
QUATERNIONIC ARTIN REPRESENTATIONS AND

NONTRADITIONAL ARITHMETIC STATISTICS

DAVID E. ROHRLICH

Abstract. We classify and then attempt to count the real quadratic fields

(ordered by the size of the totally positive fundamental unit, as in Sarnak

[14], [15]) from which quaternionic Artin representations of minimal conductor
can be induced. Some of our results can be interpreted as criteria for a real

quadratic field to be contained in a Galois extension of Q with controlled

ramification and Galois group isomorphic to a generalized quaternion group.

Traditionally, number fields of a given degree over Q are ordered by the size of
their discriminant, and Artin representations of Q of a given dimension are ordered
by the size of their conductor. But in [14] and [15], Sarnak obtained asymptotic
averages of ring class numbers of real quadratic fields by enumerating the cor-
responding orders according to the size of their fundamental totally positive unit.
Sarnak’s method was subsequently used by Raulf [7], [8] to average the class number
over maximal orders as well as over orders satisfying given congruence conditions.
Here Sarnak’s ordering will be used to count certain Artin representations induced
from real quadratic fields.

In describing the results of Sarnak and Raulf, we have departed from the authors’
own formulation, for they use the language of binary quadratic forms rather than
the equivalent language – more suited to Artin representations – of ring class groups.
Our notation will also depart from theirs in one important respect: While Sarnak
and Raulf use h and ε to denote the narrow class number and fundamental totally
positive unit of an order, we shall instead use hnar and ε+, reserving h and ε for
the usual class number and fundamental unit. Thus if ε has norm −1 then ε+ = ε2.
(Here ε and ε+ are defined by the standard condition ε, ε+ > 1, a condition which
is meaningful because real quadratic fields will always be taken to be subfields of
R.) In principle, one could use ε rather than ε+ as the basis of the ordering, but in
this note we shall adhere to Sarnak’s original ordering by ε+.

Our group-theoretic conventions will be as follows: A representation of a group G
is a homomorphism (continuous if G is endowed with a topology) ρ : G→ GL(V ),
where V is a finite-dimensional vector space over C. An irreducible ρ is dihedral if
its image is isomorphic to the dihedral group

D2m = 〈a, b|am = 1, am = b2 = 1, bab−1 = a−1〉

of order 2m for some m > 3, and quaternionic if its image is isomorphic to the
generalized quaternion group

Q4m = 〈a, b|a2m = 1, am = b2, bab−1 = a−1〉
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of order 4m for some m > 2. An irreducible two-dimensional monomial self-dual
representation is dihedral or quaternionic according as it is orthogonal or sym-
plectic, and conversely, a dihedral or quaternionic representation is othogonal or
symplectic respectively and monomial of dimension two. In particular, a dihedral
or quaternionic Artin representation of Q is induced from a quadratic field.

Dihedral Artin representations of Q enjoy a certain ubiquity in number theory
that quaternionic representations lack. One reason is that dihedral representations
often correspond to holomorphic cusp forms of weight one, whereas quaternionic
representations are always associated to Maass forms. A related reason is that
dihedral representations are simply more abundant. Indeed let ϑdi(x) be the number
of isomorphism classes of dihedral Artin representations of Q of conductor 6 x, and
let ϑqu(x) be the analogous quantity for quaternionic representations. It follows
from Siegel’s asymptotic class number formulas (see [17] and [10]) that

(1) ϑdi(x) ∼ π

36ζ(3)2
x3/2,

and while no counterpart to (1) is known for ϑqu(x), one has at least that

(2) x1−ε � ϑqu(x)� x/ log x

for every ε > 1/4
√
e (see [11]). A conjecture of Ambrose [1], whose work in the

direction of his conjecture is the main ingredient in the lower bound in (2), would
imply that the lower bound holds for all ε > 0, but our focus here is on the upper
bound and the disparity in growth rates: ϑdi(x)� x3/2 versus ϑqu(x)� x/ log x.

This disparity is misleading. The dominant contribution to ϑdi(x) comes from
dihedral representations induced from imaginary quadratic fields, whereas quater-
nionic representations can be induced from real quadratic fields only. If one counts
only dihedral representations induced from real quadratic fields and orders them
by conductor then nothing comparable to (1) is known, but as we have already
indicated, Sarnak [14] was able to prove an asymptotic formula by ordering by
fundamental totally positive units:

(3)
∑
ε+d 6x

hnard = Li(x2) +O(x3/2(log x)2),

where d runs over discriminants of orders in real quadratic fields. The connection
between (3) and dihedral Artin representations induced from real quadratic fields
is that after appropriate identifications, the inducing character can be chosen to
be a ring class character of order > 3. Thus the left-hand side of (3) is a rough
approximation to the function αdi(x) which counts isomorphism classes of dihedral
Artin representations of Q of conductor d with ε+d 6 x. The main reason why

(3) is only a rough approximation to αdi(x) is that if a ring class character is
counted by hnard then it is also counted by hnardm2 for any positive integer m, whence
a given Artin representation may be counted several times in (3). Or to put it
differently, (3) counts imprimitive Artin representations along with true primitive
Artin representations.

The issue of imprimitivity disappears, however, if we turn to Raulf’s formula:

(4)
∑
ε+K6x

hnarK =
25ζ(3)

16

∏
p>2

(1− 2p−2 − p−3)Li(x2) +O(xc)
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for some c < 2 ([7], p. 222), where K runs over real quadratic fields and hnarK and
ε+K are associated to the ring of integers of K. We can view (4) as an asymptotic
count of dihedral representations induced by narrow ideal class characters, and re-
markably, even though (4) counts what appears at first to be a thin subclass of
dihedral representations, a comparison with (3) shows that such representations
account for a positive proportion of the representations counted by αdi(x). More
formally, let βdi(x) be the number of isomorphism classes of dihedral Artin repre-
sentations of Q which are induced by one-dimensional unramified Galois characters
of real quadratic fields K with ε+K 6 x. (Here “unramified” means “unramified
outside infinity.”) A straightforward deduction from (4) gives

(5) βdi(x) ∼ 25ζ(3)

64

∏
p>2

(1− 2p−2 − p−3)x2/ log x,

whence in particular βdi(x)� αdi(x) by (3).
This note is an attempt to find a quaternionic analogue of the preceding circle

of ideas. A quaternionic analogue of αdi(x) is problematic, because quaternionic
representations are not induced by ring class characters. However the quaternionic
counterpart to a narrow ideal class character of order > 3 is easily identified: It
is a nonquadratic character which is “conjugate-symplectic of minimal conductor.”
Such characters will be called amplectic (we embrace them!), and the function
βqu(x) which counts the representations induced by amplectic characters is thus
the natural analogue of βdi(x). We will see that for every ε > 0,

(6) x2−ε � βqu(x)� x2/ log x.

