ay = α−1O, and consequently (2.14)

gives χ(x) = χ(α−1O)χ∞(1⊗ α−1). Replacing α by α−1 in (2.17), we deduce that
χ(x) = ε−1(α). In view of the choice of x and α, we obtain χv(z) = ε−1

v (z) by (2.8)
and (2.19). Thus χv|O×v = ε−1

v .
Now suppose that βO is a power of p. Evaluating both sides of (2.8) at β gives

1 =
∏
w|f∞

χw(β),(2.20)

because χ|K× is trivial and χw is unramified for w - f∞. Now if q is a prime
ideal dividing f and q 6= p then β ∈ O×w , where w is the place corresponding to
q. Hence we can apply the result of the previous paragraph with p replaced by
q, obtaining χw(β) = ε−1

q (β). Inserting this information in (2.20), we obtain the
claimed formula for χv(β). �
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2.3. An example
To illustrate both the map χ 7→ χA and the use of Proposition 2.1, consider the
case where χ is the absolute norm, χ(a) = Na. We claim that χA is || ∗ ||−1, the
reciprocal of the idelic norm defined by (2.9). Indeed in the notation of Proposition
1.2 we have f = O and ε = 1, and by taking s0 = 1 in (1.13) we see that χ∞ is the
product of the reciprocals of the local norms at infinity. In other words, if v is an
infinite place then χv = || ∗ ||−1

v . To see that the same is true at the finite places,
let p be a prime ideal of K and v the corresponding finite place. By part (a) of
Proposition 2.1, χv is the unramified character of K×v taking the value Np on any
uniformizer πv. But the local norm is also unramified, and Np = qv = ||πv||−1

v ,
where qv is the order of the residue class field of K. Hence again χv = || ∗ ||−1

v , and
we conclude that χA = || ∗ ||−1, as claimed.

2.4. The conductor
As pointed out in the introduction, a complex representation of a profinite group
is trivial on an open subgroup. The one-dimensional case of this remark underlies
some verifications that have already been passed over without comment, for exam-
ple the fact that every idele class character is a restricted direct product of local
characters as in (2.8), or the fact that the map χ 7→ χA from Hecke characters to
idele class characters is surjective. The relevant profinite groups are Ô and Ô×;
instead of (2.3) and (2.5) we write Ô = lim←− fO/f and Ô× = lim←− f(O/f)×, where f
runs over the nonzero integral ideals of K ordered by divisibility. In particular, the
expression for Ô× as an inverse limit shows that the restriction of an idele class
character to Ô× is trivial on Ôf for some f, where Ôf is as in (2.16).

The same remark holds locally at every finite place v: If v = vp then we have
Ov = lim←− nO/pn and O×v = lim←− n(O/pn)×, and we deduce that any character of
K×v is trivial on 1 + πnvOv for some n > 1.

These remarks permit us to define the conductor of a character both locally
and globally. Consider first the local case. If v is a finite place of K and χv a
character of K×v then the exponent of the conductor of χv is the integer a(χv)
defined as follows: If χv is unramified then a(χv) = 0, and if χv is ramified then
a(χv) is the smallest integer n > 1 such that χv is trivial on 1 + πnvOv. The
conductor of χv is the ideal πa(χv)

v Ov of Ov. Turning now to the global setting, we
have two ways of defining the conductor f(χ) of an idele class character χ of K:
Either we consider integral ideals f of K such that χ is trivial on Ôf, defining f(χ)
to be the smallest such f in terms of divisibility, or else we set

f(χ) =
∏
v-∞

pa(χv)
v ,(2.21)

where pv is the prime ideal determined by v. One verifies that these two definitions
are equivalent to each other and also to our original definition of the conductor of
a primitive Hecke character when χ is viewed as such.

3. The functional equation

Our goal now is to see how the adelic viewpoint facilitates the statement of the
functional equation for Hecke L-functions. The key point is that once we think
of an idele class character χ as a product of local characters using (2.8) we can
define the objects appearing in the functional equation of L(s, χ) as products of
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local objects also. In the case of the conductor f(χ) we have already taken this step
in (2.21), although the benefit gained may not yet be apparent. The real prize we
anticipate is a factorization of the root number W (χ). But first we consider the
factorization of L(s, χ) itself as a product of local L-factors.

3.1. L-factors
It may appear at first that there is nothing new here. Given a finite place v of K
and a character χv of K×v , we set

L(s, χv) =

{
(1− χv(πv)q−sv )−1 if χv is unramified
1 if χv is ramified,

(2.22)

where as before, πv is a uniformizer and qv the order of the residue class field of
Ov. As we have already noted, the fact that χv is unramified means precisely that
χv is independent of the choice of πv. Now if χ is an idele class character of K then
a comparison of (2.10) and (2.22) shows that the global L-function L(s, χ) is the
product of the local L-factors:

L(s, χ) =
∏
v-∞

L(s, χv).(2.23)

Furthermore, if one thinks of χ as a primitive Hecke character then one can verify
that the original definition (1.18) of L(s, χ) is equivalent to (2.10) and (2.23). (The
key point is that if v is a finite place where χ is unramified and x in (2.13) is the
idele with πv at the place v and 1 at all other places then we can take α = r = 1 and
y = x, whence ay = pv.) So our definitions are compatible, but the introduction of
local L-factors appears to add nothing new.

However from the adelic point of view it is natural to associate L-factors not
only to the finite places of K but also to the infinite places, where the “L-factors”
turn out to be the gamma factors in the functional equation. In fact what we have
been calling L(s, χ) would in some contexts be regarded as merely “the finite part
of the L-function,” Lfin(s, χ), and the notation L(s, χ) would be reserved for the
“completed L-function” L∞(s, χ)Lfin(s, χ), where L∞(s, χ) is the product of the
L-factors at the infinite places:

L∞(s, χ) =
∏
v|∞

L(s, χv).(2.24)

Hence the completed L-function L∞(s, χ)Lfin(s, χ) is the product of the L-factors
L(s, χv) over all the places of K and includes both the traditional L-function
Lfin(s, χ) and its gamma factors.

In practice we will continue to write L(s, χ) for the traditional L-function
Lfin(s, χ), but the factorization (2.24) will be used in the statement of the functional
equation of L(s, χ). Hence we need to make the local factors in (2.24) explicit.

Suppose first that v is a real place. Then Kv = R, and the identification is
unique because R has no nontrivial automorphisms (even as an abstract field). Thus
a character χv of K×v can be identified with a character of R×. But a character
of R× is necessarily of the form t 7→ |t|s0(t/|t|)m with unique numbers s0 ∈ C and
m ∈ {0, 1}. We set

L(s, χv) = ΓR(s+ s0 +m),(2.25)

where we recall that the real gamma factor ΓR(s) is defined by (1.7).
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Next suppose that v is complex. Then there are two possible identifications
Kv
∼= C. Choosing one of them, we may view a character χv of K×v as a character

of C×. Then χv is necessarily of the form z 7→ |z|2s0(z/|z|)m with unique numbers
s0 ∈ C and m ∈ Z. We set

L(s, χv) = ΓC(s+ s0 + |m|/2).(2.26)

If we replace our chosen identification of Kv with C with the complex-conjugate
identification then χv(z) is replaced by χv(z) and hence m by −m; but (2.26) stays
the same. Thus L(s, χv) is well defined.

3.2. Hecke’s theorem
Given an idele class character χ of K, put

Λ(s, χ) = (DNf(χ))s/2L∞(s, χ)L(s, χ),(2.27)

where D is the absolute value of the discriminant of K and L∞(s, χ) and L(s, χ)
are as in (2.24) and (2.23) respectively. Let c be as in Proposition 1.1, and put{

w = 2c
k = w + 1,

(2.28)

so that k = 2c+ 1.

Theorem 2.1. There is a constant W (χ) ∈ C with |W (χ)| = 1 such that

Λ(s, χ) = W (χ)Λ(k − s, χ).

Furthermore, if χ is the trivial character then W (χ) = 1.

Of course if χ is the trivial character then L(s, χ) is just the Dedekind zeta
function ζK(s) of K, and Λ(s, χ) is often written as ZK(s) in this case. If K = Q

then we will continue to write ζQ(s) and ZQ(s) simply as ζ(s) and Z(s), as we did
in Lecture 1.

4. Quadratic root numbers

Before saying even one word about local root numbers, we can deduce from Theorem
2.1 that root numbers of quadratic idele class characters are trivial:

Theorem 2.2. Suppose that χ is an idele class character of K such that χ2 is
trivial. Then W (χ) = 1.

Proof. If χ is the trivial character then Theorem 2.2 is already contained in
Theorem 2.1, so we may assume that χ is quadratic. We will use the identity

ζL(s) = ζK(s)L(s, signL/K),(2.29)

where L/K is a quadratic extension of number fields and signL/K is the quadratic
Hecke character associated to L/K. The meaning of this last phrase is as
follows. Let dL/K be the relative discriminant ideal of L/K. Then signL/K :
I(dL/K)→ {±1} is the unique homomorphism satisfying

signL/K(p) =

{
1 if p splits in L

−1 if p remains prime in L
(2.30)

for prime ideals p of K unramified in L. The fact that the homomorphism defined
by (2.30) is actually a Hecke character of K (indeed a primitive Hecke character of
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conductor dL/K) is essentially quadratic reciprocity over number fields, although
a little bit of work is required to go back and forth between this statement and
the classical version found for example in [43], p. 246. In any case, to prove the
theorem we combine (2.29) with the fact that any quadratic idele class character
χ of K has the form χ = signL/K for some quadratic extension L of K. In other
words, given χ we can write

ζL(s) = ζK(s)L(s, χ),(2.31)

where the quadratic extension L of K is determined by χ.
We claim that (2.31) remains valid when ζL(s), ζK(s), and L(s, χ) are replaced

by their normalized versions:

ZL(s) = ZK(s)Λ(s, χ).(2.32)

To verify (2.32), write r1/1(L/K) for the number of real places of K which split into
two real places of L and r2/1(L/K) for the number of real places of K which ramify
into a complex place of L. Since every real place of K either splits or ramifies, the
number of such places satisfies

r1(K) = r1/1(L/K) + r2/1(L/K).(2.33)

Also {
r1(L) = 2r1/1(L/K)
r2(L) = 2r2(K) + r2/1(L/K),

(2.34)

because every place of L is an extension of a unique place of K. Now ζL(s) and
ζK(s) are the L-functions of the trivial idele class character of L and K respectively.
Hence in applying (2.24) and (2.27) we take s0 = m = 0 in (2.25) and (2.26),
obtaining

ZL(s) = D
s/2
L ΓR(s)r1(L)ΓC(s)r2(L)ζL(s)(2.35)

and

ZK(s) = D
s/2
K ΓR(s)r1(K)ΓC(s)r2(K)ζK(s).(2.36)

As for Λ(s, χ), the relation χ = signL/K has the following consequences: If v is a
complex place of K then (s0,m) = (0, 0) in (2.26), while if v is a real place then
(s0,m) = (0, 0) or (s0,m) = (0, 1) in (2.25) according as v splits or ramifies in L.
As f(χ) = dL/K , we see that (2.27) gives

Λ(s, χ) = (DL/KDK)s/2ΓR(s)r1/1(L/K)ΓR(s+ 1)r2/1(L/K)ΓC(s)r2(K)L(s, χ),
(2.37)

where DL/K is the absolute norm of the relative different ideal of L/K and hence
also the absolute norm of dL/K . Now compare the product of (2.36) and (2.37)
with (2.35). Taking account of (2.33) and (2.34) as well as the duplication formula
(1.9) and the standard relation DL = DL/KD

2
K , we obtain (2.32).

To deduce the theorem we apply Theorem 2.1 on both sides of (2.32), obtaining

ZL(1− s) = ZK(1− s)W (χ)Λ(1− s, χ).(2.38)

Replacing s by 1 − s in (2.32) and comparing the result with (2.38), we conclude
that W (χ) = 1. �
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5. Local root numbers

Let K be a number field and χ an idele class character of K. As we have already
hinted, the root number W (χ) defined by Theorem 2.1 has a factorization

W (χ) =
∏
v

W (χv),(2.39)

where W (χv) is the local root number attached to χv and is equal to 1 for all
but finitely many places v. We shall give formulas for W (χv) and then illustrate
their use by verifying Proposition 1.5. Initially we treat these formulas as a black
box, ignoring their provenance. Afterwards we fill in a number of points: the
implicit dependence of the local root number on a choice of additive character, the
connection with epsilon factors, and so on.

5.1. Formulas for local root numbers
We change notation, writing Kv and χv simply as K and χ respectively. Thus K
is a finite extension of Qp for some fixed p 6 ∞ and χ is a character of K×; a
notation like || ∗ ||, for example, now refers to the local norm on K×. An important
point about root numbers is that they see only the unitary part of a character. In
other words, if we put χunit = χ/|χ| as before then

W (χ) = W (χunit).(2.40)

Hence if it is convenient to do so one may assume that χ is unitary.
If K is archimedean then there is no need to do so. Indeed if K is archimedean

then χ has the form x 7→ ||x||s0(x/|x|)m with unique elements s0 ∈ C and either
m ∈ {0, 1} or m ∈ Z according as K = R or K ∼= C. The character χ is unitary if
and only if s0 ∈ iR, but W (χ) depends only on m, not on s0:

W (χ) = i−|m|.(2.41)

In other words, if K = R and χ(t) = |t|s0(t/|t|)m then W (χ) = i−m, and if K ∼= C

and χ(z) = |z|2s0(z/|z|)m then (2.41) holds and is independent of the identification
K ∼= C chosen: the alternative identification merely replaces m by −m.

Now take p < ∞. In the nonarchimedean setting it would be a slight con-
venience to assume that χ is unitary, but instead we shall replace χ by χunit in
the formulas themselves, so that the formulas are universally valid. As before, we
write a(χ) for the exponent of the conductor of χ. Furthermore, we write d for the
exponent of the different ideal of K. Thus if π is a uniformizer of K then πdO
is the different ideal of K over Qp. Now put f(χ) = πa(χ)O and choose an element
γ ∈ πa(χ)+dO×. It follows from the definitions that the functions x 7→ χ(x) and
x 7→ e2πi trK/Qp (x/γ) on O× depend only on the residue class of x in (O/f(χ))×.
Writing q for the order of the residue class field of K, we have

W (χ) = χunit(γ) · q−a(χ)/2
∑

x∈(O/f(χ))×

χ−1(x)e2πi trK/Qp (x/γ).(2.42)

Note that we have not bothered to write χ−1(x) as χ−1
unit(x), because the restriction

of any character of K× to O× has finite order and is therefore automatically unitary.
It is somewhat unconventional to express the nonarchimedean local root num-

ber by a single formula, as in (2.42). Normally something like (2.42) would be
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stated for ramified characters only, and for unramified characters one would give
the separate formula

W (χ) = χunit(γ) (a(χ) = 0).(2.43)

However (2.42) actually reduces to (2.43) in the unramified case provided we agree
that if a(χ) = 0 and hence f(χ) = O then (O/f(χ))× has just one element, namely
the coset of 1.

Having stated the local formulas, we return to the global setting and write K
for a number field, χ for an idele class character of K, and f(χ) for the conductor
of χ. Let D denote the different ideal of K. It follows from (2.43) that if v is the
finite place of K corresponding to a prime ideal p of K not dividing Df(χ) then
W (χv) = 1. In particular, since p - Df(χ) for all but finitely many p we conclude
that the product in (2.39) has only finitely many factors different from 1, as claimed.

5.2. An example
We illustrate these formulas by proving Proposition 1.5, or in other words by com-
puting W (χ) for χ ∈ X(D) with D odd. Thus K is now Q(

√
−D). By Proposition

1.4, the different ideal D =
√
−DO coincides with the conductor f(χ), whence

(2.43) gives W (χv) = 1 for all finite places v - D. And since χ∞(z) = z−1 we have
W (χ∞) = i−1 (take s0 = −1/2 and m = −1 in (2.41)). Thus (2.39) gives

W (χ) = i−1
∏
v|D

W (χv),(2.44)

and it remains to evaluate W (χv) at the places v above the prime divisors p of D.
Suppose then that p|D and that v = vp, where p is the prime ideal above p.

Then χv is ramified, so the appropriate local formula is (2.42). Since a(χv) = dv = 1
(dv being the exponent of the local different at v) we may take the quantity γ in
(2.42) to be p. Furthermore, since the natural map (Z/pZ)× → (O/p)× is an
isomorphism, the coset representatives x in (2.42) may be taken to be rational
integers. So (2.42) becomes

W (χv) = (χv)unit(p) · p−1/2
∑

n∈(Z/pZ)×

χ−1
v (n)e2πi(2n/p).(2.45)

Now recall condition (b) in the original definition of X(D): χ(nO) = κ(n)n for
n ∈ Z prime to D. Here κ is the Kronecker symbol with numerator −D, as before.
It follows that if χ|P (f(χ)) is written as in Proposition 1.2 then ε(n) = κ(n).
Thus in the notation of Proposition 2.1, we have εv(n) = λ(n) for n prime to p,
where λ is the Legendre symbol at p. Consequently the proposition just cited gives
χ−1
v (n) = λ(n) for such n. Making this substitution in (2.45), and replacing the

summation over n by a summation over 2n, where 2 is a representative for the
multiplicative inverse of 2 in (Z/pZ)×, we find

W (χv) = λ(2)(χv)unit(p) · p−1/2
∑

n∈(Z/pZ)×

λ(n)e2πi(n/p).(2.46)

Of course λ(2) = λ(2) since λ is quadratic. Furthermore, by taking β = p in
Proposition 2.1 we obtain

χv(p) = p
∏
q|D
q 6=p

(
p

q

)
,(2.47)
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and the factor of p on the right-hand side disappears when χv is replaced by (χv)unit

on the left-hand side. Finally, the sum in (2.46) is evaluated by Gauss’s formula
(1.1). Thus (2.46) becomes

W (χv) = iδ
(

2
p

)∏
q|D
q 6=p

(
p

q

)
(2.48)

with δ equal to 0 or 1 according as p is 1 mod 4 or 3 mod 4.
The rest is bookkeeping. Let t be the number of prime divisors of D which are

congruent to 3 mod 4. Substituting (2.48) in (2.44), we get

W (χ) = it−1

(
2
D

)∏
p6=q

(
p

q

)
,(2.49)

where the product on the right-hand side of (2.49) runs over pairs (p, q) of distinct
prime divisors of D. By quadratic reciprocity, this product is (−1)t(t−1)/2. On the
other hand, the odd integer −D is a discriminant, hence congruent to 1 mod 4.
Therefore t is odd, and we can write it−1 = (−1)(t−1)/2. Multiplying this factor by
the factor (−1)t(t−1)/2 coming from quadratic reciprocity, we obtain (−1)(t2−1)/2,
which is 1. Thus (2.49) does give Gross’s result, Proposition 1.5.

6. An open problem

The preceding example illustrates a simple point: Armed with the formulas (2.39)
through (2.43), we can in principle detect trivial central zeros of Hecke L-functions
whenever they exist. But do we always care? Does a trivial central zero of a
Hecke L-function, or indeed of any L-function, always have arithmetic significance?
Consider for example the L-functions associated to Maass forms for SL(2,Z). A
theorem of Venkov [98] implies that half of these L-functions have a trivial central
zero. What is the arithmetic significance of this fact, if any?

The L-functions associated to Maass forms for SL(2,Z) lie outside the scope of
these lectures, but a satisfactory substitute is available, namely Hecke L-functions
which are of “Maass type” in the sense that they coincide with the L-functions
associated to certain Maass forms for congruence subgroups of SL(2,Z). Let K
be a real quadratic field, viewed as a subfield of R, and write α 7→ α′ for the
nonidentity embedding of K in R. We will call a primitive Hecke character χ of K
equivariant if χ(a′) = χ(a) for a ∈ I(f(χ)). The Hecke characters of Maass type
to be considered here have the form χ = ηχ0, where η is a primitive equivariant
Hecke character of K of finite order and χ0 : I → C

× is the Hecke character of K
defined in two steps as follows. First we define χ0 on P by the formula

χ0(αO) = |α/α′|πi/ log ε0 (α ∈ K×),(2.50)

where ε0 is the fundamental unit of K. Then we extend χ0 to a character of I
arbitrarily. In Exercise 2.6 the reader is invited to verify that (2.50) gives a well-
defined function on principal ideals and that any extension of (2.50) to I is an
equivariant Hecke character. Now put χ = ηχ0, and let D be the discriminant of
K. Applying Theorem 2.1, we find that the functional equation of L(s, χ) can be
written Λ(s, χ) = W (χ)Λ(1− s, χ) with

Λ(s, χ) = (DNf(η))s/2ΓR(s+ πi/ log ε0)ΓR(s− πi/ log ε0)L(s, χ).(2.51)
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However if we make the additional assumption that the conductor of η has the
form f(η) = N

√
DO for some rational integer N > 1 then W (χ) = W (η), and

consequently the functional equation becomes

Λ(s, χ) = W (η)Λ(1− s, χ).(2.52)

Incidentally, the equivariance of η already ensures that f(η)′ = f(η) and hence
that f(η) has the form NC for some ideal C of O dividing

√
DO, so the condition

f(η) = N
√
DO is relatively mild. In any case, assume that the condition is satisfied.

Then (2.52) suggests the following question:

Problem 2. Suppose that W (η) = −1. Does the resulting trivial central zero of
L(s, χ) have any arithmetic significance?

An example where the hypothesis W (η) = −1 is satisfied will be given below.
Historically, the first examples of a Hecke character η of finite order for which
L(s, η) = L(s, η) andW (η) = −1 were given by Armitage [3] and Serre around 1972.
At the time there was no arithmetic interpretation for such trivial central zeros,
but in the case of certain quartic Hecke characters of real quadratic fields, Fröhlich
[31] found a connection with Galois module structure: The quartic characters η
considered by Fröhlich correspond to certain Galois extensions N of Q with Galois
group the quaternion group of order 8, and Fröhlich proved that W (η) is 1 or
−1 according as ON is or is not a free Z[Gal(N/Q)]-module. Since then a vast
literature has developed relating root numbers to Galois module structure; see for
example [15], [16], [17], [21], [32], and [95]. This snippet of history should caution
us against dismissing Problem 2 too cavalierly.

Returning to the matter at hand, we need an example of a real quadratic field
K and an equivariant Hecke character η of K with W (η) = −1 and f(η) of the
required form. Take K = Q(

√
r(r + 4)) with a prime r > 5 congruent to 1 mod

4. Then the discriminant of K has the form D = rs, where r + 4 = sm2 with
s square-free and m ∈ Z. Let κ be the primitive quadratic Dirichlet character of
conductor D given by

κ(n) =
( n
D

)
,(2.53)

and define ε : (O/
√
DO)× → {±1} by composing κ (viewed as a character of

(Z/DZ)×) with the canonical identification (O/
√
DO)× ∼= (Z/DZ)×. We claim

that ε is trivial on the image of O× in (O/
√
DO)×. In view of (2.53) we have at

least ε(−1) = κ(−1) = 1. On the other hand, put u = ((r + 2) +
√
r(r + 4))/2.

According to Katayama [48], u is the fundamental unit of K, so we must verify
that ε(u) = 1 also.

To see this, write (Z/DZ)× ∼= (Z/rZ)× × (Z/sZ)×, and let κ = κ′κ′′ be the
corresponding decomposition of κ into primitive quadratic characters of conductors
r and s respectively. Also put f =

√
DO and let r and s be respectively the prime

ideal of K over r and the product of the prime ideals dividing s. Then (O/f)× ∼=
(O/r)××(O/s)× and we have a corresponding decomposition of characters ε = ε′ε′′.
Recalling that u = ((r + 2) +

√
r(r + 4))/2 and r + 4 = sm2, we see that u ≡ 1

mod r and u ≡ −1 mod s, whence ε(u) = ε′(1)ε′′(−1) = κ′′(−1). But κ′′(−1) = 1
because s ≡ 1 mod 4, so ε is trivial on O×, as claimed.
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It follows that we obtain a well-defined character η of P (f) by setting

η(αO) = ε(α) (α ∈ K(f)),(2.54)

where ε is viewed as a character of K(f) as in Proposition 1.2. Extending η to
I(f) arbitrarily, we obtain a primitive Hecke character of conductor f which we also
denote η and which is readily verified to be equivariant. A calculation shows that

W (η) =
(

2
D

)
(2.55)

(Exercise 2.7). But D = r(r+4)/m2 and in particular D ≡ 5 mod 8, so W (η) = −1.

7. Epsilon factors

Even a brief perusal of the literature on root numbers will reveal that our discussion
has so far neglected two basic issues: the dependence of the local root number on an
“additive character” and the relation between root numbers and “epsilon factors.”
In rectifying these omissions we shall also add a few words about Tate’s global
and local functional equations [92], which are the source of the formulas for W (χ)
stated earlier. For a more thorough treatment see [92] or Chapter XIV of [55].

7.1. Additive characters
Let K be a finite extension of Qp with p 6 ∞. By an additive character of K
we mean a nontrivial unitary character ψ : K → C

×. There is a canonical choice
of ψ which we denote ψcan. If p =∞ then

ψcan(x) = e−2πi trK/R(x),(2.56)

and if p <∞ then

ψcan(x) = e2πi{ trK/Qp (x)}p .(2.57)

Here {z}p is the p-adic principal part of a number z ∈ Qp: thus if z =
∑
n∈Z anp

n

with an ∈ {0, 1, . . . , p− 1} for all n and an = 0 for n� 0 then {z}p =
∑
n<0 anp

n.
Note that (2.56) can also be written

ψcan(x) = e−2πi{ trK/R(x)}∞ ,(2.58)

where {t}∞ is the fractional part of a real number t, defined by the requirements
0 6 {t}∞ < 1 and t ≡ {t} mod Z. Normally {t}∞ is written simply as {t}, but we
have included the subscript to emphasize the analogy with (2.57).

Let χ be a character of K×. Associated to χ and to an arbitrary additive
character ψ of K is a local root number W (χ, ψ). The definition of W (χ, ψ)
will be given later, and it will turn out that our W (χ) coincides with W (χ, ψcan).
Furthermore, any ψ has the form ψ(x) = ψcan(ax) for some a ∈ K×, and we shall
see that W (χ, ψ) = χunit(a)W (χ). It follows that

W (χ, ψb) = χunit(b)W (χ, ψ)(2.59)

for any b ∈ K×, where ψb(x) = ψ(bx).
We now switch to the global setting and change notation accordingly. Let K

be a number field and A its ring of adeles. A global additive character of K
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is a nontrivial unitary character ψ of A which is trivial on K. Again there is a
canonical choice ψcan. It is simply the product of the local canonical choices:

ψcan(x) =
∏
v

ψcan
v (xv) (x = (xv) ∈ A).(2.60)

Of course to make sense of (2.60) we must verify that ψcan
v (xv) = 1 for all but finitely

many v. Certainly xv ∈ Ov for all but finitely many finite v, and if xv ∈ Ov then
trKv/Qp(xv) ∈ Zp, where p is the residue characteristic of v. Then ψcan

v (xv) = 1.
Hence (2.60) is indeed meaningful.

To see that ψcan is a global additive character of K we must still check that
it is trivial on K. So suppose that α ∈ K. Referring to (2.57) and (2.58), we find
that the identity to be verified is∑

p<∞

∑
v|p

{ trKv/Qp(α)}p ≡
∑
v|∞

{ trKv/R(α)}∞ (mod Z).

The sum of the local traces at the places of K lying over a given place of Q is equal
to the global trace, so putting β = trK/Q(α), we must show that∑

p<∞
{β}p ≡ {β}∞ (mod Z).

But this is a familiar fact: The principal part of a rational number differs from its
fractional part by an integer.

Now let χ be an idele class character of K and ψ a global additive character of
K. We define the global root number W (χ, ψ) to be the product of the local root
numbers:

W (χ, ψ) =
∏
v

W (χv, ψv).(2.61)

However the dependence of W (χ, ψ) on ψ is illusory: We can write ψ(x) = ψcan(αx)
for some α ∈ K×, and then the right-hand side of (2.61) becomes∏

v

W (χv, (ψcan
v )α) =

∏
v

(χv)unit(α)W (χv, ψcan
v )(2.62)

by virtue of (2.59). Note that (χv)unit = (χunit)v. Since χunit is an idele class
character and α ∈ K×, the right-hand side of (2.62) is simply

∏
vW (χv, ψcan

v ) or
in other words our previous

∏
vW (χv). Hence we recover the definition (2.39) of

the global root number which we had before the introduction of additive characters.
If we are back where we started, then what was the point of introducing additive

characters in the first place? One reason is that one wants a theory which is
applicable to function fields in one variable over finite fields, not just to number
fields. Usually the difference between number fields and function fields is thought
to be the presence or absence of archimedean places, but another difference is that
the prime field of a number field is another number field, whereas the prime field
of a function field is not a global field at all. It is the latter difference which forces
one to consider arbitrary additive characters. Indeed for the prime field Q there
is a canonical choice of additive character, whence for any number field there is a
canonical choice via composition with trace. But a function field is of infinite degree
over its prime field, and consequently a preferred additive character is lacking. In
the absence of a preferred choice one is forced to consider all choices.
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7.2. The global epsilon factor and the global functional equation
The fact that there is no trace from a function field to its prime field has other
consequences as well. The framework within which we have been working – ideles,
idele class characters, L-functions – carries over without change to function fields,
and Hecke’s functional equation

Λ(s, χ) = W (χ)Λ(k − s, χ)(2.63)

(Theorem 2.1, with k as in (2.28)) is subsumed in Tate’s functional equation

L(s, χ) = ε(s, χ)L(1− s, χ−1)(2.64)

for the L-function associated to an idele class character χ of an arbitrary global
field. Here L(s, χ) is the completed L-function associated to χ and ε(s, χ) is the
global epsilon factor, an elementary factor of the form a · bs with a ∈ C× and
b > 0. We define ε(s, χ) more precisely below, but right now the key point is that in
Tate’s more general setting, (2.63) has to be replaced by (2.64), because Λ(s, χ) no
longer has a meaning: The definition of Λ(s, χ) involves the absolute discriminant,
and function fields do not have absolute discriminants. Such an invariant exists for
a number field K only because one can take the trace down to the prime field and
obtain the canonical pairing 〈x, y〉 = trK/Q(xy).

Before explaining how (2.64) reduces to (2.63) in the case of number fields, we
repeat that the L-function L(s, χ) in (2.64) is the completed L-function associated to
χ. In other words, L(s, χ) = L∞(s)Lfin(s, χ), where Lfin(s, χ) is the Euler product
(2.10). Normally it is this Euler product itself which we denote L(s, χ), but for the
remainder of the present lecture only, we shall use L(s, χ) to mean the completed
L-function, reverting in subsequent lectures to the more traditional usage in force
until now. Note that it is only in the number field case that this distinction is even
an issue: If there are no infinite places then L∞(s, χ) = 1, whence L(s, χ) coincides
with (2.10) by either convention.

To make a connection between (2.63) and (2.64) we must say a word about
ε(s, χ), although we postpone the formal definition a little longer. Roughly speak-
ing, epsilon factors are Gauss sums, or a generalization and renormalization of
Gauss sums. For example if χ is a primitive Dirichlet character of conductor N ,
simultaneously viewed as the corresponding idele class character χA, then

ε(s, χ) = τ(χ)/(imNs) = W (χ)N1/2−s,(2.65)

where τ(χ) is the Gauss sum (1.2) and m is as in (1.4). The second equality in
(2.65) is a consequence of (1.3). As this example illustrates, the epsilon factor of
an idele class character of a number field binds the root number to the the product
of the conductor and the absolute value of the discriminant, although the latter
factor is of course 1 in the case of Q. In general, if K is an arbitrary number field
and χ an idele class character of K then

ε(s, χ) = W (χ)(DNf(χ))k/2−s(2.66)

(see Exercise 2.9). Granting (2.66), let us verify that (2.64) does reduce to (2.63)
when K is a number field. In addition to (2.66), we will need the formula

L(s, χ · || ∗ ||s0) = L(s+ s0, χ),(2.67)

where || ∗ || is as usual the idelic norm. The validity of (2.67) follows by inspection
from formulas (2.22) through (2.26).
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To deduce (2.63) from (2.64), we recall first of all that when the absolute norm
is viewed as an idele class character it coincides with the reciprocal of the idelic
norm. Thus the idelic version of Proposition 1.1, given (2.28), is

χ = χunit · || ∗ ||−(k−1)/2
.(2.68)

Consequently χ−1 = χunit · || ∗ ||
(k−1)/2

, whence

L(1− s, χ−1) = L(1− s+ (k − 1)/2, χunit)

by (2.67). Another appeal to (2.67) now gives

L(1− s, χ−1) = L(k − s, χunit · || ∗ ||
−(k−1)/2) = L(k − s, χ),(2.69)

where the second equality follows from (2.68). On substituting (2.66) and (2.69) in
(2.64) and then multiplying through by (DNf(χ))s/2, we do indeed recover (2.63).

We come finally to the definition of ε(s, χ), where χ is now an idele class
character of a global field K. Choose a global additive character ψ of K – recall
this means that ψ is a nontrivial unitary character of the adele ring A of K, trivial
on K – and let dx be the Haar measure on A giving the quotient A/K measure
1. As with any Haar measure on A, we can write dx as a restricted direct product
measure, dx = ⊗vdxv, where dxv is a Haar measure on Kv and dxv gives Ov
measure 1 for all but finitely many finite v. If {cv} is a family of positive real
numbers such that cv = 1 for all but finitely many v and

∏
v cv = 1, then we also

have dx = ⊗vcvdxv, so the decomposition dx = ⊗vdxv is not unique. Neither is ψ,
of course. Nonetheless, we obtain a global factor ε(s, χ) independent of any choices
by setting

ε(s, χ) =
∏
v

ε(s, χv, ψv, dxv),(2.70)

where the local epsilon factor ε(s, χv, ψv, dxv) must now be defined.

7.3. The local epsilon factor and the local functional equation
Since the issue is now local, we drop the subscript v and switch to a local setting.
Thus K is a local field, χ a character of K×, ψ an additive character of K, and dx
a Haar measure on K. We must define ε(s, χ, ψ, dx). Once we have done so we will
put

ε(χ, ψ, dx) = ε(s, χ, ψ, dx)|s=0(2.71)

and define the local root number W (χ, ψ) by the formula

W (χ, ψ) =
ε(χ, ψ, dx)
|ε(χ, ψ, dx)|

.(2.72)

As the notation suggests, the right-hand side of (2.72) turns out to be independent
of the choice of dx.

One point to understand at the outset is that the definition of ε(s, χ, ψ, dx)
involves integrals which may converge only for <(s) � 0. However ε(s, χ, ψ, dx)
extends to an entire function of s, so that (2.71) defines ε(χ, ψ, dx) by analytic
continuation. Going in the other direction, we will see that

ε(s, χ, ψ, dx) = ε(χ · || ∗ ||s, ψ, dx);(2.73)

of course || ∗ || now denotes the local norm (2.7), given that we are dropping the
subscript v.
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The integrals just mentioned appear along with ε(s, χ, ψ, dx) in Tate’s local
functional equation. Quite apart from the fact that Tate’s method is applicable
to function fields as well as number fields, the local functional equation is from
the perspective of Hecke’s method something completely new. The setting for the
innovation is the Schwartz space S(K) of K. If K is nonarchimedean then S(K)
consists of locally constant functions on K of compact support, while if K is R or
C then S(K) consists of C∞ functions f on K such that the derivatives of f of all
orders (mixed partial derivatives of all orders if K ∼= C) are of rapid decay. In all
cases we define the Fourier transform f̂ of a function f ∈ S(K) by

f̂(x) =
∫
K

f(y)ψ(xy) dy.(2.74)

The definition depends on the choice of ψ, but for any choice, f̂ is again in S(K).
To state the local functional equation, take f ∈ S(K) and set

I(s, χ, ψ, dx, f) =
∫
K×

f(x)χ(x)||x||s dx

||x||
.(2.75)

Even though I(s, χ, ψ, dx, f) does not actually depend on ψ, we retain it in the
notation to remind ourselves that f̂ depends on ψ. As for the right-hand side of
(2.75), the reason for writing the integrand as f(x)χ(x)||x||s dx/||x|| rather than
simply as f(x)χ(x)||x||s−1 dx is that dx/||x|| is a Haar measure on K×. By a
consideration of cases one can show that the integral converges for <(s) � 0 and
extends to a meromorphic function on C. Tate’s local functional equation is the
statement that

I(1− s, χ−1, ψ, dx, f̂)
L(1− s, χ−1)

= ε(s, χ, ψ, dx)
I(s, χ, ψ, dx, f)

L(s, χ)
,(2.76)

where the local L-factors are as in (2.22), (2.25), and (2.26) and ε(s, χ, ψ, dx) is an
entire nowhere vanishing function independent of f .

Formula (2.76) is the definition of ε(χ, ψ, dx, s). More precisely, one first proves
that for arbitrary f, g ∈ S(K) the identity

I(s, χ, ψ, dx, f)I(1− s, χ−1, ψ, dx, ĝ) = I(s, χ, ψ, dx, g)I(1− s, χ−1, ψ, dx, f̂)

holds, and then for each χ one exhibits a choice of g such that I(s, χ, ψ, dx, g) and
I(1− s, χ−1, ψ, dx, ĝ) are nonzero as meromorphic functions. Finally, given such a
g one defines ε(s, χ, ψ, dx) by putting

ε(s, χ, ψ, dx) =
L(s, χ)I(1− s, χ−1, ψ, dx, ĝ)
L(1− s, χ−1)I(s, χ, ψ, dx, g)

.(2.77)

Then ε(s, χ, ψ, dx) is independent of the choice of g and (2.76) follows.
We will not delve into the details of these calculations, nor into the passage

from (2.76) to (2.64), which is based on an adelic version of the Poisson summation
formula. For all of this see [92]. However we will illustrate the use of (2.76) by
determining the dependence of ε(s, χ, ψ, dx) on the parameters ψ, dx, and s, and
by proving a duality relation. We will also record some formulas for ε(s, χ, ψ, dx)
which arise as a by-product of the proof of (2.76) and which in the number field
case are the source of the local formulas for W (χ) stated earlier.
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7.4. Dependence on the parameters
To determine how ε(s, χ, ψ, dx) depends on ψ, we return to the spot where ψ
entered the picture, namely the definition (2.74) of the Fourier transform. If we
temporarily write (ψ, f̂) and (ψb, f̂) for the Fourier transform of f taken relative
to ψ and ψb respectively, then (2.74) gives (ψb, f̂)(x) = (ψ, f̂)(bx). Hence by using
the invariance of dx/||x|| under x 7→ b−1x in the integral for I(1−s, χ−1, ψb, dx, f̂),
we see that

I(1− s, χ−1, ψb, dx, f̂) = χ(b)||b||s−1I(1− s, χ−1, ψ, dx, f̂).

Since the L-factors and I(s, χ, ψ, dx, f) are unaffected by the switch from ψ to ψb,
the formula

ε(s, χ, ψb, dx) = χ(b)||b||s−1ε(s, χ, ψ, dx)(2.78)

now follows from (2.76). In particular, taking s = 0, we obtain

ε(χ, ψb, dx) = χ(b)||b||−1ε(χ, ψ, dx),(2.79)

and inserting this information in (2.72), we recover the claimed formula (2.59) for
the dependence of W (χ, ψ) on ψ. Furthermore, if we redo the calculation (2.62)
with (2.61) replaced by (2.70) and (2.59) by (2.78) then we find that the global
epsilon factor in (2.70) is indeed independent of the global additive character.

Next we determine the dependence of ε(s, χ, ψ, dx) on dx. Any other Haar mea-
sure on K has the form c dx with c > 0, and from (2.74) and (2.75) we deduce that
I(1 − s, χ−1, c dx, f̂) = c2 I(1 − s, χ−1, dx, f̂) and I(s, χ, c dx, f) = c I(s, χ, dx, f).
The formula

ε(s, χ, ψ, c dx) = c ε(s, χ, ψ, dx)(2.80)

now follows from (2.76). Taking s = 0, we find that

ε(χ, ψ, c dx) = c ε(χ, ψ, dx).(2.81)

Thus the definition (2.72) of W (χ, ψ) is independent of dx, as claimed. Another
claim also follows, namely that the global epsilon factor does not depend on the
decomposition of the global Haar measure as a restricted direct product of local
Haar measures.

Finally, let us verify the relation (2.73), the dependence of ε(s, χ, ψ, dx) on s.
This is easy. First of all, it is immediate from the definition of I(s, χ, ψ, dx, f) that
if s′ is a second complex variable then

I(s+ s′, χ, ψ, dx, f) = I(s′, χ · || ∗ ||s, ψ, dx, f).

It is likewise immediate from the definition of L(s, χ) given in formulas (2.22),
(2.25), and (2.26) that L(s+ s′, χ) = L(s′, χ · || ∗ ||s). Hence (2.76) gives

ε(s+ s′, χ, ψ, dx) = ε(s′, χ · || ∗ ||s, ψ, dx).

Setting s′ = 0, we obtain (2.73).

7.5. A duality relation
Given f ∈ S(K), define f− ∈ S(K) by f−(x) = f(−x). If we fix ψ and use it to
define the Fourier transform f 7→ f̂ on S(K), then the self-dual Haar measure
dxψ relative to ψ is the unique Haar measure on K such that (f )̂̂ = f−. Taking
dx = dxψ and applying (2.76) a second time, we find that

I(s, χ, ψ, dxψ, f−) = ε(s, χ, ψ, dxψ)ε(1− s, χ−1, ψ, dxψ)I(s, χ, ψ, dxψ, f).
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The substitution x 7→ −x in the integral I(s, χ, ψ, dxψ, f−) now gives

ε(s, χ, ψ, dxψ)ε(1− s, χ−1, ψ, dxψ) = χ(−1).(2.82)

This is the duality relation at issue.
A less transparent version of (2.82) will actually be more useful to us. We claim

first of all that a local analogue of Proposition 1.1 holds:

χ = χunit · || ∗ ||−c(2.83)

with c ∈ R. The assertion in (2.83) is that |χ| = || ∗ ||−c and indeed that any
character of K× with values in R>0 is a real power of || ∗ ||. If K is R or C this fact
has already been noted, and if K is nonarchimedean then it suffices to observe that
a character of K× with values in R>0 is trivial on O× and thus determined by its
value on a uniformizer, hence equal to || ∗ ||−c for some c. Now (2.83) implies that
χ−1 = χ · || ∗ ||2c, whence substitution in (2.82) gives

ε(χ, ψ, dxψ)ε(1 + 2c, χ, ψ, dxψ) = χ(−1)(2.84)

when we take s = 0 and use (2.73).
On the other hand, applying complex conjugation to both sides of (2.76) gives

ε(s, χ, ψ, dxψ) = ε(s, χ, ψ−1, dxψ), because ψ = ψ−1 = ψ−1. Thus

ε(s, χ, ψ, dxψ) = χ(−1)ε(s, χ, ψ, dxψ)

by (2.78). Taking s = 1 + 2c and substituting the result in (2.84), we obtain

ε(χ, ψ, dxψ)ε(χ · || ∗ ||1+2c, ψ, dxψ) = 1(2.85)

after canceling χ(−1) on both sides and once again using (2.73). In spite of its
apparent awkwardness, (2.85) will lead to a formula for the absolute value of
ε(χ, ψ, dxψ).

7.6. Explicit formulas
As we have already indicated, an essential part of the proof of (2.76) is to exhibit a
Schwartz function g for which I(s, χ, ψ, dx, g) 6= 0. In the process one obtains the
following useful information about ε(s, χ, ψ, dx).

First, if K is archimedean and dxcan is the self-dual measure relative to ψcan

then

ε(s, χ, ψcan, dxcan) = ε(χ, ψcan, dxcan) = W (χ)(2.86)

with W (χ) as in (2.41). Standard formulas for the Fourier transform on euclidean
space show that dxcan is Lebesgue measure or twice Lebesgue measure according
as K = R or K ∼= C. In the latter case we can also say that dxcan is |dz ∧ dz|.

Next suppose that K is nonarchimedean. Let O be its ring of integers, π a
uniformizer, a(χ) the exponent of the conductor of χ, and n(ψ) the largest integer
n such that ψ|π−nO is trivial. Choose γ ∈ πa(χ)+n(ψ)O×. If χ is unramified then

||γ|| ε(χ, ψ, dx) = χ(γ)
∫
O
dx,(2.87)

and if χ is ramified then

||γ|| ε(χ, ψ, dx) =
∫
O×

χ−1(x/γ)ψ(x/γ)dx.(2.88)

Of course the integral in (2.87) is just meas(O), the measure of O relative to dx.
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We note two consequences of (2.87) and (2.88). First, an inspection of these
formulas shows that the effect of replacing χ by χ·||∗||s is to multiply the right-hand
side of the formulas by ||γ||s. In other words

ε(χ · || ∗ ||s, ψ, dx) = q−(a(χ)+n(ψ))sε(χ, ψ, dx)(2.89)

with q = |O/πO|. In particular, take s = 2c+ 1, where c is as in (2.83). Inserting
(2.89) in (2.85), we obtain

|ε(χ, ψ, dxψ)|2 = q(a(χ)+n(ψ))k(2.90)

with k = 2c+ 1.
The second consequence is particularly simple and depends only on (2.87): If

a(χ) = n(ψ) = 0 and meas(O) = 1 then ε(χ, ψ, dx) = 1. On replacing χ by
χ · || ∗ ||s and applying (2.73) we find more generally that if a(χ) = n(ψ) = 0 and
meas(O) = 1 then ε(s, χ, ψ, dx) = 1. If we switch to the global setting, so that
K is now a global field, χ an idele class character, ψ a global additive character,
and dx the Haar measure on A giving A/K measure 1, then for all but finitely
many finite places v we have a(χv) = n(ψv) = 0 and meas(Ov) = 1, and thus
ε(s, χv, ψv, dxv) = 1. Hence the product (2.70) defining the global epsilon factor is
indeed meaningful.

7.7. The number field case
It remains to check that we do recover the formulas for W (χ) stated earlier – namely
(2.41), (2.42), and (2.43) – when we take K to be a finite extension of Qp (p 6∞)
and ψ to be ψcan. That (2.86) and (2.72) imply (2.41) is a tautology, so we may
assume that p <∞.

If χ is unramified then γ in (2.87) is just an element of valuation n(ψ). Fur-
thermore n(ψ) is d, the exponent of the different ideal, because ψ = ψcan. Hence
dividing the two sides of (2.87) by their absolute values, we obtain (2.43).

To derive (2.42), let dxcan denote the self-dual measure on K relative to ψcan.
We claim first of all that dxcan coincides with the measure dx on K for which
meas(O) = q−d/2. To justify the claim it suffices to exhibit a single nonzero element
f ∈ S(K) such that (f )̂̂ = f− when the Fourier transform is computed using ψcan

and dx. Let f and g be the characteristic functions of O and π−dO respectively.
A straightforward calculation shows that f̂ = q−d/2g and that ĝ = qd/2f , whence
(f )̂̂ = f = f− and dxcan = dx, as claimed. Thus O has measure q−d/2 relative
to dxcan. It follows that each coset of πa(χ)O in O has measure q−d/2−a(χ). But
the value at x ∈ O× of χ−1(x/γ)ψ(x/γ) depends only on the coset of x modulo
πa(χ)O, so we can replace the integral in (2.88) by a sum:

q−a(χ)−d ε(χ, ψcan, dxcan) = q−a(χ)−d/2
∑

x∈(O/πa(χ)O)×

χ−1(x/γ)ψcan(x/γ).(2.91)

Furthermore, we know from (2.90) that the absolute value of ε(χcan, ψ, dxcan) is
q(a(χ)+d)k/2, where k = 2c + 1 and |χ(π)| = qc. It follows that the absolute value
of the two sides of (2.91) is q(a(χ)+d)(c−1/2). Dividing both sides of (2.91) by this
quantity while substituting

χ(γ) = χunit(γ)q(a(χ)+d)c,

we obtain (2.42).
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8. Exercises

Exercise 2.1. Let A be the adele ring of a number field K. We have characterized
the topology on A by two properties. Verify that there does in fact exist a unique
topology on A with these properties and that a basis for the topology is given by the
sets

∏
v Uv with Uv open in Kv for all v and Uv = Ov for all but finitely many finite

v. Similarly, verify that there is a unique topology on A× with the two properties
claimed for it, and show that a basis for this topology is given by the sets

∏
v Uv

with Uv open in K×v for all v and Uv = O×v for all but finitely many finite v.