While (6) falls far short of an asymptotic equality, taken together, (5) and (6)
provide a perspective not apparent from (1) and (2): If we restrict attention to real
quadratic fields and order representations by the size of the fundamental totally
positive unit, then dihedral representations are not so much more abundant than
quaternionic representations after all.

Underlying (6) is our main result, a classification of the real quadratic fields
which have an amplectic character. In contrast to the dihedral case, where K has
a character relevant to βdi(x) if and only if the narrow ideal class group of K has
an element of order > 3, the classification in the quaternionic case is a bit more
complicated and is in fact the core around which the whole paper is organized:
After an elementary remark about Dirichlet characters in Section 1, we introduce
“conjugate-symplectic characters” in Section 2 and those of “minimal conductor”
in Section 3, and then in Sections 4 and 5 we derive our classification, from which
we deduce our bounds for βqu(x) in Section 6 by quoting old results on square-free
values of quadratic polynomials (Carlitz [2], Estermann [3], and especially Ricci
[9]). We also use Siegel’s half of the Brauer-Siegel theorem [16], rendering the lower
bound in (6) ineffective. On the other hand, we do obtain effective constants, albeit
weak ones, for a quantitative version of our main result:

Theorem 1. When real quadratic fields are ordered by the size of the fundamental
totally positive unit, between 24% and 68% have an amplectic character.

The referee has requested more translations of our results into the language of
classical Galois theory. One such translation was contained already in the original
submission: If a real quadratic field K is contained in a Galois extension of Q with
Galois group Q4m, where m is odd, then the discriminant of K is a product of
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primes congruent to 1 mod 4 or else 8 times such a product. This assertion and a
few similar ones are collected in Section 7, the final section of the paper.

1. Quadratic reciprocity

We denote the ring of adeles of a number field K by AK and the group of ideles
by A×K , and as usual, we view K as a subring of AK and K× as a subgroup of

A×K via the respective diagonal embeddings. An idele class character of K is a

continuous homomorphism A×K → C× which is trivial on K×.
Given a primitive Dirichlet character χ, we write χA for the corresponding idele

class character of Q and χp for the component of χA at a prime or place p 6 ∞.
We also write ap for the p-component of an idele a ∈ A×Q . Then

(7) χA(a) =
∏
p6∞

χp(ap).

Parallel to (7) is the expression for χ as a product of primitive Dirichlet characters
χ(p) of p-power conductor:

(8) χ =
∏
p

χ(p),

where p runs over primes dividing the conductor of χ (or indeed over all finite
primes, χ(p) being the trivial character of conductor 1 if p does not divide the
conductor of χ). Connecting (7) and (8) is the equation

(9) χp(n) = χ−1(p)(n)

for positive integers n prime to p, or simply χp(n) = χ(p)(n) if χ is quadratic.
Let c be a square-free integer > 1, and put d = c or d = 4c according as c is 1

mod 4 or 2 or 3 mod 4. Henceforth we take χ to be the primitive even quadratic
Dirichlet character of conductor d.

Proposition 1. Let p be a prime congruent to 3 mod 4 which divides c. Then
χp(c) = −1.

Proof. Let δ be 0 or 1 according as c is odd or even, and let ĉ be the product of
the odd prime divisors of c/p. Then c = 2δ ĉp, and consequently

(10) χp(c) = χp(2)δχp(ĉ)χp(p).

Now for odd primes q dividing c, χ(q) is the Legendre symbol at q, and in particular
χ(p) is the Legendre symbol at p, so (9) gives

(11) χp(2)δχp(ĉ) =

(
2

p

)δ∏
q|ĉ

(
q

p

)
.

On the other hand, taking a in (7) to be the principal idele p ∈ Q×, we have

(12) 1 = χ2(p)χp(p)
∏
q|ĉ

(
p

q

)
,
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because χq is unramified for q - d and χ∞ is trivial (χ is even). Furthermore,
putting

∆ =


1 if c ≡ 1 mod 4

−4 if c ≡ 3 mod 4

8 if c is even and c/2 ≡ 1 mod 4

−8 if c is even and c/2 ≡ 3 mod 4,

we see that χ(2) is the Kronecker symbol at ∆, whence (9) gives

(13) χ2(p) =

(
∆

p

)
.

Now combine (10), (11), (12), and (13), and apply quadratic reciprocity. We obtain

(14) χp(c) =

(
2

p

)δ (
∆

p

)
(−1)(ĉ−1)(p−1)/4.

The proof is completed by considering the cases c ≡ 1, 2, or 3 mod 4 separately.
For example, if c ≡ 1 mod 4 then ĉ = c/p, whence ĉ ≡ 3 mod 4. Also δ = 0 and
∆ = 1, so χp(c) = −1. The other cases are handled similarly. �

2. Conjugate-symplectic characters

As we have already indicated, if ρ is a two-dimensional irreducible monomial
self-dual representation of a finite group then ρ is dihedral if it is orthogonal and
quaternionic if it is symplectic. In the latter case, the hypothesis that ρ is symplectic
means simply that the determinant of ρ is trivial, because the symplectic and special
linear groups coincide in dimension two. Now according to a standard formula for
the determinant of an induced representation, we have

(15) det(indGHξ) = (signG/H)(ξ ◦ tranGH),

where the notation is as follows: First of all, G is a finite group, H is a subgroup
of index 2, ξ is a one-dimensional character of H, and indGHξ is the representation
of G induced by ξ. In addition, signG/H is the isomorphism G/H ∼= {±1} pulled

back to G, and tranGH is the transfer map Gab → Hab from the abelianization of G
to that of H. Note that ξ can be viewed as a function on Hab and both sides of
(15) as functions on Gab. Thus by (15), ρ = indGHξ is symplectic if and only if

(16) ξ ◦ tranGH = signG/H .

Let us examine (16) in the context of Artin representations.
Let Q denote the algebraic closure of Q in C. In keeping with our convention

that real quadratic fields are subfields of R, we view arbitrary number fields F as
subfields of C and hence of Q. In the first instance, an Artin representation of F is a
continuous homomorphism ρ : Gal(Q/F )→ GL(V ), where V is a finite-dimensional
vector space over C, but since the preceding discussion referred to finite groups, it
is convenient here to view ρ as a representation Gal(L/F ) → GL(V ), where L is
the fixed field of the kernel of ρ on Gal(Q/F ). In particular, take F = Q and ρ
quaternionic, and put G = Gal(L/Q). Then ρ is induced from a subgroup of index

2 in G, say H = Gal(L/K). We write ρ = indK/Qξ, where indK/Q means indGH
and ξ is a character of H satisfying (16). Note that signG/H is now signK/Q, the

nontrivial character of Gal(K/Q), viewed as a character of Gal(L/Q). Furthermore,
K is a real quadratic field. Indeed, if K is imaginary then there is an involution in
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Gal(L/Q) – namely complex conjugation – which restricts to the nontrivial element
of Gal(K/Q). A calculation then shows that tranGH is trivial, contradicting (16).

It remains to elucidate (16). Using Artin reciprocity, we may identify characters
of Gal(Q/K) with idele class characters of K of finite order, and we often refer
to both types of characters simply as “characters of K,” either because both in-
terpretations are intended or because the preferred interpretation is apparent from
context. In any case, Artin reciprocity identifies transfer on Galois groups with
inclusion of idele class groups, so that (16) becomes

(17) ξ|A×Q = signK/Q.

Thus in the context of idele class characters, (17) is the condition for indK/Qξ to
be symplectic. On a personal note, I want to acknowledge that my first encounter
with quaternionic Artin representations was a lecture of Serre at Harvard in the
late 1970’s in which Serre related Galois extensions of Q with Galois group Q8 to
quartic characters ξ of real quadratic fields K satisfying (17).

An idele class character of finite order satisfying (17), or a Galois character sat-
isfying (16) with G and H as above, will be called a conjugate-symplectic character
of K. To illustrate the definition, we observe:

Proposition 2. If ξ is a conjugate-symplectic character of K which is ramified at
one of the two infinite places of K then it is ramified at both infinite places.

Proof. Let a ∈ A×Q be the idele with ap = 1 for all p < ∞ and a∞ = −1. When a

is viewed as an element of A×K , it becomes the idele with component 1 at all finite
places and component −1 at the two infinite places. Thus if ξ is ramified at precisely
one of the two infinite places then ξ(a) = −1. This contradicts (17), because the
Dirichlet character corresponding to signK/Q is even, whence signK/Q(a) = 1. �

For indK/Qξ to be quaternionic, it must be irreducible as well as conjugate-

symplectic. Let τ be the nontrivial element of Gal(K/Q), which acts on A×K via

the identification A×K = (K ⊗ AQ)×. By Mackey’s criterion, the condition for
irreducibility is ξτ 6= ξ, where ξτ is the idele class character defined by ξτ (a) =
ξ(aτ ). Now it is immediate from (17) that ξ(aτ+1) = 1 for all a ∈ A×K ; equivalently,
ξτ = ξ−1. So Mackey’s criterion becomes ξ 6= ξ−1. Thus indK/Qξ is irreducible
if and only ξ has order > 3. The facts just reviewed are summarized in the first
sentence of the following proposition:

Proposition 3. Given a real quadratic field K and a character ξ of K, the rep-
resentation ρ = indK/Qξ is quaternionic if and only if ξ is conjugate-symplectic
of order > 3, and all quaternionic Artin representations of Q are of this form for
some such K and ξ. Furthermore, given two such characters ξ and ξ′, we have
indK/Qξ ∼= indK/Qξ

′ if and only if ξ′ = ξ or ξ′ = ξ−1. Finally, there exist two such
pairs (K, ξ) and (K ′, ξ′) with K ′ 6= K and indK/Qξ ∼= indK′/Qξ

′ if and only if the
image of ρ is isomorphic to Q8, and in that case there are exactly six such pairs,
say (K, ξ±1), (K ′, (ξ′)±1), and (K ′′, (ξ′′)±1), with K, K ′, and K ′′ all distinct.

Proof. The first assertion has already been verified, the second follows from Frobe-
nius reciprocity and the self-duality of ρ, and the third is a consequence of the
fact that among the groups Q4m, only Q8 has an irreducible “triply monomial”
representation (cf. [12], Proposition 18). �
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By virtue of (16) or (17), a conjugate-symplectic character is nontrivial. Thus
the phrase “of order > 3” in Proposition 3 is equivalent to “nonquadratic.” We now
consider a case in which the equivalent phrases “of order > 3” and “nonquadratic”
can be dispensed with entirely. Fix a real quadratic field K and let c be the square-
free integer > 1 such that K = Q(

√
c).

Proposition 4. Suppose that c is divisible by a prime congruent to 3 mod 4. If
ξ is any conjugate-symplectic character of K then the order of ξ is divisible by 4.
Hence the representation ρ = indK/Qξ is quaternionic.

Proof. Let p be a prime congruent to 3 mod 4 which divides c, and let p be the prime
of K above p. We write ξp for the component of ξ at p and χ for the primitive
quadratic Dirichlet character such that χA = signK/Q. By (17) and Proposition

1, we have ξp(
√
c)2 = χp(c) = −1. Hence the order of ξp is divisible by 4, and

consequently so is the order of ξ. �

3. Conjugate-symplectic characters of minimal conductor

So far we have encountered idele class characters, Galois characters, and primi-
tive Dirichlet characters, and primitive ray class characters will soon appear as well.
If ξ is a character of any of these types, then q(ξ) will denote its conductor, and we
put q(ξ) = Nq(x), where N denotes the absolute norm. Thus q(ξ) is an integral
ideal of the base field K of ξ and q(ξ) is a positive integer. But if K = Q then q(ξ)
is the unique positive generator of q(ξ), and we call q(ξ) itself the conductor. All of
these notations and conventions carry over to Artin representations of dimension
> 1 as well.

Given a real quadratic field K, we let dK be its discriminant and dK its different
ideal. When K is fixed we usually drop the subscript, writing simply d and d.
The same goes for other invariants of K, such as the ring of integers OK , the class
number hK , and the fundamental unit εK , which will often be written O, h, and ε.
However the norm to Q of an element α ∈ K will always be denoted NK/Q(α).