Exercise 2.2. Let K be a number field, C its ideal class group, and c(D) ∈ C
the class of the different ideal D. Prove that c(D) ∈ C2. (Hint: If this is not the
case then there is a quadratic ideal class character χ of K such that χ(D) = −1.
Compute W (χ) and obtain a contradiction to Theorem 2.2.) Although the theorem
that c(D) ∈ C2 is due to Hecke, Hecke’s proof on p. 261 of [43] is quite different.
The proof outlined in the hint follows an argument of Armitage [2] suggested by
Serre.

Exercise 2.3. Given an idele class character χ of a number field K, write W (χfin)
and W (χ∞) for the product of the local root numbers W (χv) taken over v -∞ and
over v|∞ respectively. Using (2.42), show that if χ′ is an idele class character of K
with f(χ′) = O then

W ((χχ′)fin) = χ′unit(f(χ)D)W (χfin),

where D is the different ideal of K. (Of course in writing χ′unit(f(χ)D) we are
thinking of χ′unit as a Hecke character.) It follows that

W (χχ′) = ω · χ′unit(f(χ)D)W (χ)(2.92)

with ω = W ((χχ′)∞)/W (χ∞).

Exercise 2.4. This exercise outlines a proof of Proposition 1.6. Notation is as in
that proposition and as in the last paragraph of the proof of Proposition 1.3.

(a) Show that that W (χϕ) = W (χ) for χ ∈ X(D) and ϕ ∈ Φ. (Hint: Use
(2.92) with χ′ = ϕ.)

(b) Let T be the prime ideal of O above 2, let E be as in the proof of Proposition
1.3, and write E = {ε, δ}. Also let ε′ and δ′ be the corresponding quadratic
characters of

(O/T5)× ∼= (Z/8Z)× × 〈(1 +
√
−2C) + T5〉,(2.93)

where the second factor on the right-hand side is the cyclic group of order 4 gen-
erated by the coset of 1 +

√
−2C. Replacing this second factor by its subgroup of

order 2, we obtain a subgroup H of index 2 in (O/T5)× such that ε′ = −δ′ on the
complement of H and ε′ = δ′ on H. By direct calculation, show that∑

h∈H

ε′(h)e2πi trK/Q(h/16) = 0.

(To interpret e2πi trK/Q(h/16), replace h by any of its coset representatives in O:
The value of the exponential is independent of the coset representative because the
different ideal of K is T3C and 16O = T8.)

(c) Deduce that
∑
χ∈X(D)W (χ) = 0, and conclude that the sets X±(D) are

both nonempty, whence both are of cardinality h(D) by (a) and Proposition 1.3.
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Exercise 2.5. Given χ ∈ X(D) and a positive integer w, use the local formulas
and Theorem 2.1 to verify that (1.35) holds with Λ(s, χw) as in (1.36) and W (χw)
as in (1.37). (Hint: If w is odd then (2.92) can be applied with χ′ = χw−1.)

Exercise 2.6. This exercise pertains to our example of a Hecke L-function of
“Maass type.” Let K be a real quadratic field of discriminant D.

(a) Show that (2.50) gives a well-defined equivariant character χ0 of P and that
any extension of this character to I is an equivariant Hecke character. (Hint: To
check the equivariance, observe that if a is any ideal of O then aa′ is the principal
ideal generated by a rational integer, namely Na.)

(b) Let η be a primitive equivariant Hecke character of K of finite order, and
assume that f(η) = N

√
DO for some integer N > 1. Put χ = ηχ0, where χ0 is now

any extension of (2.50) to I. Show that W (χ) = W (η). (Hint: Use (2.92) with χ
and χ′ replaced by η and χ0.)

Exercise 2.7. This exercise leads to a proof of (2.55). Fix a prime r > 5 congruent
to 1 mod 4, put K = Q(

√
r(r + 4)), and let f =

√
DO, where D as before is the

discriminant of K. Also let η be any extension of (2.54) to I(f).
(a) Verify that η is an equivariant Hecke character of conductor f and trivial

infinity type.
(b) Deduce that W (ηv) = 1 if v is a place of K not dividing f.
(c) Now consider the place v of K corresponding to a given prime ideal p

dividing f, and let p be the prime number below p. Show that

W (ηv) = iδ
(

2
p

)∏
q|D
q 6=p

(
p

q

)

with δ equal to 0 or 1 according as p is 1 mod 4 or 3 mod 4. (Note the similarity
to (2.48).)

(d) Finally, use quadratic reciprocity to complete the proof of (2.55).
(e) Deduce from Theorem 2.2 that the class number of K is even.

Exercise 2.8. Let K be a number field, and let χ and χ′ be idele class characters
of K of relatively prime conductors.

(a) Show that the following formula of Langlands is a generalization of (2.92):

W (χχ′) = ω · χunit(f(χ′))χ′unit(f(χ))W (χ)W (χ′),(2.94)

where ω = W ((χχ′)∞)/(W (χ∞)W (χ′∞)).
(b) Prove (2.94).
(c) By taking K = Q and choosing χ and χ′ appropriately, derive quadratic

reciprocity from (2.94).

Exercise 2.9. Let χ be an idele class character of a number field K, and define k
as in (2.28). Using (2.86), (2.89), and (2.90), derive (2.66).





LECTURE 3

Motivic L-functions

The discussion now moves to L-functions associated to Galois representations.
Within this large framework Artin L-functions form a natural point of departure
for one simple reason: All known methods of obtaining an L-function from a Galois
representation are variants of Artin’s original construction.

1. Artin representations and Artin L-functions

Let K be a number field. A representation of Gal(K/K) over C is called an Artin
representation of K. The requirement that a representation of a topological
group be continuous is very restrictive in the case of Artin representations, because
Gal(K/K) with its Krull topology is the profinite group lim←− LGal(L/K), where L
runs over finite Galois extensions of K inside K, and a complex representation of a
profinite group is trivial on an open subgroup. It follows that an Artin representa-
tion of K can be regarded as a representation of Gal(L/K) for some finite Galois
extension L of K, and this is the point of view that we shall usually adopt.

Consider then a finite Galois extension L of K, a finite-dimensional complex
vector space V , and an Artin representation ρ : Gal(L/K) → GL(V ). The Artin
L-function L(s, ρ) is defined by an Euler product:

L(s, ρ) =
∏
p

Bp((Np)−s)−1,(3.1)

where p runs over nonzero prime ideals of K and Bp(x) is the polynomial with
constant term 1 defined as follows.

Given p, fix a prime ideal P of L over p and let D and I be the correspond-
ing decomposition and inertia subgroups of Gal(L/K). Also write l and k for the
residue class fields of P and p respectively. The natural action of D on l induces
an isomorphism of D/I onto Gal(l/k), and the latter group has a canonical gen-
erator, the Frobenius automorphism. If σ ∈ D is a preimage of the Frobenius
automorphism under the composition of maps D → D/I → Gal(l/k) then σ is
called a Frobenius element at P. While it is only σI and not σ which is uniquely
determined by P, if we restrict attention to the subspace of inertial invariants

V I = {v ∈ V : ρ(i)(v) = v for all i ∈ I}(3.2)

then the resulting linear automorphism ρ(σ)|V I of V I is well defined. We set
Bp(x) = xdP (x−1), where P (x) is the characteristic polynomial of ρ(σ)|V I and d
is the dimension of V I . Thus

Bp(x) = det(1− xρ(σ)|V I).(3.3)

Of course I is trivial unless p is ramified in L, and when I is trivial, V I = V . It
follows that the degree of Bp(x) is 6 dimV for all p and is equal to dimV for all
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but finitely many p. Furthermore, since ρ is a representation of the finite group
Gal(L/K), the eigenvalues of ρ(σ)|V I are roots of unity, and consequently the Euler
product in (3.1) converges for <(s) > 1.

The definition (3.3) of Bp(x) may appear to depend on our choice of a prime
ideal P over p, but if P′ is another choice then there is an element g ∈ Gal(L/K)
such that P′ = g(P), and then D, I, σ, and V I are replaced by gDg−1, gIg−1,
gσg−1, and ρ(g)(V I) respectively. Since characteristic polynomials are similarity
invariants, (3.3) is unchanged. We also see that we can define ρ to be unramified
at p (or at the corresponding place of K) if ρ is trivial on I, for then it is trivial
on gIg−1 for all g ∈ Gal(L/K). If ρ|I is nontrivial then ρ is ramified at p.

One can also define a notion of ramification at the infinite places. Let v be
an infinite place of K and w a place of L over v. If v is real and w is complex
then we let I ⊂ Gal(L/K) be the subgroup of order two generated by the complex
conjugation corresponding to w. If v is complex or w is real then we take I to be
the trivial subgroup of Gal(L/K). We say that ρ is ramified or unramified at v
according as ρ is nontrivial or trivial on I. Note once again that ramification at v
is a meaningful concept even though I may depend on w.

If S is a set of places of K then we say that ρ is unramified outside S if
ρ is unramified at every place v /∈ S. For example, if S contains all of the places
of K which ramify in L then ρ is unramified outside S. In particular, an Artin
representation is always unramified outside a finite set of places.

1.1. Idele class characters of finite order as Artin representations
The phrase finite order is crucial here. Idele class characters of infinite order do
not correspond to Artin representations. However we do have a canonical bijection
ξ 7→ χξ from one-dimensional Artin representations to idele class characters of finite
order. The mechanism underlying this bijection is the Artin symbol. Since it will
be convenient to think of χξ as a primitive Hecke character we shall describe the
Artin symbol at the level of ideals rather than at the level of ideles.

Let K be a number field and L a finite abelian extension of K, and let f be a
nonzero integral ideal of K which is divisible by every prime ideal of K ramified
in L. Given a prime ideal p ∈ I(f) and a prime ideal P of L above p, we can
speak of the Frobenius element σP ∈ Gal(L/K) determined by P, because the
inertia subgroup I ⊂ Gal(L/K) corresponding to P is trivial. In fact we can write
σP as σp, because σP is independent of the choice of prime ideal P over p: Since
Gal(L/K) is abelian we have gσPg

−1 = σP for all g ∈ Gal(L/K). We define the
Artin symbol (∗, L/K) on prime ideals by setting

(p, L/K) = σp.(3.4)

Since I(f) is the free abelian group on the prime ideals not dividing f, the map
p 7→ σp extends uniquely to a homomorphism I(f) → Gal(L/K), the Artin map
or reciprocity law map. We write this map as a 7→ (a, L/K), where a denotes
an arbitrary element of I(f).

The Artin map is surjective, and hence it gives rise to the Artin isomorphism
from an appropriate quotient of I(f) onto Gal(L/K). But an even deeper fact of
class field theory is embedded in the next statement: If ξ is a one-dimensional
character of Gal(L/K) and we pull it back to I(f) via the Artin map then the
resulting character of I(f) is a Hecke character, necessarily of finite order. Since we
have not been careful about the choice of f we cannot claim that the Hecke character



DAVID E. ROHRLICH, PCMI LECTURE NOTES 51

in question is primitive, but it certainly determines a primitive Hecke character,
and it is this primitive character that we denote χξ. The relation between ξ and
χξ is summarized in the formula

χξ(a) = ξ((a, L/K)) (a ∈ I(f)).(3.5)

If we start with a character ξ of Gal(K/K) then there are many choices of a finite
abelian extension L of K such that ξ factors through Gal(L/K), but the primitive
Hecke character χξ obtained is independent of the choice. This follows from the
“consistency property” of the Artin symbol: the fact that if M is an intermediate
field of the extension L/K then the restriction of (a, L/K) to M is (a,M/K). The
upshot is that we may think of ξ 7→ χξ as a map from one-dimensional Artin
representations of K to primitive Hecke characters of K of finite order.

This map is a bijection. The injectivity is clear from the definition, and the
surjectivity is essentially one version of the “existence theorem” of class field the-
ory. To elaborate on this point very briefly, we introduce the narrow ray class
group I(f)/Pf,>0 to the modulus f. Here f is an integral ideal of K, and Pf,>0 is
the subgroup of Pf consisting of principal fractional ideals generated by a totally
positive element of Kf (an element which is sent to a positive number by every real
embedding of K). Of course if K is totally complex then Pf,>0 = Pf. Now when
we combine the defining property (1.10) of Hecke characters with the fact that a
finite-order character of C× or R>0 is trivial, we see that if χ is a primitive Hecke
character of K of finite order with f = f(χ) then χ factors through I(f)/Pf,>0. On
the other hand, the existence theorem of class field theory assures us that there is
an abelian extension Kf of K, unramified outside the infinite places of K and the
places dividing f, such that the kernel of the Artin symbol (∗,Kf/K) on I(f) is pre-
cisely Pf,>0. The field Kf is uniquely determined by these conditions and is called
the narrow ray class field of K to the modulus f. If K is totally complex then
we can omit the word narrow. In any case, the Artin map gives an isomorphism

I(f)/Pf,>0
∼= Gal(Kf/K).(3.6)

Thus every primitive Hecke character χ of K of finite order with f = f(χ) has the
form χξ for some character ξ of Gal(Kf/K).

1.2. The arithmetic versus the geometric convention
The definitions (3.3) and (3.5) follow what we will call the arithmetic convention
for Frobenius elements. The arithmetic convention is the traditional convention,
and it seems like the appropriate convention to follow in the context of Artin L-
functions. However there is a more recent convention, the geometric convention,
and if we were to follow that convention then (3.5) would be replaced by

χξ(a) = ξ((a, L/K)−1) (a ∈ I(f))(3.7)

and (3.3) would be replaced by

Bp(x) = det(1− xρ(Φ)|V I),(3.8)

where Φ is an inverse Frobenius element at p, the inverse of a Frobenius element.
While we are still on the topic of Artin L-functions we will continue to follow the
arithmetic convention, but once we start to look at more general motivic L-functions
we will make a permanent switch to the geometric convention, for reasons to be
discussed later.
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1.3. The Artin formalism
Almost anything one does with Artin L-functions depends on three basic properties.
These properties are collectively known as the Artin formalism.

The first is additivity: If ρ and ρ′ are representations of Gal(L/K) then

L(s, ρ⊕ ρ′) = L(s, ρ)L(s, ρ′).(3.9)

This is immediate from the additivity of the characteristic polynomial and the
additivity of the map V 7→ V I .

The second property, which is trickier to prove, is inductivity. If M is an in-
termediate field of the Galois extension L/K and ρ is a representation of Gal(L/M),
let indM/Kρ denote the representation of Gal(L/K) induced by ρ. Then

L(s, indM/Kρ) = L(s, ρ).(3.10)

Note that the left-hand side is an Artin L-function of K while the right-hand side
is an Artin L-function of M .

The third property is compatibility in dimension one. Let ξ be a one-
dimensional Artin representation and and χξ the primitive Hecke character of finite
order which corresponds to ξ under the identification (3.5). Then

L(s, ξ) = L(s, χξ).(3.11)

This is a straightforward consequence of (1.18) (3.3), and (3.4).
There is actually a fourth property which can be considered part of the Artin

formalism, namely invariance under inflation, although the invariance of L(s, ρ)
under inflation is more a property of Frobenius elements than of L-functions. Sup-
pose that M is an intermediate field of the finite Galois extension L/K, and let ρ
be a representation of Gal(M/K). Then ρ can be inflated to a representation of
Gal(L/K) by composition with the canonical map Gal(L/K) → Gal(M/K), and
we write inflL/Mρ for the representation of Gal(L/K) so obtained. Then

L(s, inflL/Mρ) = L(s, ρ).(3.12)

This follows from the fact that if σ ∈ Gal(L/K) is a Frobenius element at a prime
ideal P of L then σ|M is a Frobenius element at the prime ideal of M lying below
P. The consistency property of the Artin symbol mentioned earlier is just an
abelian consequence of this fact. In any case, the significance of (3.12) is that if ρ is
presented to us as a representation of Gal(K/K) then L(s, ρ) is independent of the
choice of a finite Galois extension L of K such that ρ factors through Gal(L/K).

This concludes our recitation of the basic properties constituting the Artin
formalism. We can now see that we encountered the first nontrivial instance of the
Artin formalism in the previous lecture, when we looked at quadratic root numbers
(Theorem 2.2). Given a quadratic extension of number fields L/K, let 1L denote
the one-dimensional character of the trivial subgroup Gal(L/L) of Gal(L/K), and
let 1K and ξ denote respectively the trivial and the nontrivial one-dimensional
characters of Gal(L/K). Then indL/K1L = 1K ⊕ ξ, so (3.9) and (3.10) give

L(s, 1L) = L(s, 1K)L(s, ξ).(3.13)

Now it is immediate from the definitions that L(s, 1L) = ζL(s) and L(s, 1K) =
ζK(s). Furthermore, on combining (3.4) with (3.5) we find that χξ is the quadratic
Hecke character signL/K defined in (2.30). It follows that (3.13) is simply the
relation (2.29).
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2. The functional equation

The example (3.13) was a warm-up exercise for the task now at hand, which is to
deduce a functional equation for Artin L-functions from the properties listed above
and the known functional equation of Hecke L-functions. The key ingredient here
is Brauer’s induction theorem.

2.1. Derivation of the functional equation from Brauer’s theorem
Let G be a finite group. We recall that Groth(G), the Grothendieck group
of virtual representations of G over C, can be viewed as the free abelian
group on the isomorphism classes of the irreducible complex representations of G,
whence a virtual representation of G is just an integral linear combination of
such isomorphism classes. Also, a representation of G is monomial if it is induced
by a one-dimensional character of G. Given a representation ρ of G over C, write
[ρ] for its class in Groth(G). For our purposes, the essential content of Brauer’s
theorem is that the classes [ρ] with ρ monomial span Groth(G) over Z.

Now take G = Gal(L/K), where L/K is a Galois extension of number fields.
If ρ is any representation of G then by Brauer’s theorem we can write

[ρ] =
∑

(M,ξ)

nM,ξ [indM/Kξ](3.14)

with nM,ξ ∈ Z, where (M, ξ) runs over pairs consisting of an intermediate field M
and a one-dimensional character ξ of Gal(L/M). On the other hand, by virtue of the
additivity property (3.9) we can view L(s, ∗) as a homomorphism from Groth(G) to
the multiplicative group of nonzero meromorphic functions on the right half-plane
<(s) > 1. Applying this homomorphism to both sides of (3.14), we obtain

L(s, ρ) =
∏

(M,ξ)

L(s, indM/Kξ)nM,ξ ,(3.15)

and then the inductivity and compatibility properties (3.10) and (3.11) give

L(s, ρ) =
∏

(M,ξ)

L(s, χξ)nM,ξ .(3.16)

Each L(s, χξ) is a Hecke L-function and so extends to a meromorphic function on
C. Thus (3.16) gives the continuation of L(s, ρ) to a meromorphic function on C.

But we want more: a functional equation. For each pair (M, ξ) in (3.14), put

AM,ξ = DMNf(χξ),(3.17)

where DM is the absolute value of the discriminant of M . We set

A(ρ) =
∏

(M,ξ)

A
nM,ξ
M,ξ ,(3.18)

L∞(s, ρ) =
∏

(M,ξ)

L∞(s, χξ)nM,ξ ,(3.19)

W (ρ) =
∏

(M,ξ)

W (χξ)nM,ξ ,(3.20)

and

Λ(s, ρ) = A(ρ)s/2L∞(s, ρ)L(s, ρ).(3.21)
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Then

Λ(s, ρ) =
∏

(M,ξ)

Λ(s, χξ)nM,ξ(3.22)

with Λ(s, χξ) as in (2.27). Now dualization is a well-defined operation on Groth(G)
and commutes with induction, so (3.14) also gives

[ρ∨] =
∑

(M,ξ)

nM,ξ[indM/Kξ].(3.23)

Furthermore χξ = χξ. Hence the counterpart to (3.16) is

L(s, ρ∨) =
∏

(M,ξ)

L(s, χξ)nM,ξ .(3.24)

Similarly, to define A(ρ∨) and L∞(s, ρ∨) we replace AM,ξ by AM,ξ in (3.18) and
L∞(s, χξ) by L∞(s, χξ) in (3.19) (neither replacement actually changes anything).
Finally, to define Λ(s, ρ∨) we replace ρ by ρ∨ on the right-hand side of (3.21), or
simply in L(s, ρ). Then

Λ(s, ρ∨) =
∏

(M,ξ)

Λ(s, χξ)nM,ξ ,(3.25)

whence (3.20), (3.22), (3.25), and Hecke’s functional equation (Theorem 2.1) give

Λ(s, ρ) = W (ρ)Λ(1− s, ρ∨).(3.26)

This is the functional equation of L(s, ρ).

2.2. Dependence on Brauer’s theorem
With the functional equation (3.26) now established, let us review the definition of
the four types of quantities which appear in it: the L-function L(s, ρ), the gamma
factor L∞(s, ρ), the exponential factor A(ρ), and the root number W (ρ). Our
goal in reviewing the definitions is to distinguish between those that are “Brauer-
dependent” – in other words, dependent on an expression for [ρ] like (3.14) – and
those that are not. The definition of L(s, ρ) is of the latter type: It is both Brauer-
independent and local in the sense that (3.1) makes no reference to Brauer’s theorem
and expresses L(s, ρ) as a product of local factors (3.3) defined in an intrinsic
way. The same is true of A(ρ) and L∞(s, ρ), for the Brauer-dependent global
definitions (3.18) and (3.19) will eventually be replaced by the Brauer-independent
local definitions (3.50) and (3.51) below. However in the case of W (ρ) a Brauer-
independent definition is simply not known. By itself this is not problematic: while
the decomposition (3.14) of [ρ] is not unique, the resulting quantity (3.20) has to
be independent of the decomposition because the functional equation (3.26) can’t
hold with two different values of W (ρ). What is problematic, however, is that the
definition (3.20) is not local. True, each factor W (χξ) in (3.20) can be written as a
product of local root numbers, but no analogue of Tate’s local functional equation
is known in dimension > 1, so even if one decomposes each W (χξ) into local factors
and reassembles the local factors corresponding to a given place v it is not obvious
that the resulting local root number W (ρv) is independent of the decomposition
of [ρ]. That there is in fact a well-defined purely local root number is a theorem
of Langlands and Deligne [23], about which we will have a little more to say in
Lecture 4. For now we continue with the global theory but develop it in a more
general context.
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3. Compatible families

The L-function of an elliptic curve without complex multiplication is neither a
Hecke L-function nor an Artin L-function, and for this reason alone we need to
broaden the discussion. The L-functions associated to the “compatible families” to
be discussed next include all L-functions of elliptic curves, all Artin L-functions,
and much else. In particular, since they include all L-functions of elliptic curves
and all Artin L-functions they also include the L-functions of Hecke characters of
type (1,0) of imaginary quadratic fields and the L-functions of Hecke characters of
finite order. However they do not include all Hecke L-functions: the L-functions of
“nonalgebraic” Hecke characters like (2.50) will now fall by the wayside.

3.1. `-adic representations
Up to this point, all representations have been defined over C. Now we consider
representations with field of scalars Q`, where ` is a prime number. Such a repre-
sentation is called an `-adic representation.