If d is even then t denotes the prime ideal of O above 2. Put

(18) d◦ =


d if d ≡ 1 mod 4

td if d ≡ 4 mod 8

t2d if d ≡ 0 mod 8.

Then d◦ ∩ Z = dZ. The following remark (Proposition 6 of [11]) is elementary:

Proposition 5. If ξ is a conjugate-symplectic character of K then d◦ divides q(ξ).

We say that ξ is of minimal conductor if q(ξ) = d◦. With this definition in place,
another bears repeating: We call a nonquadratic character which is conjugate-
symplectic of minimal conductor amplectic. Put

(19) d◦ =


d if d ≡ 1 (mod 4)

2d if d ≡ 4 (mod 8)

4d if d ≡ 0 (mod 8).

,

so that d◦ = Nd◦. If ρ = indK/Qξ for some character ξ of K then the stan-
dard formula for the conductor of an induced representation gives q(ρ) = dq(ξ), so
Proposition 5 has the following consequence:
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Proposition 6. If ρ is a quaternionic Artin representation of Q induced from K
then dd◦ divides q(ρ).

Given a quaternionic Artin representation ρ of Q, we say that ρ is of minimal
conductor if q(ρ) = dKd

◦
K for some K, or in other words if ρ is induced by an

amplectic character of K for some K. If such a K exists, then it is unique. Indeed
by Proposition 3, the uniqueness is automatic unless the image of ρ is isomorphic
to Q8, but even without mentioning Q8 we can verify the uniqueness as follows. By
(19), dKd

◦
K = 2νd2K with ν = 0, 1, or 2 according as dK is 1 mod 4 or 4 mod 8 or 0

mod 8. Thus the highest power of 2 dividing q(ρ) is 1, 32, or 256 respectively. So

ν is determined by q(ρ) and then K is determined by the formula dK =
√
q(ρ)/2ν .

The function βqu(x) which figures in formula (6) of the introduction can now be
defined precisely. Let gK be the number of amplectic characters of K; then

(20) βqu(x) =
1

2

∑
ε+K6x

gK .

Since ξ and ξ−1 induce the same isomorphism class, the factor 1/2 in (20) ensures
that βqu(x) is the number of distinct isomorphism classes of quaternionic Artin
representations of minimal conductor such that ε+K 6 x for the appropriate K.

The key to proving (6) is knowing when gK > 0. Thus in the next two sections
we give necessary and sufficient conditions on K for the existence of an amplectic
character of K. There are two cases, depending on whether dK is or is not divisible
by a prime congruent to 3 mod 4. In the latter case, Fouvry and Klüners [4] call
dK special, and we shall also call dK nonspecial in the former case.

4. Special discriminants

Since K will again be fixed, we revert to writing dK as d. Throughout this
section, we assume that d is not divisible by any prime congruent to 3 mod 4.
Equivalently, d is either a product of primes congruent to 1 mod 4 or else 8 times
such a product. The main point of this section is the following theorem, which will
be deduced from Proposition 8 below.

Theorem 2. Suppose that the discriminant of the real quadratic field K is special.
If NK/Q(ε) = 1 then K has an amplectic character.

If ξ is any idele class character of K and ∞ is either of the two infinite places
of K then ξ∞(−1) is 1 or −1. By Proposition 2, if ξ is conjugate-symplectic then
the value of ξ∞(−1) is independent of the choice of ∞, and we say that ξ is even
or odd, or that its parity is even or odd, according as ξ∞(−1) is 1 or −1.

Proposition 7. There exists a quadratic character ζ of K which is conjugate-
symplectic of minimal conductor, and if 8 divides d then the parity of ζ can be
chosen arbitrarily.

Proof. If d is a product of primes congruent to 1 mod 4 the assertion follows from
Proposition 11 of [11]. The argument in the case d ≡ 0 mod 8 is similar, but
for the sake of completeness we provide the details. To begin with, observe that
(Z/16Z)× ∼= (Z/2Z) × (Z/4Z) but (Z/8Z)× ∼= (Z/2Z)2, whence there are four
primitive Dirichlet characters of conductor 16: two even characters and two odd.
The square of all four characters is the unique primitive even Dirichlet character
of conductor 8. Furthermore, since every odd prime p dividing d is congruent to
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1 mod 4, the corresponding Legendre symbol is the square of a primitive Dirichlet
character of conductor p (which is even or odd according as p is 1 or 5 mod 8).
It follows from these remarks that there is a primitive Dirchlet character ψ of
conductor 2d and arbitrarily prescribed parity such that χ = ψ2 (recall that χ is
the primitive quadratic Dirichlet character of conductor d corresponding to K).
Switching to an adelic framework, we put ζ = ψA ◦ NK/Q, where in this setting
NK/Q is the idelic norm. Note that the parity of ζ coincides with that of ψ and

thus can be chosen at will. Since the restriction of NK/Q to A×Q is the map x 7→ x2,

we have ζ|A×Q = χA, so ζ is conjugate-symplectic. Also ζ2 = χA ◦NK/Q = 1, so ζ
is quadratic. It remains to check that the conductor of ζ is d◦.

Let O be the ring of integers of K. For a prime ideal p of O dividing d, let Kp

be the completion of K at p and Op its ring of integers. Let ζp : K×p → {±1} be
the corresponding component of ζ. We write q(ζp) for the conductor of ζp, which
we view as an ideal of O. Thus

(21) q(ζ) =
∏
p|d

q(ζp)

If p is of odd residue characteristic then q(ζp) = p because ζp is quadratic. Now let
t be the prime above 2 and τ a uniformizer of Ot. Then every element of 1 + 4τOt

is a square. Since ζt is quadratic it follows that ζt is trivial on 1 + 4τOt, whence
the right-hand side of (21) divides d◦ and so equals d◦ by Proposition 5.. �

Proposition 8. If the narrow ideal class group of K has an element of order > 3
then K has an amplectic character.

Proof. Let ζ be as in Proposition 7. If the narrow ideal class group of K has an
element of order > 3, then there is an idele class character λ of K of finite order
> 3 which is unramified at all finite places. Such a character is trivial on A×Q , so the
product ξ = ζλ is conjugate-symplectic of order > 3, and ξ is of minimal conductor
because q(ξ) = q(ζ) = d◦. �

Theorem 2 follows from Proposition 8, because for special discriminants, the
condition NK/Q(ε) = 1 implies that the narrow ideal class group of K has an
element of order 4 (cf. Lemmas 1 and 2 of [4] and the references cited there).

Remark. The case NK/Q(ε) = −1, which will now be treated for the sake of
completeness, is not used elsewhere in the paper but is nonetheless statistically
significant. Indeed Stevenhangen [18] has conjectured that among real quadratic
fields with special discriminant, the case NK/Q(ε) = −1 occurs roughly 58% of the
time (the fields are ordered by discriminant), and in the direction of Stevenhagen’s
conjecture, Fouvry and Klüners [4] have proved that the case NK/Q(ε) = −1 occurs
between 41% and 67% of the time.

Theorem 3. Suppose that NK/Q(ε) = −1. Then K has an amplectic character if
and only if the ideal class group of K has an element of order > 3.

Proof. Sufficiency follows from Proposition 8. For necessity, suppose that K has an
ampletic character ξ. We will show that the ideal class group of K has an element
of order > 3. Suppose first that d ≡ 1 mod 4, and let ζ be as in Proposition
7. Let p be a prime dividing d, and let p be the prime ideal of K lying over p.
Viewing ζ and ξ as idele class characters, let ζp and ξp be the components of ζ
and ξ at p. Since p is odd, the conductors q(ζp) and q(ξp) both coincide with p,
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and consequently the restrictions ζp|O×p and ξp|O×p both factor through (Op/p)×.
Now the latter quotient is the image of (Zp/pZp)× under the natural map, and on
Z×p both ζp and ξp coincide with the component of signK/Q at p, hence with each
other. Since this conclusion holds for every p dividing d◦, the character λ = ζξ is
unramified at all finite places of K. Hence λ is (or can be identified with) a narrow
ideal class character. As ζ has order 2 while ξ has order > 3, the product λ also
has order > 3, whence the narrow ideal class group has an element of order > 3.
But the narrow and ordinary ideal class groups coincide, because NK/Q(ε) = −1.

Next suppose that d ≡ 0 mod 8. Once again, we choose ζ as in Proposition 7,
but now with the same parity as ξ, so ζξ is unramified at infinity. Therefore ζξ can
be identified with a character of the wide ray class group of K to the modulus d◦.
Recall that this group may be viewed as an extension of the ideal class group of K
by the cokernel of the natural map O× → (O/d◦)×. Now as idele class characters
of K, both ζ and ξ coincide with signK/Q on AQ, so when we restrict ζξ to the

above cokernel and then view it by pullback to (O/d◦)× as a character of the latter
group it is trivial on the image of (Z/dZ)× in (O/d◦)×. Thus we may view ζξ as
giving a character of (O/d◦)× trivial on both the image of (Z/dZ)× and the image
of O×. We claim that (O/d◦)× is generated by these two images, whence ζξ factors
through the ideal class group of K, which therefore has characters, hence elements,
of order > 3.

To verify the claim, recall from (18) that the natural map (Z/dZ)× → (O/d◦)× is
injective. A complement to the image of (Z/dZ)× is provided by the cyclic group of
order 4 generated by the coset of any element of the form m+n

√
c, where c = d/4,

m is prime to c, and n is odd. On the other hand, ε = a+b
√
c with positive integers

a and b, and a2 − b2c = −1 by assumption. Reading the latter equation modulo 8,
mindful of the fact that c is even, we deduce that b is odd, whence the coset of ε
does indeed generate the desired complement. �

To a large extent, the results of this section can be summarized in a single
inequality. Let hnar be the narrow class number of K, and write ω(n) for the
number of distinct prime factors of an integer n > 1.

Proposition 9. Let g be the number of amplectic characters of K. Then

g > hnar − 2ω(d)−1,

with equality if d is odd or NK/Q(ε) = −1.

Proof. By genus theory, 2ω(d)−1 is the number of elements of the narrow ideal class
group of K of order dividing 2 (cf. [6], p. 179, Satz 132). Hence hnar − 2ω(d)−1 is
the number of elements of order > 3, or equivalently, the number of narrow ideal
class characters of K of order > 3. Let Λ be the set of such characters and Ξ the
set of amplectic characters of K, and let ζ be as in Proposition 7. Then we have
an injective map Λ→ Ξ given by λ 7→ ζλ, and the stated inequality follows. If d is
odd or NK/Q(ε) = −1 then the proof of Theorem 3 shows that λ 7→ ζλ is invertible
with inverse ξ 7→ ζξ. (While the hypothesis of Theorem 3 is that NK/Q(ε) = −1,
when d is odd this hypothesis is used only to deduce that the narrow and wide ideal
class groups of K coincide, a deduction that is irrelevant here). �
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5. Nonspecial discriminants

Next we assume that K = Q(
√
c) with a square-free positive integer c divisible

by some prime congruent to 3 mod 4. In this case it is a standard remark that
NK/Q(ε) = 1, so that

(22)

{
a2 − b2c = 1 if ε = a+ b

√
c with positive integers a and b,

a2 − b2c = 4 if ε = (a+ b
√
c)/2 with odd positive integers a and b.

Furthermore, if ξ is a conjugate-symplectic character of K then ξ is nonquadratic
by Proposition 4. Thus if it is also of minimal conductor then it is amplectic.

Let d be the discriminant of K, and let χ denote the even primitive quadratic
Dirichlet character of conductor d, so that χA = signK/Q. The analogue for non-
special discriminants of Theorems 2 and 3 is the following statement:

Theorem 4. Suppose that the discriminant of the real quadratic field K is not
special. An amplectic character of K exists if and only if one of the following
statements holds:

(a) ε = a+ b
√
c with positive integers a and b, and b ≡ c ≡ 2 mod 4.

(b) ε = a+ b
√
c with positive integers a and b, and χ(a) = 1.

(c) ε = (a+ b
√
c)/2 with odd positive integers a and b, and χ(a) = −1.

Furthermore, if an amplectic character of K exists then its parity can be prescribed.

Proof. We may think of the theorem as consisting of two assertions:

(i) There is an even amplectic character if and only if (a), (b), or (c) holds.
(ii) If an amplectic character of K exists then its parity can be prescribed.