A key difference between complex and `-adic Galois representations is that
the latter need not factor through the Galois group of a finite Galois extension.
Nonetheless, given a number field K and a prime ideal p of K we can choose a prime
ideal P of K over p and consider the associated inertia subgroup I ⊂ Gal(K/K)
and Frobenius coset σI = Iσ, where σ ∈ Gal(K/K) is any Frobenius element at P.
If P′ is another prime ideal of K over p and I ′ and σ′ are the analogues of I and σ
then there is an element of Gal(K/K) which conjugates P to P′, I to I ′, and σI to
σ′I ′. This was the property justifying certain definitions which we made for Artin
representations and which therefore now go through for `-adic representations as
well. In particular, ρ` is ramified or unramified at p according as ρ`|I is nontrivial
or trivial, and if p - ` then Bp(x) is defined by analogy with (3.8):

Bp(x) = det(1− xρ`(Φ)|V I` ),(3.27)

where Φ = σ−1 and V` is the space of ρ`. The subspace V I` is defined as in (3.2)
but with V and ρ replaced by V` and ρ`.

Note that in (3.27) we are following the geometric convention, as we shall do
consistently from now on. The arithmetic convention would dictate that

Bp(x) = det(1− xρ`(σ)|(V`)I),(3.28)

where (V`)I is the space of inertial coinvariants, the quotient of V` by the sub-
space spanned by all expressions of the form v− ρ`(i)v with v ∈ V` and i ∈ I. The
relation between the two conventions is that if V ∨` is the dual space of V` then

det(1− xρ∨` (Φ)|(V ∨` )I) = det(1− xρ`(σ)|(V`)I).(3.29)

To see that (3.28) generalizes Artin’s original arithmetic definition (3.3), observe
that V I can be replaced by VI in (3.3): Artin representations are complex repre-
sentations of a finite group, hence semisimple.

3.2. Full compatibility
Since the coefficients of Bp(x) lie in Q` rather than in C, it is not a priori meaningful
to substitute x = (Np)−s. But suppose that for each prime number ` we have an
`-adic representation ρ` of Gal(K/K). The resulting collection {ρ`} is called a
family of `-adic representations of Gal(K/K), and we say that the family is
fully compatible if the following conditions are satisfied:
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(i) There is a finite set S of prime ideals of K, independent of `, such that if
p /∈ S and p - ` then ρ` is unramified at p.

(ii) The polynomial Bp(x) in (3.27), which a priori has coefficients in Q`,
actually has coefficients in Q and is independent of ` in the sense that
Bp(x) is unchanged if ` in (3.27) is replaced by some other rational prime
`′ with p - `′.

Although we have not made it part of the definition, it follows from (i) and (ii) that
the dimension of ρ` is independent of `. Indeed, given a second rational prime `′,
we can choose a prime ideal p of K such that p /∈ S and p - ``′. Then V I` = V` and
V I`′ = V`′ , whence the degree of Bp(x) coincides both with dim(V`) and dim(V`′).

A warning is in order here: The term fully compatible is not a standard term,
and no standard term for the concept just defined seems to exist in the literature.
The usual term is strictly compatible, but this is a slightly weaker notion: For strict
compatibility Bp(x) is required to be independent of ` only for p not in S. There
is also mere compatibility, an even weaker concept; see Serre [82], pp. I-10 – I-
11. While the concept that we have dubbed full compatibility may lack a widely
accepted name, the concept itself is all over the literature; see for example [26],
[80], and [81]. Fortunately, standard terms do exist for two other concepts: The
fully compatible family {ρ`} is integral if the coefficients of Bp(x) are rational
integers, and the minimal set S satisfying (i) is the exceptional set of the family.

3.3. Examples
The prototypical example of a fully compatible family of integral `-adic represen-
tations of Gal(K/K) is the one-dimensional family {ω−1

` } consisting of the duals
of the `-adic cyclotomic characters

ω` : Gal(K/K)→ Z
×
` .

Let σ denote an arbitrary element of Gal(K/K) and ζ an arbitrary root of unity
of `-power order. Then ω` is defined by the condition

σ(ζ) = ζω`(σ).

In particular, if σ is a Frobenius element at a prime ideal p of K not dividing ` then
ω`(σ) = Np. Equivalently, if Φ is an inverse Frobenius at p then ω−1

` (Φ) = Np,
and consequently Bp(x) = x −Np by (3.27). Thus because we are following the
geometric convention the family {ω−1

` } is integral, but not the family {ω`}. The
exceptional set of both families is the empty set.

Another example is provided by any elliptic curve E over K. Let T`(E) be the
`-adic Tate module of E, and let ρE,` be the associated representation of Gal(K/K)
on the space V`(E) = Q` ⊗Z` T`(E). Then the family {ρE,`} is fully compatible,
and the dual family {ρ∨E,`} is fully compatible and integral. We remark that the
`-adic cohomology groups H1

` (E) are dual to the spaces V`(E), so that ρ∨E,` is the
representation of Gal(K/K) on H1

` (E). The exceptional set S of {ρ∨E,`} consists of
the places where E has bad reduction.

The preceding example serves as a useful mnemonic device. The spaces V`(E)
yield integral families relative to the arithmetic convention (3.28), while the spaces
H1
` (E) yield integral families relative to the geometric convention (3.27). Since `-

adic cohomology is expected to be the primary source of fully compatible families,
the geometric convention has been adopted as the standard.
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3.4. λ-adic representations
If χ is a Dirichlet character of order > 3 then there are infinitely many ` such
that the values of χ do not lie in Q`, but we would nonetheless like to associate a
compatible family to χ and indeed to any Artin representation. A similar comment
applies to Hecke characters of imaginary quadratic fields. Thus we need to expand
our notion of a compatible family.

Let E be a number field and λ a finite place of E of residue characteristic `. A
representation with field of scalars Eλ is called a λ-adic representation. If E = Q

then we recover the notion of an `-adic representation. Now let K be a number
field and ρλ a λ-adic representation of Gal(K/K). If p is a prime ideal of K and
I the inertia subgroup of Gal(K/K) at some prime ideal of K over p then we say
that ρλ is ramified or unramified at p according as ρλ|I is nontrivial or trivial.
And if p - ` then we set

Bp(x) = det(1− xρλ(Φ)|V Iλ ),(3.30)

where Vλ is the space of ρλ.
By a family of λ-adic representations of Gal(K/K) we mean a collection

{ρλ}, where λ runs over the finite places of E and ρλ is a λ-adic representation of
Gal(K/K). The family {ρλ} is fully compatible if two conditions hold:

(i) There is a finite set S of prime ideals of K, independent of λ, such that
if p /∈ S and p - ` (` being the residue characteristic of λ) then ρλ is
unramified at p.

(ii) The polynomial Bp(x) in (3.30) has coefficients in E and is unchanged if λ
in (3.30) is replaced by λ′, where λ′ is another finite place of E of residue
characteristic not divisible by p.

The fully compatible family {ρλ} is integral if the coefficients of Bp(x) lie in OE,
and the exceptional set of the family is the minimal set S satisfying (i). We refer
to the field E as the coefficient field of the family.

3.5. Compatible families of Artin and Hecke type
Let ρ be an Artin representation of K. Since any complex representation of a finite
group is realizable over a number field, there is a representation of Gal(K/K) on
a vector space V over a number field E ⊂ C such that ρ is the representation
on C ⊗E V afforded by extension of scalars. But extension of scalars also gives a
representation ρλ on Eλ⊗EV for each finite place λ of E. The resulting family {ρλ}
is fully compatible and integral, and its exceptional set is the set of places where ρ
is ramified.

Next let K be an imaginary quadratic field and χ a primitive Hecke character
of K of type (1,0) and conductor f. Let E be the finite extension of K generated
by the values of χ. Given a prime number ` and a prime ideal l of E dividing `, we
consider the map

I(f`n)/Pf`n → E(ln)/Eln

given by

aPf`n 7→ χ(a)−1
Eln(3.31)

for a ∈ I(f`n). This map is well defined by (1.10) (note in particular that χ(a) is
relatively prime to ` because χ(a)r is relatively prime to `, where r = |I(f)/Pf|).
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Making our usual identification of E(ln)/Eln with (OE/ln)× and then taking inverse
limits, we obtain a one-dimensional λ-adic representation

lim←− nI(f`n)/Pf`n → O×λ ,(3.32)

where λ is the place of E corresponding to l. To get a λ-adic Galois representation χλ
from (3.32), we identify the left-hand side of (3.32) with a quotient of Gal(Kab/K)
by using the Artin isomorphism (3.6). The resulting family {χλ} is fully compatible
and integral, and the exceptional set consists of the places of K dividing f.

3.6. The L-function of a fully compatible family
Henceforth it will be convenient to view all coefficient fields as subfields of C.
Notationally it is more convenient to associate an L-function to the isomorphism
class of a fully compatible family rather than to the family itself, so a definition
is in order. Let {ρλ} and {ρ′λ′} be fully compatible families of representations of
Gal(K/K) with coefficient fields E and E′ respectively. We say that these two
families are isomorphic if there exists a number field E′′ containing E and E′ such
that for every finite place λ′′ of E′′, the representations ρλ′′ and ρ′λ′′ are isomorphic
over E′′λ′′ . Here ρλ′′ and ρ′λ′′ are the representations over E′′λ′′ obtained by extension
of scalars from ρλ and ρ′λ′ respectively, where λ and λ′ lie below λ′′.

Now let M be the isomorphism class of a fully compatible family of λ-adic
representations of Gal(K/K) with coefficient field E. Since we are viewing E as a
subfield of C, we can define the L-function of M by analogy with (3.1):

L(s,M) =
∏
p

Bp((Np)−s)−1,(3.33)

where p runs over the prime ideals of K and Bp(x) is as in (3.30).
The analogy with Artin L-functions extends beyond the definition to include

also the properties of additivity and inductivity. Let M and M ′ be the isomorphism
classes of two fully compatible families {ρλ} and {ρ′λ}, which by extension of scalars
may be assumed to have the same coefficient field. Then M ⊕ M ′ denotes the
isomorphism class of the family {ρλ ⊕ ρ′λ}, and

L(s,M ⊕M ′) = L(s,M)L(s,M ′).(3.34)

On the other hand, let L be a finite extension of K and let M be the isomorphism
class of a fully compatible family {ρλ} of λ-adic representations of Gal(K/L). Then
the family {indL/Kρλ} is also fully compatible, and its isomorphism class, which
we will denote indL/KM , satisfies

L(s, indL/KM) = L(s,M).(3.35)

As in the case of Artin L-functions, (3.34) is immediate from the definitions, (3.35)
less straightforward.

By way of illustration, if ρ is an Artin representation and M is the isomor-
phism class of {ρλ} then L(s,M) = L(s, ρ∨), because we followed the arithmetic
convention when defining Artin L-functions. On the other hand, if χ is a Hecke
character of type (1, 0) of an imaginary quadratic field and M is the isomorphism
class of {χλ} then the net effect of the replacement of χ(a) by χ(a)−1 in (3.31)
and the replacement of σ by Φ in (3.27) is to leave the L-function unchanged:
L(s,M) = L(s, χ). Finally, if E is an elliptic curve and M is the isomorphism class
of {ρ∨E,`} then L(s,M) = L(s,E) by virtue of (3.29) with V` = V`(E).



DAVID E. ROHRLICH, PCMI LECTURE NOTES 59

3.7. Semisimplicity
Let M be the isomorphism class of a fully compatible family {ρλ}. Since character-
istic polynomials are insensitive to semisimplification, L(s,M) is unchanged if the
representations ρλ are replaced by their semisimiplifications. So from this point of
view there is no loss in assuming that the ρλ are semisimple to being with, and in
fact there is something to be gained:

Proposition 3.1. Let {ρλ} be a fully compatible family of semisimple λ-adic repre-
sentations of Gal(K/K), and let M be its isomorphism class. Then M is uniquely
determined by the isomorphism class of any one of the representations ρλ.

Proof. This is a simple consequence of the fact that a semisimple representa-
tion over a field of characteristic 0 is determined up to isomorphism by its character.
Indeed fix places λ and λ′ of the coefficient field E of the family, and given a prime
ideal p of K let Φp ∈ Gal(K/K) be an inverse Frobenius element at p. For all but
finitely many p we have tr ρλ(Φp) = tr ρλ′(Φp), because both traces coincide with
the coefficient of −x in Bp(x). Thus tr ρλ and tr ρλ′ coincide on a dense subset of
Gal(K/K). Since both are continuous each determines the other. �

Without the semisimplicity assumption the assertion is false. For example, fix
a finite place λ0 of E, and for λ 6= λ0 set ρλ = 1K ⊕1K . We can complete {ρλ}λ6=λ0

to a fully compatible family {ρλ} by setting ρλ0 = 1K ⊕ 1K but also by setting

ρλ0(g) =
(

1 logω`0(g)
0 1

)
(g ∈ Gal(K/K)),

where `0 is the residue characteristic of λ0 and log is the `0-adic logarithm on Z`0 .
Of course the associated L-function is ζK(s)2 in both cases.

3.8. Analytic desiderata
Let M be the isomorphism class of a fully compatible family of λ-adic representa-
tions of Gal(K/K) with coefficient field E and exceptional set S. It is not at all
clear that the Euler product defining L(s,M) converges in some right half-plane,
and without this property L(s,M) is of no use to us. Hence we need to impose a
condition on the reciprocal roots of Bp(x), in other words the numbers α ∈ C×
such that Bp(α−1) = 0 (recall that Bp(x) has constant term 1, so that 0 is not a
root). Actually we consider two conditions: one for p /∈ S and one for p ∈ S. Fix
w ∈ Z and let τ run over arbitrary field automorphisms of C. The conditions are

|τ(α)| = (Np)w/2 (p /∈ S)(3.36)

and

|τ(α)| 6 (Np)w/2 (p ∈ S)(3.37)

respectively. If M satisfies (3.36) and (3.37) then we say that M has weight w.
The point of this definition is that if M has weight w then the Euler product

defining L(s,M) converges for <(s) > w/2 + 1. Of course this would be true even
if we required (3.36) and (3.37) only for τ equal to the identity automorphism, but
by allowing τ ∈ Aut(C) to be arbitrary, we compensate for the fact that we have
fixed an embedding of E in C. Fixing such an embedding is convenient, but we do
not want our definition of weight to depend on the choice of embedding.



60 LECTURE 3. MOTIVIC L-FUNCTIONS

Next we want an analytic continuation and functional equation. To begin to
formulate the latter, we introduce the notion of a gamma factor of weight w
over K. This term will refer to any product of the form

γ(s) =
∏
v|∞

γv(s),(3.38)

where γv(s) is a a gamma factor of weight w over Kv in the following sense.
If w is odd, or if w is even and Kv

∼= C, then γv(s) is a product of the form

γv(s) =
∏

p+q=w
q>p>0

ΓC(s− p)h
pq

,(3.39)

where p and q are nonnegative integers satisfying the stated conditions and the
exponents hpq are nonnegative integers. Of course if w is odd then the condition
q > p > 0 can be replaced by q > p > 0.

If w is even and Kv = R then γv(s) is a product of the form

γv(s) = ΓR(s− w/2)h
w/2+

· ΓR(s− w/2 + 1)h
w/2−

·
∏

p+q=w
q>p>0

ΓC(s− p)h
pq

,(3.40)

where as before, p and q are nonnegative integers satisfying the stated conditions
and the exponents hw/2+, hw/2−, and hpq are all nonnegative integers.

3.9. Duality
To state a functional equation we need not only gamma factors but also a notion
of duality. This is straightforward: If M is the isomorphism class of {ρλ} then
the dual M∨ of M is the isomorphism class of {ρ∨λ}. Given r ∈ Z, we define the
r-fold Tate twist M(r) of M to be the isomorphism class of {ρλ⊗ωr`}, where the
tensor product of ρλ with the `-adic cyclotomic character ω` is formed by viewing
the latter as a representation over Eλ. Now if M has weight w then we put

M = M∨(−w)(3.41)

and call M essentially self-dual if M ∼= M . The notation M seems reasonable,
because if α1, α2, . . . , αn are the reciprocal roots of Bp(x) in C, listed with their
multiplicities, then the reciprocal roots of the counterpart to Bp(x) for M∨(−w)
are the numbers α−1

j · (Np)w with 1 6 j 6 n. But α−1
j = αj/|αj |2 = αj/(Np)w by

(3.36), at least if p /∈ S, so

α−1
j · (Np)w = αj (p /∈ S).(3.42)

The notation for the left-hand side of (3.41) is meant to remind us of (3.42).
To illustrate the definitions, let K be an imaginary quadratic field and consider

a primitive Hecke character χ of K of type (1,0). Let M ′(χ) be the isomorphism
class of the associated one-dimensional family {χλ}. Then M ′(χ) is of weight one
by (1.30), but χ 6= χ and consequently M ′(χ) is not essentially self-dual. But put

M(χ) = indK/QM ′(χ).(3.43)

If χ is equivariant in the sense that it satisfies the identity χ(a) = χ(a) then one
readily verifies that M(χ) is essentially self-dual of weight 1. In particular this is
the case if χ ∈ X(D), by Proposition 1.7. And since L(s,M(χ)) coincides by (3.35)
with L(s,M ′(χ)) and hence with L(s, χ), Theorem 1.2 remains valid with L(s, χ)
replaced by L(s,M(χ)).
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3.10. An algebraic desideratum
There is one further requirement that we would like to impose on M . Let {ρλ}
be a representative of M and E its coefficient field. We will say that M satisfies
Condition C8 if the following property holds. Let p be a prime ideal of K and D
and I the decomposition and inertia subgroups of Gal(K/K) associated to a prime
ideal P of K above p. Suppose that g ∈ D is an element such that the coset of g
in D/I coincides with the coset of σn for some Frobenius element σ at P and some
n ∈ Z. Then we require the characteristic polynomial of ρλ(g) to have coefficients
in E and to be independent of λ for all finite places λ of E such that p and λ
are of distinct residue characteristics. The reason for referring to this property as
“Condition C8” is that it is so labeled in Serre [81]. We could also have referred to
Problem 2 on p. 514 of Serre-Tate [86]. Note that Condition C8 neither supersedes
nor is superseded by full compatibility, because if p belongs to the exceptional set
S then Condition C8 pertains to ρλ(g) itself whereas full compatibility pertains to
the restriction of ρλ(g) to the space of inertial invariants.

4. Premotives

We come now to the main point. Let M be the isomorphism class of a fully
compatible family of semisimple integral λ-adic representations of Gal(K/K). We
call M a premotive of weight w over K if three conditions are satisfied:

(i) M has weight w and satisfies Condition C8.
(ii) L(s,M) extends to a meromorphic function on C which is entire if w is

odd and holomorphic everywhere except possibly at s = w/2 + 1 if w is
even.

(iii) There is a positive integer A(M), a constant W (M) ∈ C of absolute value
1, and a gamma factor γ(s) = L∞(s,M) of weight w over K such that

Λ(s,M) = W (M)Λ(k − s,M)

with Λ(s,M) = A(M)s/2γ(s)L(s,M), Λ(s,M) = A(M)s/2γ(s)L(s,M),
and k = w + 1.

The rank of M is the dimension of ρλ for {ρλ} ∈M , and if we can choose {ρλ} to
have a given number field E as coefficient field then we say that M admits E as
coefficient field.

If M is a premotive of weight w then the integrality of the underlying rep-
resentations ρλ implies that w > 0. We could broaden the definition and allow
premotives of negative weight by declaring that M((r − w)/2) has weight w < 0
if M is a premotive of weight r > 0 with r ≡ w mod 2. However premotives of
negative weight will play no role in what follows.

What is more problematic about the definition is that by requiring (ii) and (iii)
we have limited our stock of examples. Not that we are entirely without examples:
The isomorphism class of {ω−w/2` } is a premotive of weight w for any even integer
w > 0, and if K is an imaginary quadratic field, χ a Hecke character of K of type
(1, 0), and M(χ) and M(χ′) as in (3.43), then M(χ) and M(χ′) are premotives of
weight 1 over K and Q respectively by virtue of the analytic properties of Hecke
L-functions, in particular Theorem 2.1. But we cannot make the analogous claim
for an arbitrary Artin representation ρ of a number field K because (ii) is unknown
in general: The statement that L(s, ρ) is holomorphic everywhere except possibly
at s = 1 is the Artin conjecture. (More precisely, the Artin conjecture asserts
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that if ρ is irreducible and nontrivial then L(s, ρ) is entire. But if ρ is irreducible
and trivial then L(s, ρ) = ζK(s). Hence by additivity the Artin conjecture implies
that for any ρ, irreducible or not, L(s, ρ) is holomorphic except possibly at s = 1.)
While the Artin conjecture is known in certain cases – including for example the
case of monomial representations, where it follows by inductivity from the analytic
properties of Hecke L-functions, and many two-dimensional cases (Langlands [57],
Tunnell [97], and Khare and Wintenberger [50], [51] with Kisin [52]) – the fact
remains that Artin representations do not automatically provide examples of pre-
motives. Similarly, if E is an elliptic curve over Q then the isomorphism class of
{ρ∨E,`} is a premotive of weight 1 by virtue of the modularity of E (Wiles [100],
Taylor and Wiles [96], and Breuil, Conrad, Diamond, and Taylor [11]), but if Q is
replaced by an arbitrary number field then the assertion remains conjectural.

In spite of this objection, we have included (ii) and (iii) in the definition so as
to be able to refer to the order of vanishing of L(s,M) at s = (w + 1)/2 without
using the word conjectural at every turn. But when we are not talking about trivial
central zeros (ii) and (iii) will play no role.

5. Uniqueness of the functional equation

Given that we do include the functional equation in the definition, it may seem
strange that the factors A(M), W (M), and L∞(s,M) are not defined more pre-
cisely. However the following proposition shows that they are in fact uniquely
determined by the functional equation. Both the proposition and its proof were
suggested by Théorème 4.6 on p. 514 of Deligne-Serre [25].

Proposition 3.2. If Ã(M) is a positive integer, W̃ (M) ∈ C a constant of absolute
value 1, and γ̃(s) a gamma factor of weight w over K such that

Λ̃(s,M) = W̃ (M)Λ̃(k − s,M)

with Λ̃(s,M) = Ã(M)s/2γ̃(s)L(s,M) and Λ̃(s,M) = Ã(M)s/2γ̃(s)L(s,M),
then Ã(M) = A(M), W̃ (M) = W (M), and γ̃(s) = γ(s).

Proof. Taking the ratio of the two functional equations, we obtain

(A(M)/Ã(M))s/2
γ(s)
γ̃(s)

= (W (M)/W̃ (M))(A(M)/Ã(M))(k−s)/2 γ(k − s)
γ̃(k − s)

.(3.44)

Now it follows from the formulas (3.39) and (3.40) that the left-hand side of (3.44)
is holomorphic and nonvanishing for <(s) > [w/2] and the right-hand side for
<(s) < k − [w/2]. Since k = w + 1 we have [w/2] < k − [w/2] and consequently
both sides of (3.44) are entire and nonvanishing. Thus γ(s)/γ̃(s) is entire and
nonvanishing. If w is odd then γ(s)/γ̃(s) has the form

∏(w−1)/2
p=0 ΓC(s − p)np with

np ∈ Z, and the fact that γ(s)/γ̃(s) is holomorphic and nonzero at s = (w − 1)/2
shows that np = 0 for p = (w − 1)/2. Applying this argument inductively we find
that np = 0 for 0 6 p 6 (w − 1)/2, whence γ̃(s) = γ(s). If w is even we use the
duplication formula to write γ(s)/γ̃(s) in the form

∏w/2
p=−1 ΓR(s−p)np , and a similar

argument again gives γ̃(s) = γ(s). Thus in both cases we conclude that

(A(M)/Ã(M))s = (W (M)/W̃ (M))(A(M)/Ã(M))k/2

for all s, whence Ã(M) = A(M) and W̃ (M) = W (M). �
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6. An open problem

The term premotive is just a device enabling us to talk about motivic L-functions
without first talking about motives, but the terminology suggests a question:

Problem 3. Does every premotive come from a motive?

This is not a new question. In fact a stronger version appears as Question 2 on
p. I-12 of Serre [82], and while the Fontaine-Mazur conjecture [30] is concerned with
other issues, it too implies a statement about the provenance of fully compatible
families which is in most respects much stronger than what we are asking for here
(see [30], pp. 196 – 197). Furthermore, the converse of Problem 3 is also a well-
known open problem. In other words, if we start with a pure motive M of weight w
then it is not known in general that M is a premotive of weight w, not only because
the analytic continuation and functional equation of L(s,M) are not known, but
also because the full compatibility of the family of λ-adic representations attached
to M is not known either, nor the semisimplicity of the representations ρλ, nor
Condition C8.

Since Problem 3 and its converse are already well-known open problems, the
only reason for drawing attention to them here is to justify the coinage premotive
and the use of the term motivic L-function for the L-function associated to a pre-
motive. By postulating a connection with motives we also justify the notations
hpq and hp± in (3.39) and (3.40), because if M does come from a motive then the
gamma factor L∞(s,M) that one associates to M is given by (3.38) with hpq and
hp± equal to the usual Hodge numbers; cf. [24], p. 329. More precisely, hpq is the
usual Hodge number and hp± is the multiplicity of the eigenvalue (−1)p(±1) of the
“Frobenius at infinity” – in other words, of complex conjugation – on Hpp.

That said, Problem 3 has little bearing on our present train of thought. We
would like to define A(M) and W (M) as products of local factors rather than via
the abstract uniqueness of a conjectural functional equation. While the quest for
such a self-contained local definition will encounter a difficulty, the difficulty would
not disappear if we knew that our premotive came from a motive.

7. Local factors for Artin L-functions

Earlier we mentioned that if ρ is an Artin representation of K then the factors A(ρ)
and L∞(s, ρ) defined by (3.18) and (3.19) respectively could also be defined in a
Brauer-independent and local way. We now record these local definitions, thereby
demonstrating that in the case of Artin representations, the theory to be described
in the next lecture is needed only for the sake of W (ρ).

7.1. The exponential factor
Given a finite place v of K, we identify Gal(Kv/Kv) with the decomposition sub-
group of Gal(K/K) at some place of K above v, and we put ρv = ρ|Gal(Kv/Kv).
The conductor of ρ is the integral ideal

f(ρ) =
∏
v-∞

pa(ρv)
v(3.45)

of K, where pv is the prime ideal corresponding to v and a(ρv) is the exponent of
the local conductor, a nonnegative integer still to be defined. The definition will
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show that a(ρv) > 0 if and only if ρ is ramified at pv. Since ρ is unramified outside
a finite set it follows that the product on the right-hand side of (3.45) is finite.

The definition of a(ρv) is a purely local matter, and thus we change our notation
by dropping the subscript v: K is now a finite extension of Qp with p <∞, and ρ

is a representation of Gal(K/K). We choose a finite Galois extension L of K such
that ρ factors through Gal(L/K), and we view ρ as a representation of Gal(L/K).

The definition of a(ρ) involves the higher ramification subgroups In (n > 0) of
Gal(L/K). If n = 0 then In = I, the inertia subgroup of Gal(L/K), and in general

In = {σ ∈ I : σ(x) ≡ x (mod pn+1
L ) for all x ∈ OL},

where OL is the ring of integers of L and pL its maximal ideal. Let V be the space
of ρ and V In the subspace of vectors fixed by ρ(In). Then

a(ρ) =
∑
n>0

(en/e)dim(V/V In),(3.46)

where en = |In| and e (= e0) is the ramification index of L over K. If n is sufficiently
large then In is the trivial subgroup of Gal(L/K), so the sum is finite. Also V I = V
if and only if ρ(I) is the trivial subgroup of GL(V ), so a(ρ) = 0 if and only if ρ
is unramified, as already mentioned. That a(ρ) is integral and independent of the
choice of L follows from an alternative expression for a(ρ) as an inner product of the
character of ρ with the “Artin character” (see Chapter VI of Serre [83], especially
Theorem 1’ on p. 99 and the Corollary to Proposition 3 on p. 101).

The conductor-exponents a(ρ) satisfy a modified Artin formalism, and con-
sequently so does the global conductor (3.45). We will go directly to the global
version, and thus we take K to be a number field again. The additivity of the
conductor is immediate from the definitions: If ρ and ρ′ are Artin representations
of K then

f(ρ⊕ ρ′) = f(ρ)f(ρ′).(3.47)

Next let M be a finite extension of K and ρ an Artin representation of M . The
counterpart to inductivity is not quite invariance under induction but rather

f(indM/Kρ) = ddimρ
M/KNM/K(f(ρ)),(3.48)

where dM/K is the relative discriminant ideal of the extension M/K. Finally, if
ξ is a one-dimensional Artin representation and χξ the corresponding idele class
character of finite order, then

f(ξ) = f(χξ),(3.49)

where the right-hand side is the usual conductor of an idele class character, defined
as in (2.21).

Now let D be the absolute value of the discriminant of K. Given an Artin
representation ρ of K, we define its exponential factor to be the positive integer

A(ρ) = DdimρNf(ρ).(3.50)

From (3.47), (3.48), and (3.49) we deduce the Artin formalism for the exponential
factor: A(ρ⊕ρ′) = A(ρ)A(ρ′), A(infM/K ρ) = A(ρ), and A(ξ) = A(χξ). Using these
identities, one can verify that the exponential factor defined by (3.50) coincides with
the Brauer-dependent quantity defined by (3.18).
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7.2. The gamma factor
Given an infinite place v of K we identify the decomposition subgroup of Gal(K/K)
at some place above v with Gal(Kv/Kv), just as in the archimedean case. Of course
in the archimedean case there is no distinction between the decomposition and
inertia groups: Either both are trivial or both are the group of order two generated
by the relevant complex conjugation. If ρ is an Artin representation of K then we
put ρv = ρ|Gal(Kv/Kv) and define the gamma factor of ρ to be the product

L∞(s, ρ) =
∏
v|∞

L(s, ρv),(3.51)

where the individual factors L(s, ρv) must still be defined. Since the issue is now
local, we fix v and drop the subscript on ρv and Kv. Thus ρ is a representation of
Gal(K/K) with K = R or K ∼= C.

The first step is to declare that L(s, ρ⊕ρ′) = L(s, ρ)L(s, ρ′) and thus to reduce
the definition of L(s, ρ) to the case where ρ is one-dimensional. Next, to a one-
dimensional ρ we associate a character χ of K× as follows: If ρ is trivial then χ is
trivial, and if K = R and ρ is the nontrivial character of Gal(C/R) then χ is the
sign character of R×. We put

L(s, ρ) = L(s, χ).(3.52)

Referring to (2.25) and (2.26), we see that the definition (3.52) amounts to saying
that if K ∼= C then L(s, ρ) = ΓC(s) and if K = R then L(s, ρ) is either ΓR(s) or
ΓR(s+ 1) according as ρ is trivial or nontrivial.

8. Exercises

Exercise 3.1. Give examples of a one-dimensional Artin representation and a
two-dimensional irreducible Artin representation such that the associated Artin
L-function has a trivial central zero. (Hint: Exercise 2.7 with (3.5) and induction.)

Exercise 3.2. Let K be a number field and L a Galois extension of K with
Gal(L/K) isomorphic to A4, the alternating group on 4 letters. Let ρ be the
irreducible complex representation of Gal(L/K) of dimension 3, unique up to iso-
morphism. Show that W (ρ) = 1. (Hint: Write ρ as a monomial representation
and apply Theorem 2.2, or else use Theorem 2.2 in conjunction with (3.53) below.)
Incidentally, both this exercise and Theorem 2.2 are instances of a result of Fröhlich
and Queyrut [33] asserting that W (ρ) = 1 if ρ is orthogonal.

Exercise 3.3. Let K be a number field and L a finite Galois extension of K. Using
the fact that indL/K1L is the regular representation of Gal(L/K), show that

ζL(s) =
∏
ρ

L(s, ρ)dimρ,(3.53)

where ρ runs over the distinct isomorphism classes of irreducible complex represen-
tations of Gal(L/K). In particular, if one of the L-functions in (3.53) has a trivial
central zero (as Exercise 3.1 shows can happen) and the others are holomorphic at
s = 1/2 (as the Artin conjecture says they must be) then ζL(1/2) = 0. But the zero
of ζL(s) at s = 1/2 is not a trivial central zero as we have defined the term, because
the functional equation of ζL(s) is ZL(s) = ZL(1− s). This is arguably a reason to
revise our notion of a trivial zero to take account not only of the functional equation
of the given L-function but also of the functional equation of its factors.
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Exercise 3.4. Let Eλ be a finite extension of Q` and ρλ a λ-adic representation of
a compact group G. Put d = dimρλ. Prove that ρλ is equivalent to a representation
into GLd(Oλ), whereOλ is the ring of integers of Eλ. (Hint: View ρλ as a continuous
homomorphism G→ GLd(Eλ), and let H be the inverse image of GLd(Oλ). Then
H is an open subgroup of G, hence of finite index. Let L be the sum of the Oλ-
submodules ρλ(g)(Odλ) of Edλ, where g runs over a set of coset representatives for
H in G. Show that L is a G-stable Oλ-lattice in Edλ.)

Exercise 3.5. Let {ρ`} be a fully compatible family of one-dimensional `-adic
representations of Gal(Q/Q) with exceptional set S = ∅. Prove that ρ` = ωn` for
some n ∈ Z.

Exercise 3.6. Let K be a number field, and consider the map ρ 7→ {ρλ} which
sends an Artin representation ρ of Gal(K/K) to a fully compatible family of integral
λ-adic representations of Gal(K/K). Show that every premotive M of weight 0
over K arises from some Artin representation ρ in this way. (Hint: If M is the
isomorphism class of a family {ρλ} then the key point is to show that the image
of ρλ is finite. By Exercise 3.4, ρλ may be viewed as a continuous homomorphism
Gal(K/K) → GLd(Oλ). Let Fλ be the residue class field of Oλ and ` the residue
characteristic. Show that the reduction map GLd(Oλ) → GLd(Fλ) is injective on
elements of order prime to `.)

Exercise 3.7. (Reading.) Let K and E be number fields. Given a fully compatible
family {ρλ} over K with coefficient field E, consider the extension F of E generated
by all the roots of the equations Bp(x) = 0 as p varies over prime ideals of K. A
necessary and condition for F to be of finite degree over E is given by Khare [49].
By examining some special cases (e. g. elliptic curves, Artin representations) and
perhaps glancing at the title of Khare’s paper, try to guess what Khare’s necessary
and sufficient condition is. Then compare your answer to [49].



LECTURE 4

Local formulas in arbitrary dimension

To associate a local factor to an Artin representation one starts by restricting
the Artin representation to a decomposition subgroup, but to deal with more general
premotives one is forced to replace the decomposition subgroup by its close relative,
the local Weil or Weil-Deligne group.

1. The local Weil and Weil-Deligne groups

Until further notice, K denotes a finite extension of Qp with p <∞. As usual, O is
the ring of integers of K and π a uniformizer ofO, and we put q = ||π||−1 = |O/πO|.
The maximal unramified extension of K inside K will be denoted Kunr, and any
element σ ∈ Gal(K/K) which reduces to the map x 7→ xq on O/πO will be called a
Frobenius element of Gal(K/K). The symbol Φ denotes the inverse of a Frobenius
element, and I is the inertia group Gal(K/Kunr).

1.1. The Weil group
As an abstract group, the Weil group W(K/K) of K is the union of those cosets
of I in Gal(K/K) which are represented by integral powers of a Frobenius element:

W(K/K) =
⋃
n∈Z

σnI.(4.1)

Since I is normal in Gal(K/K), the union is a subgroup of Gal(K/K), and since any
two Frobenius elements differ by an element of I the definition (4.1) is independent
of the choice of σ. We topologize W(K/K) by imposing two requirements:

• I is open in W(K/K), and the relative topology on I from W(K/K)
coincides with its relative topology from Gal(K/K).
• For every g ∈ W(K/K), the map x 7→ gx is a homeomorphism from

W(K/K) to itself.
These conditions determine a unique topology on W(K/K) and make W(K/K)
into a topological group. The most important property of this topology, immediate
from its definition, is that an abstract group homomorphism from W(K/K) into
another topological group is continuous if and only its restriction to I is continuous.
We also note that if L is a finite extension of K inside K then W(K/L) is an open
subgroup of W(K/K) just as Gal(K/L) is an open subgroup of Gal(K/K), and if
L is Galois over K then there are identifications

W(K/K)/W(K/L) ∼= Gal(K/K)/Gal(K/L) ∼= Gal(L/K).(4.2)

However the open subgroups of Gal(K/K) are precisely the subgroups Gal(K/L)
with L finite over K, whereas the subgroups W(K/L) of W(K/K) are merely the
open subgroups of finite index.

67
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A character of W(K/K) is unramified if its restriction to I is trivial, and it
is then determined by its value on σ. In particular, there is a unique unramified
character ω of W(K/K) such that ω(σ) = q. The similarity to the notation ω` for
the `-adic cyclotomic character is not coincidental. We introduced ω` as a character
of a global Galois group, but if we restrict to a decomposition group then we obtain
a character of our local Galois group Gal(K/K). Restricting further to W(K/K),
and making the assumption ` 6= p, we get our present ω, because both ω and
ω`|W(K/K) are unramified characters taking the value q on Frobenius elements.
We may think of ω as the prime-to-p cyclotomic character.

We write W(K/K)ab for the quotient of W(K/K) by the closure of its com-
mutator subgroup, or equivalently for the quotient of W(K/K) by the intersection
Gal(K/Kab)∩W(K/K). The latter description realizes W(K/K)ab as a subgroup
of Gal(Kab/K), and we shall denote this subgroup W(Kab/K). One pleasant fea-
ture of W(K/K) that distinguishes it from Gal(K/K) is that the local Artin
homomorphism x 7→ (x,Kab/K) from K× to W(Kab/K) is an isomorphism
rather than merely an injective homomorphism with dense image. Thus a one-
dimensional representation ρ of W(K/K) is the same thing as a character χ of K×.
In making the identification we follow the geometric convention:

ρ((x,Kab/K)) = χ(x−1) (x ∈ K×).(4.3)

For example, when the prime-to-p cyclotomic character ω of W(K/K) is viewed as
a character of K× it coincides with || ∗ ||, the local norm on K×.

1.2. The Weil-Deligne group
With regard to the Weil-Deligne group WD(K/K) our point of view will be
tannakian: Instead of defining WD(K/K) itself we define its representations. A
representation of WD(K/K) is a pair ρρρ = (ρ,N), where ρ is a representation of
W(K/K) and N a nilpotent endomorphism of the space of ρ satisfying

ρ(g)Nρ(g)−1 = ω(g)N(4.4)

for g ∈ W(K/K). Henceforth representations of W(K/K) will be viewed as the
special case N = 0 of representations of WD(K/K). In other words, we identify a
representation ρ of W(K/K) with the representation ρρρ = (ρ, 0) of WD(K/K).

The following proposition will be needed later and for the moment can serve
to illustrate the definitions just made. Let us say that two endomorphisms of a
finite-dimensional vector space V are simultaneously triangularizable if there
is a basis for V relative to which both endomorphisms are represented by upper
triangular matrices.

Proposition 4.1. Let ρρρ = (ρ,N) be a representation of WD(K/K) over C and g
any element of W(K/K). Then ρ(g) and N are simultaneously triangularizable.

Proof. The proof is like the standard argument that commuting matrices
over an algebraically closed field are simultaneously triangularizable. The only
reason for reviewing the details is to illustrate the use of (4.4). In fact consider
endomorphisms A and N of a finite-dimensional complex vector space V such that
N is nilpotent and AN = cNA with a nonzero scalar c. Write VN for the kernel of
N . We will prove that A and N are simultaneously triangularizable by induction
on the dimension of V .
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If dimV = 1 there is nothing to prove. If dimV = n > 2 then we use the
identity AN = cNA, which shows that VN is stable under A. Furthermore VN 6=
{0} because N is nilpotent. Let v1 ∈ VN be a nonzero eigenvector of A and
W its span. Applying the inductive hypothesis to the endomorphisms of V/W
determined by A and N , we obtain a basis v2 + W, v3 + W, . . . , vn + W for V/W
relative to which these endomorphisms are upper-triangular. Then A and N are
upper-triangular relative to the basis for V consisting of v1, v2, . . . , vn. �

1.3. Operations on representations of the Weil-Deligne group
A representation of WD(K/K) as defined above is not quite a group representation
in the usual sense, so the standard operations of representation theory may require
some explication. In the following definitions the field of scalars is taken to be C,
but C could be replaced by any field of characteristic zero.

If ρρρ = (ρ,N) and ρρρ′ = (ρ′, N ′) are representations of WD(K/K) then we define
their direct sum by

ρρρ⊕ ρρρ′ = (ρ⊕ ρ′, N ⊕N ′)(4.5)

and their tensor product by

ρρρ⊗ ρρρ′ = (ρ⊗ ρ′, N ⊗ 1′ + 1⊗N ′),(4.6)

where 1 and 1′ denote the identity automorphism of the space of ρρρ and ρρρ′ respec-
tively. In particular, for s0 ∈ C we have

ρρρ⊗ ωs0 = (ρ⊗ ωs0 , N).(4.7)

This follows from (4.6) in view of our identification of ω with ωωω = (ω, 0).
Let ρρρ and ρρρ′ be arbitrary representations of WD(K/K) again. We define an

intertwining map or homomorphism of representations from ρρρ to ρρρ′ to be a
linear map T from the space of ρρρ to the space of ρρρ′ which intertwines ρ with ρ′ and N
with N ′: Thus Tρ(g) = ρ′(g)T for g ∈WD(K/K) and TN = N ′T . An intertwining
map which is a linear isomorphism is an isomorphism of representations.

Given a representation ρρρ of WD(K/K), we define its dual ρρρ∨ by

ρρρ∨ = (ρ∨,−N∨).(4.8)

Here N∨ is the transpose of N : thus if V is the space of ρρρ and V ∨ the dual space
of linear forms on V then N∨(f) = f ◦N for f ∈ V ∨.

Given a finite extension L of K inside K, put resL/Kρ = ρ|WD(K/L). Then

resL/Kρρρ = (resL/Kρ,N)(4.9)

is the restriction of ρρρ to WD(K/L).
Finally, with L still a finite extension of K, take ρρρ to be a representation of

WD(K/L). To define the induced representation indL/Kρρρ of WD(K/K), let V
be the space of ρρρ and put G = W(K/K) and H = W(K/L). Then ρ makes V into
an H-module, and we can take the space of indL/Kρ to be C[G]⊗C[H] V . We set

indL/Kρρρ = (indL/Kρ, ω−1 · (1⊗N)),(4.10)

where the endomorphism ω−1 · (1⊗N) of C[G]⊗C[H] V is defined by the formula

ω−1 · (1⊗N)(g ⊗ v) = ω−1(g)(g ⊗Nv)(4.11)

for g ∈ G and v ∈ V .
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Let us verify that (4.11) gives a well-defined endomorphism of C[G] ⊗C[H] V
and that the resulting pair (4.10) satisfies (4.4). To facilitate the verifications,
we put a subscript on ω: Our current ω is ωK , and the prime-to-p cyclotomic
character of W(K/L) will be denoted ωL. Then ωK |W(K/L) = ωL. Now to see
that ω−1 · (1⊗N) is well defined, we must examine (4.11) when g ⊗ v is rewritten
as gh⊗ ρ(h)−1v with h ∈ H. According to (4.11), we get

ω−1 · (1⊗N)(gh⊗ ρ(h)−1v) = ω−1
K (gh)(gh⊗Nρ(h)−1v).(4.12)

As Nρ(h)−1 = ωL(h)ρ(h)−1N , we see that (4.11) and (4.12) are consistent.
Now put ϕϕϕ = indL/Kρρρ, ϕ = indL/Kρ, and M = ω−1 · (1⊗N). To verify that ϕϕϕ

satisfies the required identity ϕ(g)Mϕ(g)−1 = ωK(g)M for g ∈ G, we compare the
effect of both sides on pure tensors. Since ϕ(g)−1(g′ ⊗ v) = g−1g′ ⊗ v, (4.11) gives
Mϕ(g)−1(g′ ⊗ v) = ωK(g′)−1ωK(g)(g−1g′ ⊗Nv), whence ϕ(g)Mϕ(g)−1(g′ ⊗ v) is
indeed ωK(g)M(g′ ⊗ v).

This completes our discussion of the standard operations. It is instructive to
drop the tannakian perspective for a moment and let the cat out of the bag: As
an actual group, WD(K/K) is just the semidirect product C o W(K/K) with
gzg−1 = ω(g)z for g ∈ W(K/K) and z ∈ C. One is supposed to view the factor
C as the set of complex points of the algebraic group Ga, so a representation of
CoW(K/K) should be algebraic and in particular holomorphic when restricted to
the factor C. Using this fact, one can show that a representation ρρρ of WD(K/K)
has the form zg 7→ exp(zN)ρ(g), where ρ is a representation of W(K/K) and N a
nilpotent endomorphism of the space of ρ. This not only explains the identification
of ρρρ with the pair (ρ,N) but also shows (after some calculation) that the preceding
definitions for ⊕, ⊗, and so on are just the standard operations of representation
theory applied to the group CoW(K/K).

1.4. The archimedean Weil group
Now suppose that K = R or K ∼= C. In the archimedean case there is no distinction
between W(K/K) and WD(K/K); the notations W(K/K) and WD(K/K) are
interchangeable. The definition is as follows. If K ∼= C then

W(K/K) = W(K/K) = K× ∼= C
×,

and if K = R then

W(K/K) = K
× ∪ JK× ∼= C

× ∪ JC×,

where J2 = −1 and JzJ−1 = z for z ∈ K× ∼= C
×. In the case K = R we identify

the subgroup K
×

of W(K/K) with W(K/K), which thus becomes a subgroup of
index 2 in W(K/K). The nontrivial coset is represented by J .

The reason that we have been so pedantic about distinguishing W(K/K) from
C
× (when K ∼= C) or from C

×∪JC× (when K = R) is that we would like to identify
W(K/K)ab with K×, just as in the nonarchimedean case. Let π : W(K/K)→ K×

be the identity map if K ∼= C and the map sending J to −1 and z to |z|2 if K = R.
Then π factors through a map W(K/K)ab → K×, and we claim that the latter
map is an isomorphism. This is obvious if K ∼= C, so suppose that K = R. One
readily verifies that the commutator subgroup of W(K/K) consists of all elements
of the form JzJ−1z−1 with z ∈ K. Furthermore, let T be the subgroup of K

×

consisting of numbers of absolute value 1. Since JzJ−1z−1 = z/z it follows that
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the commutator subgroup of W(K/K) is T, and it is also easy to see that T is the
kernel of π and that π is surjective. Thus W(K/K)ab ∼= K× as claimed.

Henceforth we shall identify the one-dimensional characters of W(K/K) with
those of K× by putting

χ(g) = χ(π(g)) (g ∈W(K/K)).(4.13)

This is the archimedean analogue of (4.3). Given that we know the characters of C×

and R× explicitly, we can regard (4.13) as an explicit description of the characters of
W(K/K). In fact we can describe not just the one-dimensional representations but
all the irreducible complex representations of W(K/K). If K ∼= C then W(K/K) is
abelian and there are no irreducible representations of dimension > 1, and if K = R

then W(K/K) has an abelian subgroup of index 2, namely W(K/K), whence
any irreducible representation of W(K/K) of dimension > 1 is two-dimensional,
induced by a character of W(K/K). Let χ be a character of W(K/K) and let
ρ = indK/Kχ be the representation of W(K/K) it induces. Identifying W(K/K)
with C× and writing χ(z) = |z|2s0(z/|z|)m with s0 ∈ C and m ∈ Z, one checks that
ρ is irreducible if and only if m 6= 0.