We first prove (i).
Recall once again from (18) that the natural map

(23) (Z/dZ)× −→ (O/d◦)×

is an embedding. So we may view (Z/dZ)× as a subgroup of (O/d◦)× and χ as
a character of this subgroup. Recalling the defining property (17) of a conjugate-
symplectic character, we claim that (i) is equivalent to the following assertion:

(i)′ There is an extension of χ to a character ξ of (O/d◦)× satisfying ξ(ε) = 1
if and only if (a), (b), or (c) holds.

Indeed if such a character ξ exists, then ξ(−1) = χ(−1) = 1, and consequently
ξ(u) = 1 for all u ∈ O×. Thus we can view ξ as a character of the cokernel of
O× → (O/d◦)×. This cokernel is naturally a subgroup of the wide ray class group
of K to the modulus d◦, and after extending ξ arbitrarily to the latter group we
may view it as a wide ray class character of K. In view of Proposition 5, the
conductor of ξ is automatically d◦ rather than a proper divisor of d◦, so ξ is in fact
a primitive ray class character. Given the correspondence between primitive ray
class characters and idele class characters of finite order, we see that every even
conjugate-symplectic idele class character of K of minimal conductor arises from
an extension of χ to a character ξ as above. By Proposition 4, ξ is nonquadratic
and hence amplectic.

We turn now to the proof of (i)′. The argument depends on the congruence class
of c modulo 4.

Suppose first that c ≡ 1 mod 4. Then d = c and d◦ =
√
cO, whence the

embedding (23) is an isomorphism. So there is a unique extension ξ of χ, namely
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χ itself when viewed as a character of (O/d◦)×. The question is whether ξ(ε) = 1.
There are two cases.

If ε = a + b
√
c with positive integers a and b then ε ≡ a mod d◦. So ξ(ε) = 1 if

and only if χ(a) = 1, which is precisely condition (b). Note that (a) and (c) do not
hold, so it is correct to say that ξ(ε) = 1 if and only if (a), (b), or (c) holds.

If ε = (a + b
√
c)/2 with odd positive integers a and b then 2ε ≡ a mod d◦, and

consequently χ(2)ξ(ε) = χ(a). But χ(2) = −1, because c ≡ 5 mod 8 (else c ≡ 1
mod 8, and then (22) gives a2 − b2 ≡ 4 mod 8, a contradiction since a2 ≡ b2 ≡ 1
mod 8). We conclude that ξ(ε) = 1 if and only if (c) holds. Note that (a) and (b)
do not hold, so it is again correct to say that ξ(ε) = 1 if and only if (a), (b), or (c)
holds.

Suppose next that c ≡ 2 mod 4. Then d = 4c, so O = Z[
√
c] and in particular

ε = a+ b
√
c with positive integers a and b. Since c is even and ε is a unit, a is odd.

But if b is also odd then (22) gives a contradiction: If c ≡ 2 mod 8 then 1 ≡ 7 mod
8 and if c ≡ 6 mod 8 then 1 ≡ 3 mod 8. Thus b is even. We consider the cases
b ≡ 0 mod 4 and b ≡ 2 mod 4 separately, mindful in both cases that d◦ = 4

√
cO.

If b ≡ 0 mod 4 then ε ≡ a mod d◦. So any extension ξ of χ to (O/d◦)× will
satsify ξ(ε) = χ(a). Thus ξ(ε) = 1 if and only if (b) holds. Note that (a) and (c)
do not hold in this case.

If b ≡ 2 mod 4 then (a) holds, so it is enough to show that the desired extension ξ
exists. While ε does not belong to the image of (23), its square does; in fact, ε2 ≡ a2
mod d◦. Thus any extension ξ of χ satisfies ξ(ε2) = χ(a)2 = 1, and therefore we
can choose ξ to satisfy ξ(ε) = 1.

Suppose finally that c ≡ 3 mod 4. Then again we have d = 4c and O = Z[
√
c],

whence ε = a + b
√
c with positive integers a and b. Thus (a) and (c) do not hold.

By (22), exactly one of a and b is odd. We consider the cases a odd and a even
separately, mindful in both cases that d◦ = 2t

√
cO.

Suppose first that a is odd and b is even. Then 4 divides b, else (22) gives a2 ≡ 5
mod 8. So b

√
c ∈ d◦ and consequently ε ≡ a mod d◦. Thus every extension of χ to

a character ξ of (O/d◦)× satisfies ξ(ε) = χ(a), confirming (b).
Suppose next that a is even. Then χ(a) = 0; in particular, χ(a) 6= 1. So

given any extension ξ of χ to (O/d◦)× we must show that ξ(ε) 6= 1. As a is even,
ε2 ≡ a2 + b2c mod d◦, whence it suffices to see that χ(a2 + b2c) = −1. Now

χ(a2 + b2c) =

(
−4

a2 + b2c

)∏
p|c

(
a2 + b2c

p

)
,

where p runs over primes dividing c. Since a2 + b2c ≡ a2 mod p, all of the Legendre
symbols in the product are 1. But the Kronecker symbol in front of the product is
−1, because a2 + b2c ≡ 3 mod 4 (recall that a is even and b is odd). It follows that
indeed, χ(a2 + b2c) = −1.

This completes the proof of (i)′. It remains to prove (ii). It suffices to exhibit
an idele class character ψ of finite order which is unramified at all finite places but
ramified at both infinite places and trivial on A×Q . Indeed, if such a character ψ
exists, and if ξ is an amplectic character of K, then so is ψξ, but ξ and ψξ have
opposite parity.

The desired ψ is most easily exhibited as a narrow ideal class character, or in
other words as a character of I/P nar, where I is the group of nonzero fractional
ideals of K and P nar is the subgroup of principal fractional ideals with a totally
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positive generator. Let P be the group of all principal fractional ideals, and as
before, write O for the ring of integers of K. Since NK/Q(ε) = 1, we obtain a
well-defined quadratic character ψ of P by setting ψ(αO) = NK/Q(α)/|NK/Q(α)|.
Clearly ψ is trivial on P nar, and by extending ψ arbitarily from P to I we obtain
the desired character of I/P nar. �

We end this section with an analogue of Proposition 9.

Proposition 10. Let g be the number of amplectic characters of K, and suppose
that g 6= 0. Then g > hnar, with equality if d is odd.

Proof. Let Λ to be the set of narrow ideal class characters of K and Ξ the set of
amplectic characters of K. Fix a character ξ0 ∈ Ξ. Then we have an injective map
Λ → Ξ sending λ ∈ Λ to λξ0, and consequently g > hnar. If d is odd then we can
argue as in the first paragraph of the proof of Theorem 3 to see that λ 7→ λξ0 is
surjective. (Note that λξ is nonquadratic by Proposition 4.) �

6. Asymptotics

Let K be the set of real quadratic fields, and let κ(x) be the number of K ∈ K
with ε+K 6 x. Then κ(x) ∼ x ([7], p. 256, Theorem 5.3). Let H ⊂ K be the
subset consisting of those K which have an amplectic character, and let η(x) be the
number of K ∈ H with ε+K 6 x. Put θ =

∏
p(1 − 2/p2) ≈ .3226. Since κ(x) ∼ x,

the following assertion amounts to a slightly more precise version of Theorem 1:

Theorem 5. 3θ/4− o(1) 6 η(x)/x 6 1− θ + o(1).

Proof. Let M be the set of integers m > 3 such that m(m− 1) is square-free, and

let µ(x) be the number of m ∈M with m 6 x. If m ∈M and K = Q(
√
m(m− 1))

then d = 4m(m−1) and ε = (2m−1)+2
√
m(m− 1). In particular, NK/Q(ε) = 1. It

follows that K ∈ H, either by Theorem 2 if d is special or by Theorem 4 otherwise,
because condition (a) of the latter theorem is satisfied. Also, if m 6 x/4 then
ε = ε+ 6 x. Thus

(24) µ(x/4) 6 η0(x),

where η0(x) is the number of K ∈ H with ε+ 6 x and d ≡ 0 mod 8.
Next let N be the set of integers n > 7 such that n2 − 4 is square-free and

n ≡ 3 mod 4, and let ν(x) be the number of n ∈ N with n 6 x. If n ∈ N and

K = Q(
√
n2 − 4) then d = n2 − 4 and ε = (n+

√
n2 − 4)/2, so again NK/Q(ε) = 1.

Thus K ∈ H if d is special. This is also the case if d is nonspecial, for we claim
that condition (c) of Theorem 4 is satisfied. Indeed let χ be the primitive quadratic
Dirichlet character of conductor d. Since d = n2 − 4, we have

(25) χ(n) =

(
n

n2 − 4

)
=

(
n2 − 4

n

)
whence χ(n) = (−1/n) = −1, as claimed. Now if n 6 x then ε = ε+ 6 x. So

(26) ν(x) 6 η5(x),

where η5(x) is the number of K ∈ H with ε+ 6 x and d ≡ 5 mod 8.
Combining (24) and (26), and observing that the sets counted by η0(x) and η5(x)

are disjoint, we see that µ(x/4) + ν(x) 6 η(x). The lower bound for η(x)/x now
follows from the asymptotic relations µ(x) ∼ θx and ν(x) ∼ θx/2. (See [2] and pp.
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436-437 of [9]. To apply [9], observe that the square-free values of n2−4 with n ≡ 3
mod 4 are just the square-free values of (4k + 1)(4k + 5) for arbitrary k.)

To derive the upper bound for η(x)/x, put H′ = KrH and η′(x) = κ(x)− η(x),
so that η′(x) is the number of K ∈ H′ such that ε+ 6 x. Let M′ be the set of
integers m > 2 such that m2 − 1 is square-free (and m is therefore even), and let

µ′(x) be the number of m ∈ M′ with m 6 x. If m ∈ M′ and K = Q(
√
m2 − 1)

then d = 4(m2 − 1) and ε = ε+ = m+
√
m2 − 1. Note that d is nonspecial because

m2 − 1 ≡ 3 mod 4. Let χ be the even primitive quadratic Dirichlet character of
conductor d. Since m and d are both even, we have χ(m) = 0, whence condition (b)
of Theorem 4 is violated, as are also (a) and (c). Hence K ∈ H′. Also, if m 6 x/2
then ε+ 6 x, so

(27) µ′(x/2) 6 η′4(x),

where η′4(x) is the number of K ∈ H′ with ε+ 6 x and d ≡ 4 mod 8.
Next let N ′ be the set of integers n > 5 such that n2 − 4 is square-free and

n ≡ 1 mod 4, and let ν′(x) be the number of n ∈ N ′ with n 6 x. If n ∈ N ′ and

K = Q(
√
n2 − 4) then d = n2 − 4 and ε = ε+ = (n +

√
n2 − 4)/2. Furthermore,

d = (4k + 3)(4k − 1) with k = (n − 1)/4, whence d is nonspecial. Let χ be the
primitive quadratic Dirichlet character of conductor d, as before. The calculation
(25) is still valid, but this time we have χ(n) = (−1/n) = 1. So condition (c) of
Theorem 4 is violated, as are conditions (a) and (b), and therefore K ∈ H′. As
n 6 x implies ε = ε+ 6 x, we have

(28) ν′(x) 6 η′5(x),

where η′5(x) is the number of K ∈ H′ with ε+ 6 x and d ≡ 5 mod 8.
The upper bound for η(x) now follows much as the lower bound did. Combining

(27) and (28), we have µ′(x/2) + ν′(x) 6 η′(x), or in other words

η(x) 6 κ(x)− µ′(x/2)− ν′(x).

Using the relations κ(x) ∼ x, µ′(x) ∼ θx, and ν′(x) ∼ θx/2 ([7], [3], and [9]), we
obtain the stated upper bound for η(x)/x. �

Remark. In principle we could improve our lower bound for η(x)/x by using the

square-free values of two more expressions, n2 + 1 and n2 + 4. Indeed Q(
√
n2 + 1)

and Q(
√
n2 + 4) are also fields for which the fundamental unit can be identified

explicitly: We have ε = n+
√
n2 + 1 (n > 2) and ε = (n+

√
n2 + 4)/2 respectively.

But in these cases ε+ = ε2, so the condition ε+ 6 x would force us to take n <
√
x,

and thus the contribution to η(x) would be negligible.

Finally we come to the proof of (6). We begin with the lower bound in (6). Let
N and ν be as in the second paragraph of the proof of Theorem 5. For n ∈ N we
modify the notation of that paragraph in a self-explanatory way: Kn = Q(

√
n2 − 4),

dn = n2 − 4, and εn = ε+n = (n+
√
n2 − 4)/2. Also, we write gn for the number of

amplectic characters of Kn. If n 6 x then εn 6 x, so (20) gives

βqu(x) >
1

2

∑
n∈N
n6x

gn.