2. From Galois representations to Weil-Deligne representations

Let K be a number field. We seek an analogue for premotives of the map ρ 7→ ρv
sending an Artin representation of K to its restriction to a decomposition subgroup
of Gal(K/K) at a given place v of K. The analogue should be a map M 7→ ρρρM,v,
where M is a premotive over K and ρρρM,v a complex representation of WD(Kv/Kv).
What the theory of Grothendieck and Deligne provides in the first instance, how-
ever, is a purely local correspondence from λ-adic representations of Gal(Kv/Kv)
to λ-adic representations of WD(Kv/Kv). To describe this local correspondence
we make two preliminary remarks about profinite groups.

Given a prime `, we say that a profinite group has order prime to ` if it is an
inverse limit of finite groups of order prime to `. The first remark is that every
homomorphism (of topological groups) from a profinite group of order prime to `
to a pro-`-group is trivial. This follows from the corresponding fact about finite
groups.

Let Γ be a pro-`-group and ϕ : Z` → Γ a homomorphism. The second remark
is that if γ = ϕ(1) then for arbitrary z ∈ Z` we have ϕ(z) = γz, the point being
that γz is meaningful as a limit even if z /∈ Z. More generally, suppose that I is
a profinite group with the following property: There is a closed normal subgroup
Q of I, of profinite order prime to `, such that I/Q ∼= Z`. If t : I → Z` is an
epimorphism and ϕ : I → Γ an arbitrary homomorphism then

ϕ(i) = γt(i)(4.14)

for i ∈ I, where γ ∈ Γ is the image under ϕ of any preimage of 1 ∈ Z` under t.

2.1. The local correspondence
Now let K be a finite extension of Qp with p < ∞, and write Ktame for the
maximal tamely ramified extension of K inside K. Put P = Gal(K/Ktame). If
we fix a uniformizer $ of Kunr then Ktame can be described as the compositum of
all extensions of Kunr of the form Kunr($1/n) with positive integers n prime to p.
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Kummer theory then gives an identification of Gal(Kunr($1/n)/Kunr) with Z/nZ
and hence an identification

I/P ∼=
∏
` 6=p

Z`(4.15)

after taking inverse limits. Since P is a pro-p-group, it follows that if ` 6= p then
there is a closed normal subgroup Q of I, profinite of order prime to `, such that
I/Q ∼= Z`. In particular, the space of homomorphisms I → Q` is one-dimensional
over Q`. Furthermore (4.15) and our deductions from it hold with I replaced by
any open subgroup I ′ of I and P by P ∩ I ′, because any open subgroup of the
right-hand side of (4.15) is again isomorphic to the right-hand side of (4.15).

The theorem to be stated next combines results of Grothendieck and Deligne,
and the proof follows the exposition of Serre-Tate ([86], pp. 515 – 516) and Deligne
([23], pp. 566 – 571). Fix a nonzero homomorphism t` : I → Q` and a Frobenius
element σ ∈W(K/K). Since t` is unique only up to a scalar multiple and σ only up
to multiplication by an element of I, it is important to remark that the isomorphism
class of the representation ρρρ constructed in the theorem below is independent of the
choice of t` and σ (cf. [23], p. 569). However we do not bother to prove this remark,
because the local issue presented by the choice of t` and σ will be overshadowed by
a far more problematic global pair of choices later on. In any case, once a choice
of t` has been fixed, the following identity holds for arbitrary elements g and i of
W(K/K) and I respectively:

t`(gig−1) = ω(g)t`(i).(4.16)

This is proved by applying the usual Galois equivariance of the Kummer pairing
to the extension Kunr($1/n)/Kunr and then taking inverse limits. Note the formal
resemblance of (4.16) to (4.4)!

Theorem 4.1. Let Eλ be a finite extension of Q` with ` 6= p, and let ρλ be a
representation of Gal(K/K) over Eλ.

(a) There is a unique nilpotent endomorphism N of the space of ρλ such that

ρλ(i) = exp(t`(i)N)

for all i in some open subgroup of I. Furthermore, consider the function ρ on
W(K/K) defined by setting

ρ(g) = exp(−t`(i)N)ρλ(g)

for g = iσn with i ∈ I and n ∈ Z. This function is a representation of W(K/K)
on the space of ρλ, and the pair ρρρ = (ρ,N) is a representation of WD(K/K).

(b) Let ρ and N be as in (a), and for each g ∈ W(K/K) let ρss(g) be the
semisimple component of ρ(g) in a multiplicative Jordan decomposition of ρ(g).
Then the map g 7→ ρss(g) is a semisimple representation of W(K/K) trivial on an
open subgroup of I, and the pair ρρρss = (ρss, N) is a representation of WD(K/K).

Proof. (a) Let Oλ be the ring of integers of Eλ. By Exercise 3.4, we may
think of ρλ as a map Gal(K/K)→ GLd(Oλ). Let Γ be the open pro-`-subgroup of
GLd(Oλ) consisting of matrices congruent to 1 mod `2, and put I ′ = I ∩ ρ−1

λ (Γ).
Then I ′ is an open subgroup of I and ρλ|I ′ is a homomorphism of I ′ into a pro-
`-group. Choose c ∈ Q` such that ct`|I ′ is a surjection of I ′ onto Z`. Applying
(4.14) with ϕ = ρλ|I ′ and t = ct`, we see that ρλ(i) = γct`(i) for some γ ∈ Γ and all
i ∈ I ′. Let Md×d(Oλ) be the set of d×d matrices with coefficients in Oλ, and write
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γ = exp(N) with N ∈ `2Md×d(Oλ). Then ρλ(i) = exp(ct`(i)N) for i ∈ I ′, and it
follows from (4.16) that for g ∈ W(K/K) we have ρλ(gig−1) = exp(cω(g)t`(i)N).
But if we simply conjugate the equation ρλ(i) = exp(ct`(i)N) by ρλ(g) then we get
a second expression for ρλ(gig−1), namely exp(ct`(i)ρλ(g)Nρλ(g)−1). Applying
the `-adic logarithm to both expressions, we find that ρλ(g)Nρλ(g)−1 = ω(g)N .
This identity immediately carries over to the identity ρ(g)Nρ(g)−1 = ω(g)N if we
define ρ as in the statement of the theorem. And by taking g = σν with ν ∈ Z
we deduce that N is nilpotent, for if N had a nonzero eigenvalue r then N would
have infinitely many eigenvalues, namely the numbers rqν . Replacing N by cN we
preserve the nilpotence of N and the relation ρ(g)Nρ(g)−1 = ω(g)N and we gain
the simplified formula ρλ(i) = exp(t`(i)N) for i ∈ I ′. This equation determines N
uniquely, because the exponential is a bijection from nilpotent matrices to unipotent
matrices.

To complete the proof of (a) we must check that ρ is a homomorphism. So
suppose that g = iσn and g′ = hσm with m,n ∈ Z and h, i ∈ I. Then (4.16) gives

ρ(gg′) = exp((−t`(i)− qnt`(h))N)ρλ(gg′)(4.17)

while

ρ(g)ρ(g′) = exp(−t`(i)N)ρλ(g) exp(−t`(h)N)ρλ(g′).(4.18)

The identity ρλ(g)Nρλ(g)−1 = ω(g)N shows that the right-hand sides of (4.17)
and (4.18) are equal, whence ρ(gg′) = ρ(g)ρ(g′).

(b) Let J be the kernel of ρ|I. Since I is normal in W(K/K) so is J . In
addition, J is open in I, because it is the subgroup of I on which ρλ coincides with
the map i 7→ exp(t`(i)N), and this subgroup is open by (a). It follows that I/J is a
finite normal subgroup of W(K/K)/J , and consequently the action of W(K/K)/J
on I/J by conjugation gives a map from W(K/K) to the finite group Aut(I/J).
Hence the kernel of this map has finite index in W(K/K), and there is an integer
l > 1 such that σl acts trivially on I/J . Since ρ factors through W(K/K)/J , we
deduce that ρ(σl) centralizes ρ(I). But ρ(σl) certainly commutes with ρ(σ), so
ρ(σl) centralizes the image of ρ.

Now let u be the unipotent Jordan component of ρ(σ). Then ul is the unipotent
Jordan component of ρ(σl). But the semisimple and unipotent components of an
invertible matrix are polynomials in the matrix. Since ρ(σl) centralizes the image
of ρ it follows that ul does too. Using the binomial series for (1 +x)1/l, we see that
u is a polynomial in ul, so we conclude that u centralizes the image of ρ.

Next consider an arbitrary element g ∈W(K/K), and write g = iσn with i ∈ I
and n ∈ Z. Let ρu(g) denote the unipotent Jordan component of ρ(g); we claim
that ρu(g) = un. Since ρu(gl) = ρu(g)l and unipotent automorphisms have unique
unipotent lth roots, it suffices to see that ρu(gl) = unl. But ρ(gl) = ρ(i′)ρ(σnl) for
some i′ ∈ I and ρ(σnl) = ρss(σnl)unl, so

ρ(gl) = (ρ(i′)ρss(σnl)) · unl.(4.19)

We contend that (4.19) is the multiplicative Jordan decomposition of ρ(gl), whence
ρu(gl) = unl, as desired. As unl is unipotent and commutes with ρ(i′)ρss(σnl) it
suffices to see that ρ(i′)ρss(σnl) is semisimple. But ρ(i′) is semisimple because ρ|I
factors through the finite group I/J , and ρss(σnl) is semisimple and commutes with
ρ(i′). Hence ρ(i′)ρss(σnl) is indeed semisimple, and we conclude that ρu(g) = un.
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We can now show that ρss is a representation (necessarily trivial on J because
ρ is). Given g, g′ ∈ W(K/K), write g = iσn and g′ = hσm with m,n ∈ Z and
h, i ∈ I. Then ρss(g)ρss(g′) = ρ(g)u−nρ(g′)u−m = ρ(gg′)u−(n+m) = ρss(gg′), where
the last equality follows from the fact that gg′ = i′σn+m for some i′ ∈ I, whence
un+m = ρu(gg′).

To see that ρss is semisimple we quote a general fact: A representation of a
group over a field of characteristic 0 is semisimple if and only if its restriction to a
subgroup of finite index is semisimple. In the case at hand, the infinite cyclic group
〈σ〉 generated by σ is of finite index in W(K/K)/J , and ρss|〈σ〉 is semisimple by
the very definition of ρss.

Finally, we must check the identity ρss(g)Nρss(g)−1 = ω(g)N . Since we already
know that ρ(g)Nρ(g)−1 = ω(g)N , it will suffice to see that u commutes with N .
Denote the adjoint representation of GLd(Eλ) on Md×d(Eλ) by Ad, so that

Ad(x)(y) = xyx−1

for x ∈ GLd(Eλ) and y ∈ Md×d(Eλ). It is readily verified that Ad(x)ss = Ad(xss)
and Ad(x)u = Ad(xu). In particular, since Ad(x)u is a polynomial in Ad(x), we see
that any eigenvector of Ad(x) is also an eigenvector of Ad(xu). Apply the preceding
remark with x = ρ(σ) and xu = u. The relation ρ(σ)Nρ(σ)−1 = qN shows that
N is an eigenvector of Ad(ρ(σ)) and hence of Ad(u). But Ad(u) is Ad(ρ(σ))u and
therefore unipotent; its eigenvalues equal 1. Thus N is an eigenvector of Ad(u)
with eigenvalue 1; in other words, u commutes with N . �

2.2. Characteristic polynomials
Next we examine the effect of the maps ρλ 7→ ρρρ and ρρρ 7→ ρρρss of Theorem 4.1 on the
space of inertial invariants. Let Vλ denote the space of ρλ and V the space of ρρρ.
While Vλ and V are equal as abstract vector spaces, by using different notations we
can distinguish between the subspaces V Iλ and V I , which need not be equal: one
consists of vectors fixed by ρλ(I), the other of vectors fixed by ρ(I). We claim that
the relation between them is

V Iλ = V IN ,(4.20)

where VN is the kernel of N and V IN = VN ∩ V I .
To verify (4.20), we return to the relation ρλ(i) = exp(t`(i)N)ρ(i) for i ∈ I. The

inclusion V IN ⊂ V Iλ is an immediate consequence. For the reverse inclusion, recall
that ρλ(j) = exp(t`(j)N) for all j in some open subgroup J of I. Any element of V Iλ
is in particular fixed by J and hence by exp(t`(j)N) for j ∈ J . By writing t`(j)N as
−
∑
ν>1(1−x)ν/ν with x = exp(t`(j)N), we see that a vector fixed by exp(t`(j)N)

is in the kernel of N , whence V Iλ ⊂ VN . Now the relation ρ(g)N = ω(g)Nρ(g) for
g ∈ W(K/K) shows that VN is stable under ρ, so the inclusion V Iλ ⊂ VN and the
relation ρλ(i) = exp(t`(i)N)ρ(i) for i ∈ I together imply that ρλ(i) = ρ(i) on V Iλ .
Hence V Iλ ⊂ V IN , and (4.20) follows.

Put Φ = σ−1. Then the definition of ρ in part (a) of Theorem 4.1 gives ρ(Φ) =
ρλ(Φ), whence in particular ρλ(Φ)|V Iλ = ρ(Φ)|V IN by (4.20). Since characteristic
polynomials are insensitive to semisimplification, we obtain:

Proposition 4.2. det(1− xρλ(Φ)|V Iλ ) = det(1− xρss(Φ)|V IN ).
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3. An open problem

Let K be a number field again and M a premotive over K. Fix a finite place v of K
and write p for its residue characteristic. We would like to claim that M determines
a complex representation ρρρM,v of WD(Kv/Kv) up to isomorphism.

There is an obvious candidate for ρρρM,v. Let {ρλ} ∈ M be a fully compatible
family and E its coefficient field, and choose a place λ of E of residue character-
istic ` 6= p. As usual, we identify Gal(Kv/Kv) with the decomposition subgroup
of Gal(K/K) at a place of K above v, so it is meaningful to consider the restric-
tion ρλ,v = ρλ|Gal(Kv/Kv). This is a λ-adic representation of Gal(Kv/Kv) to
which we may apply Theorem 4.1. The result is a representation ρρρss

v = (ρss
v , Nv)

of WD(Kv/Kv) over Eλ. To obtain a representation over C, fix an abstract field
embedding ι of Eλ in C. Since we regard E as a subfield both of Eλ and of C, we
can require ι to be the identity on E. Extending scalars from Eλ to C via ι, we
obtain a representation

ρρρM,v = ((ρss
v )ι, (Nv)ι)(4.21)

of WD(Kv/Kv) over C.

Problem 4. Up to isomorphism, is ρρρM,v independent of the choice of λ and ι?

If M comes from an Artin representation or a Hecke character of type (1, 0) then
an affirmative answer follows tautologically from the definitions, and an affirmative
answer is also known if M comes from an elliptic curve or more generally from an
abelian variety, cf. [23], p. 571. Admittedly, an Artin representation for which we
do not know the Artin conjecture cannot be offered as an example of a premotive
according to our definition of the term, nor can an elliptic curve over an arbitrary
number field. But the analytic conditions that we have imposed on a premotive
could be omitted from the definition and Problem 4 would still make prefect sense.
The real issue is that an affirmative answer to Problem 4 is unknown in general
even if one assumes that M comes from a motive. It should be added, however,
that if we write ρρρM,v = (ρM,v, NM,v) then it is only NM,v which is problematic.
Indeed the theory of Grothendieck and Deligne does yield the following.

Theorem 4.2. Up to isomorphism, ρM,v is independent of the choice of λ and ι.

Proof. Let ρρρv = (ρv, Nv) be the representation of WD(Kv/Kv) resulting
from ρλ,v as in part (a) of Theorem 4.1, and let g denote an arbitrary element
of W(Kv/Kv), written as in the theorem. By Proposition 4.1 , there is a basis
for the space of ρv relative to which the matrices of ρv(g) and Nv are both upper
triangular. Then exp(t`(i)Nv) is upper triangular with all diagonal entries equal to
1, and as ρλ,v(g) = exp(t`(i)Nv)ρv(g) we deduce that the characteristic polynomials
of ρλ,v(g) and ρv(g) are equal. On the other hand, the characteristic polynomials
of ρv(g) and ρss

v (g) are equal because ρss
v (g) is the semisimple Jordan component

of ρv(g). By Condition C8, the characteristic polynomial of ρλ,v(g) has coefficients
in E and is independent of λ, so the same is true for the characteristic polynomial
of ρss

v (g). Furthermore this characteristic polynomial is unchanged when ι is used
to extend the field of scalars of ρss

v (g) from Eλ to C, because ι is the identity on E.
We conclude that the characteristic polynomial of (ρss

v )ι(g) is independent of the
choice of λ and ι. In particular the trace of (ρss

v )ι is independent of the choice of
λ and ι, and since (ρss

v )ι is semisimple we conclude that the isomorphism class of
(ρss
v )ι is independent of the choices as well. �
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As stated, Problem 4 pertains only to the finite places of K, because it is only
for finite v that we have presented a candidate for ρρρM,v. However the Fontaine-
Mazur conjectures provide a candidate for ρρρM,v when v is an infinite place as well,
at least if K = Q ([30], p. 197, Conjecture 3a). The definition of ρρρM,v depends
on the standing assumption in [30], namely potential semistability, and in this
sense it does not mesh too well with the present framework. However if we simply
impose potential semistability as an additional requirement on M then in principle
we can take v in Problem 4 to be any place of K, finite or infinite. The choice of λ
and ι remains very much an issue at the infinite places, because for us there is no
distinguished prime p and of course no distinguished embedding of Qp into C.

In the remainder of this lecture we define the local factors – the L-factor, the
conductor, the root number – associated to a complex representation of the Weil-
Deligne group of a finite extension of Qp for p 6∞. If Problem 4 has an affirmative
answer, then once we have made the local definitions we can put

L∞(s,M) =
∏
v|∞

L(s,ρρρM,v),(4.22)

W (M) =
∏
v

W (ρρρM,v),(4.23)

f(M) =
∏
v-∞

pa(ρρρM,v)
v ,(4.24)

and

A(M) = Drk(M)Nf(M),(4.25)

where D is the absolute value of the discriminant of K and rk(M) is the rank
of M (recall that this is dimρλ for {ρλ} ∈ M). Thus if we grant an affirmative
answer to Problem 4 then L∞(s,M), A(M), and W (M) will finally have an intrinsic
definition, one that does not depend on the uniqueness of a conjectural functional
equation (Proposition 3.2). For the sake of the overall coherence of the discussion
we will also check that

L(s,M) =
∏
v-∞

L(s,ρρρM,v),(4.26)

even though we already have the intrinsic definition (3.33) of L(s,M). In fact by
virtue of this intrinsic definition, verifying (4.26) will amount to checking that

Bp((Np)−s) = L(s,ρρρM,v),(4.27)

where p is an arbitrary prime ideal of K and v = vp.

4. Local factors

Henceforth K is a finite extension of Qp (p 6 ∞) and ρρρ a representation of
WD(K/K) over C. We will define the local factors associated to ρρρ.
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4.1. L-factors
Suppose first that p < ∞, and write ρρρ = (ρ,N). Let V be the space of ρ and VN
the kernel of N , and put V IN = V I ∩ VN as before. Recall also that by virtue of
(4.4), V IN is stable under ρ. We put

L(s,ρρρ) = det(1− q−sρ(Φ)|V IN )−1,(4.28)

where Φ ∈W(K/K) is an inverse Frobenius element and q is the order of the residue
class field of K. Since V IN ⊂ V I the definition of L(s,ρρρ) is as usual independent of
the choice of Φ. Furthermore, (4.27) is an immediate consequence of Proposition
4.2 given the definitions (3.30), (4.21), and (4.28).

Suppose next that p = ∞. Then there is no distinction between ρρρ = (ρ, 0)
and ρ, and the definition of the L-factor L(s,ρρρ) = L(s, ρ) is a straightforward
generalization of our earlier discussion of gamma factors for Artin L-functions. In
fact the only new issue is that the L-factor of ρ is by definition the L-factor of
the semisimplification of ρ. (Of course in the context of Artin representations, ρ is
automatically semisimple.) If ρ is a semisimple representation of W(K/K) then we
define L(s, ρ) by imposing the Artin formalism. In particular, additivity holds by
fiat: in other words we declare that L(s, ρ⊕ ρ′) = L(s, ρ)L(s, ρ′), whence it suffices
to define L(s, ρ) for ρ irreducible.

So suppose that ρ is irreducible. If ρ is one-dimensional then we use (4.13) to
identify ρ with a character χ of K×, and we set L(s, ρ) = L(s, χ), thus defining
L(s, ρ) by (2.25) and (2.26). If K = R and ρ is two-dimensional then ρ = indK/Kχ
for some character χ of W(K/K), and again we set L(s, ρ) = L(s, χ), as required
by inductivity. Incidentally, the fact that inductivity holds even for reducible in-
ductions follows from the duplication formula (1.9).

4.2. The exponent of the conductor
We return to the case p <∞ and write ρρρ = (ρ,N) as before. The exponent a(ρρρ) of
the conductor πa(ρρρ)O of ρρρ is a sum of two terms,

a(ρρρ) = a(ρ) + b(ρρρ),(4.29)

and only the second term depends on N . In fact

b(ρρρ) = dim(V I/V IN ).(4.30)

It follows in particular that if N = 0 then b(ρρρ) = 0, so that (4.29) is consistent with
our identification of ρ with (ρ, 0). Turning to the first term, we declare first of all
that a(ρ) depends only on the semisimplification of ρ. We also impose additivity
– in other words, we take the identity a(ρ ⊕ ρ′) = a(ρ) + a(ρ′) to be part of the
definition of a(∗) – and so reduce the problem of defining a(ρ) to the case where ρ
is irreducible.

To handle this case we need the notion of a representation of Galois type.
This term refers to any representation of W(K/K) over C which is trivial on an
open subgroup of finite index in W(K/K), hence on an open normal subgroup
of finite index. Since the open normal subgroups of finite index are precisely the
subgroups of the form W(K/L) with L a finite Galois extension of K, we see from
(4.2) that a representation of Galois type is simply a representation of Gal(L/K)
for some L. The following proposition is drawn from Deligne [23], p. 542. The proof
(also drawn from [23]) recalls the first step in the proof of part (b) of Theorem 4.1.
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Proposition 4.3. Let ρ be a representation of W(K/K) over C. If ρ is irreducible
then there exists s0 ∈ C such that ρ⊗ ωs0 is of Galois type.

Proof. Let J be the kernel of ρ|I. Then J is normal in W(K/K), and the
action of W(K/K) on I by conjugation defines a map W(K/K)→ Aut(I/J). But
I/J is a finite group, so we deduce that if σ ∈ W(K/K) is a given Frobenius
element then there is a positive integer n such that σn acts trivially on I/J . It
follows that the coset σnJ is in the center of W(K/K)/J , and since ρ can be viewed
as an irreducible representation of W(K/K)/J we conclude that ρ(σn) is scalar.
Choose s ∈ C such that ρ(σn) is multiplication by qs, where q = ω(σ) as usual.
Then (ρ⊗ ω−s/n)(σn) is trivial. Hence if s0 = −s/n then ρ⊗ ωs0 is trivial on the
open subgroup of W(K/K) generated by J and σn, which is of finite index. �

The significance of the proposition for us is that if ρ is a representation of Galois
type and hence a representation of Gal(L/K) for some finite Galois extension L ofK
then we have already seen a definition of a(ρ) in the context of Artin representations:
a(ρ) is defined by (3.46). Hence given an arbitrary irreducible representation ρ of
W(K/K) we can put

a(ρ) = a(ρ⊗ ωs0),(4.31)

where the right-hand side is defined by (3.46) with s0 chosen so that ρ⊗ ωs0 is of
Galois type. While such an s0 is not unique (for it can be replaced by s0+2πir/ log q
with r ∈ Q), an inspection of (3.46) shows that a(ρ⊗ωs0) depends only on (ρ⊗ωs0)|I
and hence only on ρ|I. Thus Proposition 4.3 and (4.31) together assign a meaning
to a(ρ) for irreducible ρ and hence by semisimplification and additivity for all ρ.

4.3. Root numbers
To start with take p <∞ and ρρρ = (ρ,N). Just as a(ρρρ) is the sum of the two terms
a(ρ) and b(ρρρ), with a(ρ) independent of N , the root number W (ρρρ) is similarly the
product of two factors, the first of which is independent of N :

W (ρρρ) = W (ρ)∆(ρρρ).(4.32)

Furthermore the definition of ∆(ρρρ), like the definition of b(ρρρ), is straightforward:
Writing V for the space of ρ and the same letter ρ for the quotient representation
on V I/V IN determined by ρ, we put

δ(ρρρ) = det(−ρ(Φ)|V I/V IN )(4.33)

and

∆(ρρρ) =
δ(ρρρ)
|δ(ρρρ)|

.(4.34)

Note that the identification of ρ with (ρ, 0) is once again respected here, because if
N = 0 then δ(ρρρ) is the determinant of a linear automorphism of the trivial vector
space, whence ∆(ρρρ) = δ(ρρρ) = 1 and W (ρρρ) = W (ρ).

If p = ∞ then (4.32) is still valid provided we understand that N = 0. Thus
∆ = 1 and W (ρρρ) = W (ρ). Furthermore the definition of W (ρ) is straightforward
in the archimedean case, but the archimedean case will not be treated separately
because it is included in the general case to be discussed now.

While the definition of W (ρ) is indirect, the underlying strategy is simple:
Define W (ρ) by imposing a modified Artin formalism. This means first of all that
W (ρ) depends only on the semisimplification of ρ, and secondly that additivity



DAVID E. ROHRLICH, PCMI LECTURE NOTES 79

holds – in other words that W (ρ⊕ρ′) = W (ρ)W (ρ′). We also impose compatibility
in dimension one: If ρ is one-dimensional and we identify it with a character χ of
K× via (4.3) and (4.13), then W (ρ) = W (χ). So far this is just the standard Artin
formalism. But as soon as we impose additivity and compatibility in dimension one
there are simple counterexamples to inductivity. For instance take the case of the
unramified quadratic extension L of a finite extension K of Qp, where p <∞. Write
signL/K for the nontrivial character of Gal(L/K). Then indL/K1L = 1K⊕signL/K ,
while (2.43) gives W (1L) = W (1K) = 1 and W (signL/K) = (−1)d with d equal
to the exponent of the different ideal of K. If the root number were to satisfy
inductivity we would have 1 = (−1)d, a contradiction if d is odd (as it is for
example if K = Qp(

√
p)).

Thus inductivity must be modified. The modification is a weaker condition
called inductivity in dimension zero (or “in degree zero”). Fix a finite extension
K of Qp with p 6 ∞, and consider the Grothendieck group Groth(W(K/K)) of
virtual representations of W(K/K). If we want the root number to depend only
on the semisimplification of its argument and to satisfy additivity then it becomes
a function on Groth(W(K/K)), so that W (ρ) acquires a meaning even for virtual
representations of W(K/K). Now a virtual representation has a virtual dimension,
and to impose inductivity in dimension zero is to demand that

W (indL/Kρ) = W (ρ)(4.35)

whenever L is a finite extension of K and ρ a virtual representation of W(K/L) of
dimension zero.

With this modification, the Artin formalism can be realized: By the theorem of
Langlands and Deligne ([23], p. 535; see also Tate [93], [94]), there is a unique map
ρ 7→W (ρ) from virtual representations of W(K/K) to complex numbers of absolute
value 1 which satisfies additivity, compatibility in dimension one, and inductivity
in dimension zero. The uniqueness of ρ 7→ W (ρ) is the easy part of the assertion,
but it is worth verifying here, for the argument shows how W (ρ) can be computed
in practice.

What is needed for the verification is a “dimension-zero” variant of Brauer’s
theorem (cf. [23], p. 510, Proposition 1.5). Let us say that a virtual representation of
a finite group G is monomial of dimension zero if it is induced by the difference
of two one-dimensional representations of a subgroup of G. The dimension-zero
version of Brauer’s theorem states that in Groth(G) any virtual representation of
G of dimension zero is an integral linear combination of monomial representations
of dimension zero. Suppose now that ρ is an irreducible representation of W(K/K)
over C. By Proposition 4.3 there exists s0 ∈ C such that ρ ⊗ ωs0 factors through
Gal(L/K) for some finite Galois extension L of K. Hence taking G = Gal(L/K)
we can write

[ρ⊗ ωs0 ]− (dimρ)[1K ] =
∑

(M,ξ,ξ′)

nM,ξ,ξ′ indM/K([ξ]− [ξ′])(4.36)

with integers nM,ξ,ξ′ , subfields M of L containing K, and one-dimensional charac-
ters ξ and ξ′ of Gal(L/M). Tensoring both sides of (4.36) with [ω−s0 ], we obtain

[ρ] = (dimρ)[ω−s0 ] +
∑

(M,ξ,ξ′)

nM,ξ,ξ′ indM/K([ξ0]− [ξ′0])(4.37)
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in Groth(W(K/K)), where ξ0 = ξω−s0M and ξ′0 = ξ′ω−s0M . Here we are using the
fact that our ω is really ωK and satisfies ω|W(K/M) = ωM . The modified Artin
formalism now implies that

W (ρ) = W (|| ∗ ||−s0)dimρ
∏

(M,ξ,ξ′)

(W (χξ0)/W (χξ′0))nM,ξ,ξ′ ,(4.38)

where χξ0 and χξ′0 are the characters of M× corresponding to ξ0 and ξ′0 respec-
tively under (4.3) and (4.13). It follows from (4.38) that the modified Artin for-
malism does indeed determine W (ρ) uniquely for irreducible ρ, and consequently,
by semisimplification and additivity, for all ρ.

4.4. Epsilon factors
Just as in the one-dimensional case, the local root number is subsumed in a broader
concept, the epsilon factor. Given a local field K, a complex representation ρρρ of
WD(K/K), an additive character ψ of K, and a Haar measure dx on K, one puts

ε(ρρρ, ψ, dx) = ε(ρ, ψ, dx)δ(ρρρ),(4.39)

where δ(ρρρ) is as in (4.33) – note that the definition is indeed independent of ψ and
dx – and ε(ρ, ψ, dx) is defined by the theorem of Langlands and Deligne. In the
context of epsilon factors their theorem states that the modified Artin formalism
can be imposed on ε(ρ, ψ, dx) and then defines ε(ρ, ψ, dx) uniquely. Inductivity in
dimension zero now takes account of the additive character: the requirement is that

ε(indL/Kρ, ψ ◦ tr L/K , dLx) = ε(ρ, ψ, dKx)(4.40)

for every finite extension L of K, virtual representation ρ of W(K/L) of dimension
zero, additive character ψ of K, and Haar measures dLx and dKx on L and K
respectively. Additivity means as usual that

ε(ρ⊕ ρ′, ψ, dx) = ε(ρ, ψ, dx)ε(ρ′, ψ, dx),

and compatibility in dimension one means that if ρ is one-dimensional then

ε(ρ, ψ, dx) = ε(χ, ψ, dx),

where χ is the character of K× corresponding to ρ under (4.3) and (4.13).
Although a local functional equation is lacking in dimension > 1, one can still

introduce a complex parameter s by putting

ε(s,ρρρ, ψ, dx) = ε(ρρρ⊗ ωs, ψ, dx)(4.41)

and thus generalizing (2.73). One can also define W (ρρρ, ψ) by a straightforward
generalization of (2.72):

W (ρρρ, ψ) =
ε(ρρρ, ψ, dx)
|ε(ρρρ, ψ, dx)|

.(4.42)

If K has characteristic zero then we recover W (ρρρ) by taking ψ = ψcan. Indeed
if L is a finite extension of K and ψcan

L and ψcan
K denote the respective canonical

additive characters then ψcan
L = ψcan

K ◦ tr L/K , so (4.40) and (4.42) do give (4.35).
Thus the theorem of Langlands and Deligne does imply that W (ρ) can be defined
by imposing the modified Artin formalism.
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5. Normalizations of the root number in the literature

We conclude this lecture with a brief but important caveat: In (2.72), (4.32), and
(4.42) we have normalized the local and hence also the global root number to have
absolute value 1, but this is far from being a standard convention. In fact what
is more commonly found in the literature (see for example [93], p. 105) is the
normalization

W (ρ, ψ) = ε(1/2, ρ, ψ, dxψ),(4.43)

which does not always give W (ρ, ψ) absolute value 1. Suppose for instance that K
is nonarchimedean, with residue class field of order q. Take ρ to be one-dimensional
and view it as a character χ of K× via (4.3). Applying (2.89) and (2.90), we see
that if the root number is defined by (4.43) then |W (χ, ψ)| = q(a(χ)+n(ψ))c, where
c is as in (2.83). Hence |W (χ, ψ)| 6= 1 unless χ is unitary or a(χ) + n(ψ) = 0.

On the other hand, while our convention that root numbers have absolute
value 1 may not be widely supported in the literature, it seems to be standard in
the mathematical vernacular. For example, have you ever heard anybody say that
the root number of the elliptic curve X0(11) is +

√
11?

6. Exercises

Exercise 4.1. Let K be a finite extension of Qp with p <∞. Show that the open
subgroups of infinite index in W(K/K) are precisely the subgroups of the form
Gal(K/R) with R a finite extension of Kunr inside K.

Exercise 4.2. Let E be an elliptic curve over a finite extension K of Qp, and
let ρE,` be the representation of Gal(K/K) on V`(E) for some prime ` 6= p. Let
ρρρ = (ρ,N) be the representation of WD(K/K) obtained from ρ∨E,` by applying part
(a) of Theorem 4.1. Show that if E has (i) good reduction then ρ is unramified and
N = 0, (ii) bad but potentially good reduction then ρ is ramified but N = 0, and
(iii) potentially multiplicative reduction then N 6= 0 and ρ ∼= χ ⊕ χω, where χ is
the unique quadratic or trivial character of W(K/K) such that the twist of E by
χ is a Tate curve over K. Furthermore, show that W (ρρρ) = 1 in case (i) and that

W (ρρρ) =


−1 if χ = 1
1 if χ is the unique unramified quadratic character of W(K/K)
χ(−1) if χ is ramified

in case (iii).

Exercise 4.3. Let K be a number field with r1 real embeddings and r2 pairs of
complex conjugate embeddings, and suppose that E is a semistable elliptic curve
over K which has split multiplicative reduction at exactly s finite places of K.
Put W (E) = W (M), where M is the isomorphism class of {ρ∨E,`}. Using Exercise
4.2, derive the classic formula W (E) = (−1)r1+r2+s. (Essential information: The
representation ρv of W(Kv/Kv) associated to E at an infinite place v is as follows.
Let χ : C× → C

× be the character z 7→ z−1. If v is complex and we identify
W(Kv/Kv) with C× then ρv = χ ⊕ χ. If v is real and we identify the subgroup
W(Kv/Kv) of W(Kv/Kv) with C× then ρv = indKv/Kv

χ.)
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Exercise 4.4. As we have already mentioned, the class of motivic L-functions,
while very broad, does not include even all Hecke L-functions of number fields – for
example if χ is as in (2.50) then L(s, χ) is not motivic – let alone the L-functions of
arbitrary automorphic forms. Nonetheless, at the local level, representations of the
Weil-Deligne group still serve as parameters for local components of automorphic
representations. To illustrate this point, let f be a Maass form for SL(2,Z). Then
the representation of W(C/R) associated to f at the infinite place of Q is χ ⊕ χ,
where χ has the form χ(t) = |t|ir(t/|t|)m with r ∈ R and m ∈ {0, 1}. Show that
the root number W (f) in the functional equation of L(s, f) is 1 or −1 according
as m = 0 or 1. (Hint: Given that f is a Maass form for SL(2,Z) rather than for
one of its congruence subgroups, what can you infer about the conductor of the
representation of WD(Qp/Qp) associated to f at primes p <∞?)

Exercise 4.5. (Reading.) Let G be a finite group and ρ a representation of G.
There are theorems of Snaith [89] and others which express [ρ] in Groth(G) as an
integral linear combination of classes of monomial representations in a canonical
way. Theorems of this type are call canonical Brauer induction theorems. Can
they be used to prove the existence of local root numbers?

Exercise 4.6. Let ρρρss = (ρss, N) be as in part (b) of Theorem 4.1, and let V be
the space of ρρρss.

(a) Show that there is a unique invariant subspace W of V such that V =
V I ⊕W . Here “invariant” means “stable under ρss.”

(b) Let N∗ be the nilpotent endomorphism of V which coincides with N on
V I and with 0 on W . Show that the pair ρρρss∗ = (ρss, N∗) is a representation
of WD(Kv/Kv) and that L(s,ρρρss∗) = L(s,ρρρss), a(ρρρss∗) = a(ρρρss), and W (ρρρss∗) =
W (ρρρss).

Exercise 4.7. With notation as in (4.21), put

ρρρ∗M,v = ((ρss
v )ι, (N∗v )ι),(4.44)

where N∗v is defined as in Exercise 4.6. (Note that there is an implicit choice of
λ in (4.44) as well as of ι.) Assume that a condition stronger than (3.37) holds,
namely that for every prime ideal p in the exceptional set S of M , for every pair
of reciprocal roots α and α′ of Bp(x), and for every pair of field automorphisms τ
and τ ′ of C, we have

|τ(α)| = |τ ′(α′)| 6 (Np)w/2.(4.45)

Prove that the isomorphism class of ρρρ∗M,v is independent of the choice of λ and ι.

Exercise 4.8. The preceding two exercises may appear to be a partial solution to
Problem 4, or at least a successful circumvention of it: If we simply replace N by
N∗ then the local L-factor, conductor, and root number are unaffected (Exercise
4.6) but the isomorphism class of ρρρ∗M,v is now independent of all choices provided
(4.45) holds (Exercise 4.7). The purpose of the present exercise is to show that this
“solution” to Problem 4 is completely unsatisfactory.

(a) Give an example showing that (4.45) need not be satisfied even in the simple
case of the motive associated to H1 of the product of two elliptic curves.

(b) Give an example of representations ρρρ = (ρ,N) and ρρρ′ = (ρ′, N ′) for which
(N ⊗ 1′ + 1⊗N ′)∗ 6= N∗ ⊗ 1′ + 1⊗N ′∗, in contrast to (4.6).



LECTURE 5

The minimalist dichotomy

In this final lecture we would like to reflect on the following question: To what
extent, or under what circumstances, should we expect the order of vanishing of a
motivic L-function at the center of its critical strip to be the minimum compatible
with its functional equation? To begin with we restrict our attention to essentially
self-dual premotives M , so that the functional equation of L(s,M) has the form
Λ(s,M) = W (M)Λ(k− s,M) with k = w+ 1, where w > 0 is the weight of M . We
are then asking how likely it is that

ords=k/2L(s,M) =

{
0 if W (M) = 1,
1 if W (M) = −1.

(5.1)

In the case of elliptic curves E over Q with W (E) = 1 this question is discussed at
length in the paper of Bektemirov, Mazur, Stein, and Watkins [8], who refer to the
conjecture that L(1, E) 6= 0 with probability one as the “minimalist conjecture” for
such E. Adopting their language, we shall say that the minimalist dichotomy
holds for M , or for the associated L-function L(s,M), if (5.1) is satisfied.

We have already encountered an infinite family of self-dual premotives in which
the minimalist dichotomy holds for every member: the premotives M(χ) associated
by (3.43) to the “canonical” characters χ. Indeed we have L(s,M(χ)) = L(s, χ)
and W (M(χ)) = W (χ), so that (5.1) holds with M = M(χ) by Theorem 1.3. On
the other hand, as a universal statement about L-functions of essentially self-dual
premotives, (5.1) is simply false. In the case of elliptic curves this point is perhaps
so familiar as to require no comment, but for the record, if one takes the base field
to be Q and orders elliptic curves by their conductor then the first counterexample
to (5.1) is the curve 389A1 in Cremona’s tables ([22], p. 306). Of course the fact
that one can be so precise depends on the confluence of several breakthroughs of the
past quarter-century: first of all the modularity of elliptic curves over Q proved by
Wiles [100], Taylor and Wiles [96], and Breuil, Conrad, Diamond, and Taylor [11],
and secondly the theorems of Kolyvagin [53] (supplemented by Bump-Friedberg-
Hoffstein [14] or Murty-Murty [70]) and Gross-Zagier [39], which together imply
that if E is an elliptic curve over Q with ords=1L(s,E) 6 1 then the rank of E is
6 1. For curves of conductor 6 999 an inspection of Cremona’s tables ([22], pp.
293 – 340) reveals that the converse also holds, and consequently the first curve in
the tables of rank > 1 – namely the curve 389A1, which has rank 2 – it is also the
first elliptic curve over Q for which the minimalist dichotomy fails. Using results
like those in [79] one can produce as many other counterexamples as one likes.

Nonetheless, we can ask as in [8] whether the minimalist dichotomy holds for
a dense set of elliptic curves over Q. After briefly surveying what is known or
conjectured about this question, we shall broaden the discussion to include more
general motivic L-functions.

83
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1. Elliptic curves

Let E be the set of isomorphism classes of elliptic curves E over Q and D the subset
of isomorphism classes for which L(s,E) satisfies the minimalist dichotomy. Write
ϑE(x) and ϑD(x) for the number of isomorphism classes in E and D respectively
which have conductor 6 x. By the minimalist conjecture for elliptic curves
over Q we mean the hypothesis that limx→∞ ϑD(x)/ϑE(x) exists and equals 1.

Before committing ourselves too firmly to this formulation of the problem,
we should note that the answer could depend on the fact that we are counting
elliptic curves using the conductor rather than some other natural invariant. Quite
generally, consider a set S and a function ν : S → Z>0 such that for every x > 0
there are only finitely many s ∈ S with ν(s) 6 x. We will call ν a counting
function on S. Writing ϑS,ν(x) for the number of such s, one can consider the
limit limx→∞ ϑT ,ν(x)/ϑS,ν(x) for a given subset T of S, but even if this limit exists,
its value may depend on ν. For example, fix an integer n > 3, let P be the set
of primes, and let Q the subset of primes p ≡ −1 modulo n. If we take ν(p) = p
then limx→∞ ϑQ,ν(x)/ϑP,ν(x) = 1/ϕ(n), but if instead ν(p) = p〈p〉, where 〈p〉 is
the least positive residue of p modulo n, then limx→∞ ϑQ,ν(x)/ϑP,ν(x) = 0.

Returning to E , and writing ν(E) for the value of ν on the isomorphism class
of E, we can defend the choice ν(E) = N(E) as the only analytic possibility for ν –
analytic in the sense that N(E) appears in the functional equation of L(s,E) – but
on the arithmetic side there are many other possibilities: for example the absolute
value of the minimal discriminant ∆(E), the Arakelov height of E, or simply the
coarse height

ν(E) = min
4a3+27b2 6=0
E∼=Ea,b

max(|a|3, |b|2),(5.2)

where the minimum is taken over all pairs of integers (a, b) such that 4a3 +27b2 6= 0
and E is isomorphic to the curve Ea,b : y2 = x3+ax+b. Now one can argue that the
arithmetic choices are less natural than N(E), for they depend on the isomorphism
class of E, whereas the validity of (5.1) depends only on the isogeny class. However
the arithmetic choices of ν are often easier to work with, so it behooves us to know
whether the choice ν(E) = |∆(E)|, say, is equivalent to the choice ν(E) = N(E) for
the purpose of evaluating the limit limx→∞ ϑD,ν(x)/ϑE,ν(x). This does not seem
like an easy question, particularly since it is not known whether |∆(E)| is bounded
by a power of N(E) – in a stronger form this is Szpiro’s conjecture.

But in fact one hopes for more: Not only should limx→∞ ϑD,ν(x)/ϑE,ν(x) be
the same for ν(E) = |∆(E)| as for ν(E) = N(E), but even the shape of the error
term should be the same. To spell this out, consider the conjecture

ϑE,ν(x) ∼ c · x5/6.(5.3)

The expectation is that (5.3) holds both in the case ν(E) = |∆(E)| (Brumer and
McGuinness [13]) and in the case ν(E) = N(E) (Watkins [99]), although the
constant c may depend on ν. Next consider Conjecture 3.4 on p. 244 of [8] (based
on the heuristics of Watkins [99]), which in principle gives

ϑE,ν(x)− ϑD,ν(x) ∼ c′ · x19/24(log x)3/8(5.4)

both for ν(E) = N(E) and ν(E) = |∆(E)|, although the constant c′ may again
depend on the choice of ν. We say “in principle” because the focus in [8] is on the
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first line of (5.1), so that the roles of E and D are actually played by the set E+ of
isomorphism classes with W (E) = 1 and the subset D+ of isomorphism classes with
L(1, E) 6= 0. In any case, since 19/24 < 5/6 we obtain from (5.3) and (5.4) that
limx→∞ ϑD(x)/ϑE(x) = 1, regardless of whether the implicit counting function is
|∆| or N . Henceforth the omission of the subscript ν on ϑD(x) and ϑE(x) indicates
as before that ν = N , but now with the implication that the choice of ν shouldn’t
matter anyway.

As the authors of [8] acknowledge, the numerical evidence for all of this is weak.
In fact one can almost say that the minimalist conjecture for elliptic curves over
Q is made in defiance of the available data. These data include the calculations of
Brumer and McGuinness [13] with elliptic curves of prime conductor < 108, the
calculations of Stein and Watkins [91] with elliptic curves of composite conductor
6 108 or prime conductor < 1010, and the calculations of the authors themselves
involving selected elliptic curves of prime conductor around 1014. None of these
works gives much support for the minimalist dichotomy, although there is some
hint that the desired numerical evidence may simply lie outside the range of com-
putation. At least the results for 1014 can be regarded as a bit more supportive
than those for 108 or 1010.

Turning from the numerical to the theoretical, we find that the known results
pertain less to the minimalist conjecture than to a slightly different hypothesis, the
average rank conjecture. Originally enunciated by Goldfeld [34] for quadratic
twists of a fixed elliptic curve, the average rank conjecture is here understood to
apply to all isomorphism classes of elliptic curves over Q simultaneously. It asserts
that if ν is any of the counting functions E → Z>0 mentioned above then the limit

rν(E) = lim
x→∞

∑
ν(E)6x ords=1L(s,E)

ϑE,ν(x)
(5.5)

exists and equals 1/2. In principle the choice of ν favored in the literature is the
coarse height (5.2), but even when ν is so chosen, the “average rank” r that one is
likely to encounter in research papers differs from our rν in that both the summa-
tion in the numerator on the right-hand side of (5.5) and the implicit summation
in the denominator run over all elliptic curves Ea,b such that |a|3, |b|2 6 x: In other
words, redundancies arising from isomorphisms among the curves Ea,b are not elim-
inated. Granting this point, and assuming the generalized Riemann hypothesis for
L-functions of elliptic curves over Q, one can cite the successive upper bounds
r 6 23/10 (Brumer [12]), r 6 2 (Heath-Brown [40]), r 6 25/14 (Young [103], cf.
also [104]), and r 6 27/14 (Baier and Zhao [5]). The two more recent works draw
inspiration from random matrix theory (cf. Iwaniec, Luo, and Sarnak [45]), and
while Young’s bound is sharper than that of Baier and Zhao, it depends on the
generalized Riemann hypothesis for Dirichlet and symmetric square L-functions, a
dependence eliminated in [5]. See also Exercise 5.4. It should be added that the
limit defining r is not actually known to exist: the results cited above are to be
understood as upper bounds for the corresponding limit superior.