Denote the right-hand side of this inequality by γ(x). Then the lower bound for
βqu(x) in (6) is a consequence of the following statement:
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Proposition 11. Fix ε > 0. Then γ(x)� x2−ε for x sufficiently large.

To prove the proposition we need a lemma. Write hn and hnarn for the ordinary
and narrow class numbers of Kn. Then hnarn = 2hn, because εn = ε+n .

Lemma. Fix ε > 0. Then hnarn � n1−ε.

Proof. Let χn be the primitive quadratic Dirichlet character of conductor dn, and
choose δ so that 0 < δ < ε/2. Combining Siegel’s estimate L(1, χn) � d−δn with
the Dirichlet class number formula L(1, χn) = (2hn log εn)/

√
dn, we obtain

hn � (n2 − 4)1/2−δ/ log(n+
√
n2 − 4).

Hence hn � n1−2δ/ log(2n), from which the stated estimate follows. �

We now prove Proposition 11. If dn is special then gn = 2hnarn − 2ω(dn)−1

(Proposition 9), and since ω(dn) � log dn/ log log dn and dn = n2 − 4 the lemma
implies that gn � n1−ε. This conclusion is even easier if dn is nonspecial; we simply
refer to Proposition 10 instead of Proposition 9. Thus it is enough to prove that
for large x,

(29)
∑
n∈N
n6x

n1−ε � x2−ε.

A crude argument suffices: The sum on the left-hand side has ν(x) terms, so there
are at least bν(x)/2c terms in the sum corresponding to n > ν(x)/2. The contribu-
tion of these terms is at least bν(x)/2c(ν(x)/2)1−ε, and as ν(x)� x, the estimate
(29) follows, proving Proposition 11.

It remains to verify the upper bound in (6). Using Raulf’s formula (4), we can
make a more precise assertion for x sufficiently large:

Proposition 12. βqu(x) 6
25ζ(3)

8

∏
p>2(1− 2p−2 − p−3)

x2

log x
(1 + o(x)).

The proposition is a consequence of (4), (20), and the following lemma:

Lemma. gK 6 8hK .

Proof. Since K is now fixed we drop the subscript K. If g = 0 there is nothing to
prove, so suppose that ξ0 is an amplectic character of K. Let Ξ be the set of all
amplectic characters of K, and let Ξ+ ⊂ Ξ and Ξ− ⊂ Ξ be the subsets consisting
of characters with the same parity as ξ0 and the opposite parity respectively. Let
g± be the cardinality of Ξ±. We will show that g+ 6 4h. If g− 6= 0 then ξ0 can be
replaced by an element of Ξ− and the argument will show that g− 6 4h also.

If ξ ∈ Ξ+ then the product ξ0ξ is unramified at infinity and so may be viewed as
an element of the wide ray class group of K to the modulus d◦. As we recalled in the
proof of Theorem 3, this wide ray class group is an extension of the ordinary ideal
class group of K by the cokernel of the map O× → (O/d◦)×. So by restriction to
this cokernel and pullback to (O/d◦)× we may view ξ0ξ as a character of (O/d◦)×.
As idele class characters, ξ0 and ξ both coincide with signK/Q on AQ, so when

we view ξ0ξ as a character of (O/d◦)× it is trivial on the image in this group of
(Z/dZ)×. Now the index of (Z/dZ)× as a subgroup of (O/d◦)× is at most 4. Thus
we may view ξ0ξ as a character of a group which is an extension of the ideal class
group of K by a group of order at most 4. It follows that the map ξ 7→ ξ0ξ has
image of order at most 4h. �
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7. Galois theory

We shall state a few corollaries illustrating the applicability of our results to
questions about the existence or nonexistence of Galois extensions of Q with Galois
group Q4m. As before, we denote the discriminant of a real quadratic field K by dK ,
and we call dK nonspecial or special according as it is or is not divisible by a prime
congruent to 3 mod 4. The following corollary of Proposition 4 was mentioned in
the introduction:

Corollary 1. Suppose that m is an odd integer > 3 and L is a Galois extension of
Q with Gal(L/Q) ∼= Q4m. Let K be the real quadratic field contained in L. Then
dK is special.

Proof. If a prime congruent to 3 mod 4 divides dK then Proposition 4 implies that
[L : K] is divisible by 4, whence [L : Q] by 8. �

Recall that εK denotes the fundamental unit of K and hK the class number.
The next statement is an immediate consequence of Theorems 2 and 3:

Corollary 2. Let K be a real quadratic field with special discriminant dK . If either
NK/Q(εK) = 1 or hK > 3 then there exists a Galois extension L of Q containing
K, unramified outside the prime divisors of dK , such that Gal(L/Q) ∼= Q4m for
some m > 2.

Example. Let K = Q(
√

229). Then εK = (15+
√

229)/2, whence NK/Q(εK) = −1.
But hK = 3, so Corollary 2 is in force. In fact put L = Q(α, β), where α is a root
of the polynomial x3 − 4x + 1 (of discriminant 229) and β generates the quartic
subfield of Q(e2πi/229). Then

Gal(L/Q) ∼= (Z/3Z) o (Z/4Z) ∼= Q12.

(Note that Q4m
∼= (Z/mZ) o (Z/4Z) if and only if m is odd.)

Our final corollary illustrates the possible uses of Theorem 4. The reader will
readily supply other illustrations.

Corollary 3. Let K = Q(
√
c), where c is a positive square-free integer satisfying

c ≡ 7 modulo 8. Let χ be the primitive quadratic Dirichlet character of conductor
4c, and write εK = a + b

√
c with positive integers a and b. If χ(a) = 1 then there

is a Galois extension L of Q containing K, unramified outside the prime divisors
of 2c, such that Gal(L/Q) ∼= Q4m with an even integer m > 4.

Proof. Since condition (b) of Theorem 4 is satisfied, there exists some such L, but
a priori we can say only that m > 2. However Corollary 1 implies that m is even,
and m 6= 2 because the well-known criterion for Q(

√
c) to be contained in a Galois

extension of Q with Galois group Q8 – namely that c 6≡ 7 mod 8 and c > 0; cf.
Rosenblüth [13] or Fröhlich [5], p. 146 – is not satisfied in this case. �
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