Quite apart from the large gap between the upper bounds for r cited above
and the conjectured value r = 1/2, the average rank conjecture does not seem
to imply anything about the minimalist conjecture unless one knows something
about the equidistribution of root numbers. As before, let E± ⊂ E be the subset
of isomorphism classes with root number ±1. It does not appear to be known that
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limx→∞ ϑE±(x)/ϑE(x) = 1/2, let alone that

ϑE±(x) =
1
2
ϑE(x) +O(xγ)(5.6)

with a constant γ < 5/6. However if one grants (5.6) along with (5.3) then one can
show (see Exercise 5.1) that an estimate of the form∑

N(E)6x

ords=1L(s,E) =
1
2
ϑE(x) +O(xγ

′
)(5.7)

with γ′ < 5/6 implies an estimate of the form

ϑD(x) = ϑE(x) +O(xγ
′′
)(5.8)

with γ′′ < 5/6, and conversely. Note that (5.7) is stronger than the assertion that
rN (E) = 1/2 in (5.5), while (5.8) is weaker than (5.4). But if we grant (5.3) then
(5.8) does imply the minimalist conjecture for elliptic curves over Q.

2. The minimalist trichotomy

Let us attempt to formalize the idea that “ with probability 1, the order of vanishing
of a motivic L-function at its center of symmetry is the minimum compatible with
its functional equation.” This notion may simply be wrong, but without a precise
formulation there is nothing to refute.

Fix a number field K and an integer w > 0, and put k = w + 1, so that if
M is a premotive of weight w over K then the functional equation of L(s,M) is
Λ(s,M) = W (M)Λ(k − s,M). Since we are not restricting ourselves to essentially
self-dual premotives, it is not necessarily the case that W (M) = ±1. Hence the
dichotomy (5.1) should now be replaced by

ords=k/2L(s,M) =


0 if M 6∼= M,

0 if M ∼= M and W (M) = 1,
1 if M ∼= M and W (M) = −1.

(5.9)

Of course an equivalent but more succinct formulation would be

ords=k/2L(s,M) =

{
1 if M ∼= M and W (M) = −1,
0 otherwise,

(5.10)

but perhaps (5.9) is more illuminating than (5.10). We shall refer to (5.9) as the
minimalist trichotomy.

Now fix an integer n > 1 and let SK,w,n be the set of premotives over K of
weight w and rank n. Let TK,w,n ⊂ SK,w,n be the subset of elements satisfying the
minimalist trichotomy, and put S = SK,w,n and T = TK,w,n for simplicity. We also
take ν(M) = Nf(M) and omit the subscript ν on ϑS,ν and ϑT ,ν . A näıve attempt
at a minimalist conjecture for premotives would assert that

lim
x→∞

ϑT (x)/ϑS(x) = 1.(5.11)

This blunt formulation implies in particular that factorizations like (1.33) and (1.34)
are relatively rare: the resulting central zeros of high multiplicity occur with density
zero. Conceivably this is a reason to reject (5.11). But a more fundamental problem
is that we do not know that ν is a counting function on SK,w,n. In other words, to
formulate the minimalist conjecture as in (5.11) we need:
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Hypothesis 1. Given x > 0, there are only finitely many premotives M over K
of weight w and rank n such that Nf(M) 6 x.

It might be possible to reduce this statement to the following assertion about
Galois representations over finite fields (cf. [67]), which however is also unknown:

Hypothesis 2. Fix a prime number `. If x > 0 is given, then there are only finitely
many isomorphism classes of semisimple representations ρ : Gal(K/K)→ GLn(F`)
with Nf(ρ) 6 x. Here f(ρ) is defined exactly as in (3.45), except that the product
runs only over the prime ideals of K which do not divide `.

The evidence in favor of these hypotheses includes the following points:

• Hypothesis 2 is known to hold if the image of ρ is solvable (Moon and
Taguchi [68], p. 2530, Theorem 2), and for Hypothesis 2 to hold in general
it suffices that it hold when the image of ρ is a finite simple group of Lie
type in characteristic ` ([68], p. 2531, Proposition 3).
• The analogue of Hypothesis 2 over C – in other words, the statement that

there are only finitely many isomorphism classes of n-dimensional Artin
representations of K with conductor below a given bound – was proved
by Ralph Greenberg (unpublished) and by Anderson, Blasius, Coleman,
and Zettler [1]. Thus Hypothesis 1 holds for w = 0.
• Hypothesis 2 would follow from a suitable generalization of Serre’s con-

jecture [85], as in Ash, Doud, and Pollack [4].

Nonetheless, if we want to formulate the minimalist conjecture without relying on
unproven hypotheses then a slight modification is needed.

With K, w, and n as before, fix a number field E and let SK,E,w,n ⊂ SK,w,n be
the subset of elements which admit E as coefficient field. Let TK,E,w,n ⊂ SK,E,w,n
be the subset of elements satisfying the minimalist trichotomy. If we take the sets S
and T in (5.11) to be SK,E,w,n and TK,E,w,n rather than SK,w,n and TK,w,n then we
obtain a variant of the minimalist conjecture which is meaningful unconditionally:

Proposition 5.1. The map M 7→ Nf(M) is a counting function on SK,E,w,n.

To prove Proposition 5.1 we use the following result, which restates a well-
known lemma of Faltings ([29], pp. 362 – 363, or see [44], p. 285). The lemma was
embedded in the proof of Satz 5 of [29] and used there only in the case Eλ = Q`,
but the argument works for any finite extension of Q`.

Proposition 5.2. Fix a number field K, a finite set of prime ideals S of K, a prime
number `, a finite extension Eλ of Q`, and an integer n > 1. Then there exists a
finite set of prime ideals T of K, disjoint from S, with the following property: If
ρλ is an n-dimensional semisimple representation of Gal(K/K) over Eλ which is
unramified outside S then ρλ is determined up to isomorphism by the |T | values
tr ρλ(Φp) for p ∈ T , where Φp denotes an inverse Frobenius element at p.

Given an integer n > 2, let pmax(n) be the largest prime number dividing n.
We also put pmax(1) = 1, so that pmax(n) is defined for every positive integer n.
Since pmax(n) 6 n for every positive integer n, Proposition 5.1 is an immediate
corollary of the following statement:

Proposition 5.3. The map M 7→ pmax(Nf(M)) is a counting function on SK,E,w,n.
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Proof. Fix a prime number `0 and a place λ0 of E above `0, and let x > `0 be
given. Let S be the set of prime ideals of K which lie over a rational prime 6 x. We
apply Proposition 5.2 with ` and λ replaced by `0 and λ0. Given M ∈ SK,E,w,n, with
pmax(Nf(M)) 6 x, choose {ρλ} ∈M with coefficient field E; then M is determined
by the isomorphism class of ρλ0 (Proposition 3.1), and ρλ0 is unramified outside S.
Thus it suffices to see that there are only finitely many possibilities for the numbers
tr ρλ0(Φp) with p ∈ T . Now tr ρλ0(Φp) is the sum of the reciprocal roots of Bp(x)
and is therefore an element of OE having absolute value 6 n(Np)w/2 in every
archimedean embedding of E. But OE has only finitely many such elements. �

3. Elliptic curves revisited

A reasonable expectation of any “minimalist conjecture for premotives” is that it
should imply the minimalist conjecture for elliptic curves over Q. However the
latter conjecture will need to be reformulated if we are to make a connection. The
problem is that E was defined to be the set of isomorphism classes of elliptic curves
over Q, not the set of isogeny classes. Isomorphism classes are the right objects
to consider if ν is taken to be |∆|, but now that we have settled on ν = N it is
natural to take the domain of ν to be the set of isogeny classes. In fact by the
isogeny theorem [29] we may identify the isogeny class of an elliptic curve E over
Q with the premotive determined by the fully compatible family {ρ∨E,`}. Writing I
for the set of all such premotives, we will henceforth take the minimalist conjecture
for elliptic curves over Q to be the assertion that

lim
x→∞

ϑJ (x)/ϑI(x) = 1,(5.12)

where J ⊂ I is the subset of elements satisfying the minimalist dichotomy.
It follows from the definitions that I ⊂ SK,E,w,n with K = E = Q, w = 1, and

n = 2, and the question at hand is whether the preceding inclusion is actually an
equality: if so, then (5.12) is simply (5.11) with S = SQ,Q,1,2 and T = TQ,Q,1,2.
However the desired equality I = SQ,Q,1,2 is at present unknown. In fact even
a slightly weaker question posed by Lang and Trotter ([56], pp. 5 and 19) more
than thirty years ago remains open. On the positive side, the Fontaine-Mazur
conjecture [30] combined with a certain “ordinariness conjecture” (about which
more in a moment) does imply that I = SQ,Q,1,2. An implication in this spirit but
oriented more toward the Lang-Trotter question is proved in [77], and for the sake
of completeness we shall now give a proof of the implication as stated here. The
reader is cautioned that the arguments involved – mostly variants of the arguments
in [77], which are elementary, but also some arguments based on modular forms
– temporarily lead us outside the prerequisites for the lectures. This deviation
is inevitable, because the Fontaine-Mazur conjecture itself lies outside our self-
imposed perimeter. Hence we simply refer the reader to pp. 190 – 191 of [30] for
the precise statement to be used here. Similarly, we refer to pp. 97–98 of Greenberg
[37] for the notion of an ordinary prime relative to a strictly compatible family
{ρ`} of `-adic representations of Gal(Q/Q). One feature of Greenberg’s definition
is that the ordinariness of p is a condition on ρp only (and in fact only on the
restriction of ρp to a decomposition subgroup at p), not on ρ` for ` 6= p. On
the other hand, there is a second notion of ordinariness in the literature which
is a condition on ρ` precisely for ` 6= p. This second notion, like the first, can
be elaborated in great generality, but we prefer to present it only for the type of
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strictly compatible family that is relevant here. Thus we take the dimension of ρ`
to be two, and if p /∈ S (the exceptional set of the family) then we assume that
Bp(x) has the form Bp(x) = 1 − a(p)x ± px2 with a(p) ∈ Z. In this setting we
will say that p is classically ordinary if p - a(p). The ordinariness conjecture
mentioned above is the first of the two assumptions in the following proposition:

Proposition 5.4. Assume that classically ordinary primes are ordinary and that
the Fontaine-Mazur conjecture holds. Then I = SQ,Q,1,2.

Proof. Given a premotive M ∈ SQ,Q,1,2 and a fully compatible family {ρ`} in
M with coefficient field Q, we must show that there is an elliptic curve E over Q
such that {ρ`} ∼= {ρ∨E,`}.

Let S be the exceptional set of M and let p denote an arbitrary prime not in
S. The coefficients of Bp(x) lie in Z by assumption, and the reciprocal roots of
Bp(x) = 0 have complex absolute value

√
p by (3.36). Consequently we have:

(i) Bp(x) = 1− a(p)x± px2 with a(p) ∈ Z.
(ii) |a(p)| < 2

√
p.

If for all p /∈ S the sign ± in (i) is the plus sign then the desired conclusion follows
from Theorem 1 of [77]. Hence it suffices to see that the occurrence of a minus sign
in (i) leads to a contradiction.

Let ` and p be prime numbers with p /∈ S ∪ {`}, and let Φp ∈ Gal(Q/Q) be an
inverse Frobenius element at p. Since det ρ`(Φp) = ±p in (i) and ω−1

` (Φp) = p, the
formula η = (det ρ`)/ω−1

` defines a character η : Gal(Q/Q)→ {±1} independent of
`. Under the assumption that η is nontrivial the equation det ρ` = ηω−1

` will lead
to a contradiction.

View η as a primitive quadratic Dirichlet character, and write P for the set
of prime numbers p /∈ S such that η(p) = −1. We claim that if p ∈ P then
a(p) = 0. To see this, write 1 − a(p)x − px2 = (1 − αx)(1 − α′x) with α, α′ ∈ C.
By (3.36) we can write α = eit

√
p with t ∈ R, and then α′ = −e−it√p. Hence

a(p) = 2i(sin t)
√
p ∈ iR. But a(p) ∈ Z by assumption, so a(p) = 0, as claimed.

Let L be the set of prime numbers ` such that there exist primes p, q ∈ P with
p, q 6= ` and (p

`

)
= −

(q
`

)
.(5.13)

We claim that L is a set of density 1. It suffices to see that the complement M of
L has density 0. Now M =M+ ∪M−, where M± consists of the prime numbers
` such that (p

`

)
= ±1(5.14)

for all p ∈ P with p 6= `. But P is an infinite set (in fact a set of density 1/2), so it
follows from the Chebotarev density theorem – or simply from Dirichlet’s theorem
– thatM+ andM− are sets of density 0. A small technical point here: In case the
infinite set of conditions ` 6= p (p ∈ P ) appears to be a barrier to the application of
the Chebotarev or Dirichlet theorems, choose an infinite subset P0 of P of density
0, and let M±0 be the set of primes ` /∈ P0 such that (5.14) holds for all p ∈ P0.
If n is any positive integer and Q is any subset of P0 of cardinality n then M±0 is
a subset of the set of primes ` /∈ Q such that (5.14) holds for all p ∈ Q. But the
latter set has density 2−n and n is arbitrary, so we deduce thatM±0 has density 0.
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As M± ⊂ M±0 ∪ P0 and M±0 and P0 are both sets of density 0, we do conclude
that M± has density 0 as well.

Now choose any odd prime `0 and view ρ`0 as a representation into GL2(Z`0)
(cf. Exercise 3.4). Let ρ`0 denote the representation into GL2(F`0) obtained from
ρ`0 by reduction modulo `0. We consider the set Ξ of prime numbers p /∈ S ∪ {`0}
such that ρ`0(Φp) = 1, the identity matrix in GL2(F`0). By Chebotarev, Ξ has
positive density, whence the same is true of Ξ∩L because L has density one. Thus
we can choose a prime r ∈ Ξ ∩ L with r > 5. We claim that r is ordinary and that
ρr is absolutely irreducible.

To see that ρr is ordinary, observe first of all that by construction, ρ`0(Φr) = 1,
whence tr ρ`0(Φr) ≡ 2 mod `0. But tr ρ`0(Φr) = a(r) and `0 is odd, so we deduce
that a(r) 6≡ 0 mod `0 and hence in particular that a(r) 6= 0. As |a(r)| < 2

√
r it

follows that r - a(r): in other words, r is classically ordinary and hence, under our
hypotheses, ordinary.

To see that ρr is absolutely irreducible, we use the fact that r ∈ L. Choose
primes p, q ∈ P with p, q 6= r such that (5.13) holds with ` replaced by r. Then
one of p and q is a square in Fr and the other is not. Also a(p) = a(q) = 0 because
p, q ∈ P . Let us once again view ρr as a representation into GL2(Zr), writing
ρr for its reduction modulo r. Since the characteristic polynomials of ρr(Φp) and
ρr(Φq) are x2Bp(x−1) and x2Bq(x−1) respectively, those of ρr(Φp) and ρr(Φq) are
x2− p and x2− q, where p and q are regarded as elements of Fr. It follows that the
eigenspaces of ρr(Φp) and ρr(Φq) over Fr are pairs of distinct lines, but in one case
the lines are rational over Fr and in the other case irrational. Hence a line in F

2

r

which is stable under ρr is both rational and irrational over Fr and therefore does
not exist. Thus ρr is absolutely irreducible, and a fortiori so is ρr.

We are now in a position to apply the Fontaine-Mazur conjecture to ρr. Since r
is ordinary it follows that ρr is semistable, and we have just seen that ρr is absolutely
irreducible. Furthermore det ρr = ηω−1

r , and consequently ρr is not a Tate twist
of a two-dimensional Artin representation (for then det ρr would be a finite-order
character times an even power of ωr). Hence the Fontaine-Mazur conjecture implies
that there is a primitive cusp form f of weight 2 and Nebentypus character η such
that ρr is isomorphic to the semisimple representation ρf,r : Gal(Q/Q)→ GL2(Qr)
associated to f . But a(p) = 0 for p ∈ P , a set of density 1/2. It follows (Serre [84],
p. 174, Corollaire 2) that f is a form of CM type. Thus the results of Ribet ([73],
pp. 38 – 39, (4.4) and p. 40, (4.5)) imply that there is an imaginary quadratic field
K and a primitive Hecke character χ of K of type (1, 0) such that L(s, χ) = L(s, f).
It follows in particular that if p is a prime which splits in K and is relatively prime
to f(χ) then p /∈ S and

a(p) = χ(p) + χ(p),(5.15)

where p and p are the prime ideals of K above p.
Now let κ = signK/Q, viewed as a primitive quadratic Dirichlet character.

Since f is a form of weight two we have η(−1) = 1, whereas κ(−1) = −1 since
K is imaginary. But κ and by assumption also η are nontrivial characters, so if
N is a common multiple of the conductors of η and κ then the sums

∑
j η(j) and∑

j κ(j) are both 0, where j runs over invertible residue classes modulo N . Since
η(−1) = 1 and κ(−1) = −1 it follows that there is also an invertible residue class c
such that η(c) = −1 and κ(c) = 1. Hence by Dirichlet’s theorem there are infinitely
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many prime numbers p relatively prime to f(χ) such that η(p) = −1 and κ(p) = 1,
or in other words such that p ∈ P and p splits in K: but these conditions imply
respectively that a(p) = 0 and that (5.15) holds. Thus

χ(p) = −χ(p).(5.16)

Put F = Nf(χ) and choose n so that pn ∈ PF; then choose α ∈ KF so that pn = αO.
By complex conjugation we also have pn = αO. Both α and α belong to Kf(χ),
whence on raising both sides of (5.16) to the nth power we obtain α = (−1)nα.
Passing to ideals we get pn = pn and consequently p = p. Since p splits in K this
is a contradiction. �

4. An open problem

Someday somebody may be able to formulate a conjecture which fully captures the
notion that “motivic L-functions usually satisfy the minimalist trichotomy,” but
the hypotheses proposed in this lecture fall short of the mark, for two reasons.

First of all, no matter how S is chosen, a conjecture like (5.11) has the limi-
tations inherent in any probabilistic statement: It cannot account for phenomena
which hold for all or for all but finitely many members of a family. For example,
we expect that every Dirichlet L-function satisfies the minimalist trichotomy, and
Serre has conjectured more generally that the same is true for the L-function of any
irreducible Artin representation of Q ([35], p. 324, Conjecture 8.24.1), but no such
consequence can be deduced from (5.11). Neither can results like Theorem 1.2 or
like Greenberg’s theorem [36] on powers of Hecke characters of type (1, 0).

Granting this objection, we come to a second issue, namely the choice of S. We
have portrayed SK,w,n as the desired choice and SK,E,w,n as the default choice, but
neither is likely to be the right choice: A satisfactory conjecture would accommodate
a wider variety of sets S, subject only to some condition (still to be formulated)
which plausibly ensures that (5.11) holds. The point is illustrated already by the two
choices SK,w,n and SK,E,w,n: The former is more inclusive, but without the latter
we have no hope of recovering the minimalist conjecture for elliptic curves over Q,
and neither SK,w,n nor SK,E,w,n is likely to be suitable if one wants to conjecture
that L-functions of essentially self-dual premotives satisfy the minimalist dichotomy
with probability one. Underlying this last remark is the expectation that essentially
self-dual premotives have density zero among all premotives, so that the validity
of the minimalist trichotomy with probability one would say nothing about the
minimalist dichotomy.

Unable to propose a compelling conjecture in general, we return to the case
of elliptic curves over Q, where we would still like to know that the minimalist
conjecture is equivalent to the average rank hypothesis. If we grant (5.3) then the
missing link, as already noted, is (5.6), which should hold for any of the counting
functions ν mentioned earlier:

Problem 5. Show that

ϑE±,ν(x) =
1
2
ϑE,ν(x) +O(xγ)

with a constant γ < 5/6.
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5. Exercises

Exercise 5.1. It follows from work of Mestre [64] that if E is an elliptic curve over
Q then

ords=1L(s,E)� logN(E),(5.17)

where the implied constant is absolute. Using this estimate, prove that if one grants
(5.3) and (5.6) then (5.7) and (5.8) are equivalent, as claimed.

Exercise 5.2. The case w = 0 of Proposition 5.3 implies that if K and E are
fixed number fields, S a fixed finite set of prime ideals of K, and n a fixed positive
integer, then there are only finitely many isomorphism classes of n-dimensional
Artin representations of K which are unramified outside S and the infinite places
of K and which are realizable over E. Give a direct proof of this assertion.

Exercise 5.3. This problem refers to a conjecture of Serre already mentioned:
Artin L-functions associated to irreducible Artin representations of Q satisfy the
minimalist trichotomy.

(a) Why is the conjecture restricted to Artin representations of Q? Why not
make the same conjecture for Artin representations of arbitrary number fields?
(Hint: Exercise 3.3.)

(b) (Literature search.) Some numerical evidence in support of Serre’s conjec-
ture can be found in the paper of Omar [71], where the Artin representations at
issue are two-dimensional with image isomorphic to the quaternion group. Have
other irreducible representations of dimension > 1 been investigated numerically?

Exercise 5.4. (Reading.) Using a counting function similar to (5.2), Bhargava
and Shankar [7] have recently shown that the average rank of an elliptic curve over
Q is 6 7/6. While this result pertains to the Mordell-Weil rank rather than the
“analytic rank” ords=1L(s,E), under the conjecture of Birch and Swinnerton-Dyer
their work does give an upper bound for the quantity rν(E) in (5.5). What are they
able to deduce about analytic ranks unconditionally?

Exercise 5.5. As we have already noted, the elliptic curve 389 A1 of [22] violates
the minimalist dichotomy. The purpose of this problem is to give an example of a
premotive M which is not essentially self-dual but which also violates the minimalist
trichotomy.

(a) Put K = Q(
√
−7) and d = −118−18

√
−7, and let η be the quadratic Hecke

character of K associated to the extension K(
√
d) of K. View A(7) as an elliptic

curve over K and write E for the twist of A(7) by η. Using [38], p. 82, verify that
y2 = x3 − 35x− 98 is an equation for A(7) over K, whence dy2 = x3 − 35x− 98 is
an equation for E.

(b) Show that the point with coordinates (x, y) = ((1 +
√
−7)/2, 1) relative to

the equation dy2 = x3 − 35x− 98 is a point of infinite order on E.
(c) Let χ be the unique element of X(7), and put ξ = χη and M = M(ξ), so

that L(s,M) = L(s, ξ) and L(s,E/K) = L(s, ξ)L(s, ξ). Using the Coates-Wiles
theorem [19], deduce from (b) that L(1,M) = 0. But show that L(s, ξ) 6= L(s, ξ),
whence M is not self-dual.
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normales, Séminaire Bourbaki 25, 1982-1983, Exp. No. 598, 25 – 38.

[22] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press (1980).
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[33] A. Fröhlich and J. Queyrut, On the functional equation for the Artin L-function for charac-

ters of real representations, Invent. Math. 20 (1973), 125–138.
[34] D. Goldfeld, Conjectures on elliptic curves over quadratic fields. In: Number Theory, Car-

bondale, 1979, Springer, Lecture Notes in Math. 751 (1979), 108 – 118.
[35] D. Goss, Basic Structures of Function Field Arithmetic, Ergebnisse der Math. 35, Springer

(1966).

[36] R. Greenberg, On the critical values of Hecke L-functions for imaginary quadratic fields,
Invent. Math. 79 (1985), 79 – 94.

[37] R. Greenberg, Iwasawa theory for p-adic representations. In: Algebraic Number Theory – in
honor of K. Iwasawa, Advanced Studies in Pure Mathematics 17 (1989), pp. 97 – 137.

[38] B. H. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, SLN 776, Springer-

Verlag (1980).
[39] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84

(1986), 225 – 320.
[40] D. R. Heath-Brown, The average rank of elliptic curves, Duke Math. J. 122 (2004), 225 –

320.

[41] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime argu-
ments, J. reine angew. Math. 310 (1979), 111 – 130.

[42] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der
Primzahlen. Zweite Mitteilung, Math. Z. 6 (1920), 11 – 51.

[43] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea Publishing Com-

pany, 2nd ed. (1970).
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