
SELF-DUAL ARTIN REPRESENTATIONS

DAVID E. ROHRLICH

Functional equations in number theory are relations between an L-function and
some sort of dual L-function, and in general, the L-function and its dual need not
coincide. For example, if χ is a primitive Dirichlet character then the functional
equation relates L(s, χ) to L(1− s, χ), and L(s, χ) = L(s, χ) if and only if χ2 = 1.
Or if f is a primitive cusp form of weight two for Γ1(N) and f∨ is the complex-
conjugate form then the functional equation relates L(s, f) to L(2 − s, f∨), and
L(s, f∨) = L(s, f) if and only if f is a cusp form for Γ0(N) with trivial character.
Let us call an L-function self-dual if its functional equation is a relation between
the L-function and itself. While self-dual L-functions are often of special interest,
the preceding examples suggest that they may also be rare. Indeed the number of
Dirichlet characters modulo N is the quantity

ϕ(N) = N
∏
p|N

(1− p−1)

and is therefore � N1−ε for every ε > 0, but the number of quadratic Dirichlet
characters modulo N is � Nε. Similarly, if N > 5 then the dimension of the space
S2(Γ1(N)) of cusp forms of weight two for Γ1(N) is given by

dim S2(Γ1(N)) = 1 +
N2

24

∏
p|N

(1− p−2)− 1
4

∑
N1N2=N

ϕ(N1)ϕ(N2)

and is therefore � N2, but the dimension of the space of cusp forms of weight two
for Γ0(N) is� N1+ε. Is it perhaps the case that self-dual L-functions are of density
zero among all L-functions?

It is tidier, although not a priori equivalent, to replace the L-functions by the
objects underlying them. If the L-functions are motivic then the underlying objects
are motives, and one can ask whether “essentially self-dual motives” (in other words,
pure motives which are self-dual up to Tate twist) have density zero among all pure
motives of a given rank and weight. However if we insist on full generality then
the preceding question is not yet amenable to a precise formulation, because the
set of isomorpism classes of pure motives of a given rank and weight over a given
number field with conductor below a given bound is not known to be finite. So
instead we shall focus on motives of weight zero. By an Artin representation of a
number field F we mean as usual a continuous representation ρ of Gal(F/F ) on
a finite-dimensional complex vector space. Such a representation always factors
through the quotient of Gal(F/F ) by an open normal subgroup and so will be
regarded as a representation of Gal(L/F ) for some finite Galois extension L of F .
The conductor of ρ is an integral ideal q(ρ) of F , the absolute norm of which will
be denoted q(ρ). According to a theorem of Ralph Greenberg (unpublished) and of
Anderson, Blasius, Coleman, and Zettler [1] (who consider more generally the case
of representations of the global Weil group of F ), if we fix F and n then the set of
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isomorphism classes of n-dimensional Artin representations ρ of F with q(ρ) 6 x is
finite. Write ϑF,n(x) for the number of such isomorphism classes and ϑsd

F,n(x) for
the number of classes such that ρ is self-dual. Dropping the subscripts F and n for
simplicity, we ask whether limx→∞ ϑsd(x)/ϑ(x) = 0.

If F = Q and n = 1 then an affirmative answer is implicit already in our remarks
about Dirichlet characters, and it is easy to see that in fact ϑsd(x)/ϑ(x) ∼ π2/(3x)
in this case. Using the work of Bhargava [3], [4] and of Bhargava, Cojocaru, and
Thorne [5], we shall prove that the answer is also affirmative for F = Q and n = 2.
For F = Q and n = 3 we show at least that an affirmative answer would follow
from a conjecture of Malle [26] on the distribution of Galois groups, but for n > 4
we are unable to derive an affirmative answer even conditionally, and if F is an
arbitrary number field then we are able to confirm that limx→∞ ϑsd(x)/ϑ(x) = 0
only for n = 1, when the assertion follows from a theorem of M. J. Taylor [36].

Before describing the contents of the paper in more detail we introduce some
refinements of ϑF,n(x). Recall that a finite-dimensional complex representation
of a finite group G is abelian if it is a direct sum of one-dimensional characters
of G, reducible if it is a direct sum of two proper subrepresentations, irreducible
if it is of positive dimension but not reducible, monomial if it is induced by a
one-dimensional character of a subgroup of G, and primitive if it is not induced
from any proper subgroup of G. We use the superscripts “ab,” “irr,” “im,” and
“ip” to refer to abelian, irreducible, irreducible monomial, and irreducible primitive
representations respectively. For example, ϑab

F,n(x) is the number of isomorphism
classes of n-dimensional abelian Artin representations ρ of F with q(ρ) 6 x, and
ϑab,sd
F,n (x) is the number of such isomorphism classes that are self-dual. The notation

is illustrated by the self-evident assertions

ϑsd
Q,2(x) = ϑab,sd

Q,2 + ϑim,sd
Q,2 (x) + ϑip,sd

Q,2 (x)(1)

and

ϑsd
Q,3(x) = ϑab,sd

Q,3 + ϑ1+2,sd
Q,3 (x) + ϑirr,sd

Q,3 (x),(2)

where ϑ1+2,sd
Q,3 (x) is the number of isomorphism classes of self-dual Artin represen-

tations of Q of the form ρ ∼= ρ′ ⊕ ρ′′ with ρ′ one-dimensional, ρ′′ irreducible and
two-dimensional, and q(ρ′)q(ρ′′) 6 x. Of course (1) and (2) remain valid without
the superscript “sd” and with Q replaced by any number field F .

In addition to ϑF,n(x) and its refinements, we need two functions which count
discriminants rather than conductors. Given a finite extension K of F , write dK/F
for the relative discriminant ideal of K over F and dK/F for the absolute norm of
dK/F . If F = Q then we write simply dK and dK . Now fix an integer m > 2.
We write ηF,m(x) for the number of extensions K of F inside our fixed algebraic
closure F such that [K : F ] = m and dK/F 6 x. Also, if G is a transitive subgroup
of the symmetric group Sm, then ηGF,m(x) denotes the number of such extensions
K for which Gal(L/F ) ∼= G as permutation groups, where L is a normal closure of
K over F and Gal(L/F ) is viewed as a permutation group via its action on the set
of conjugates α1, α2, . . . , αm of a primitive element of K over F . The requirement
that Gal(L/F ) and G be isomorphic as permutation groups means of course that
there is a bijection of {α1, α2, . . . , αm} onto {1, 2, . . . ,m} such that the resulting
map Gal(L/F ) ↪→ Sm has image G.
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With these notations in hand let us now describe the contents of the paper
section by section. We have included a considerable amount of expository material
throughout, because our aim is in part pedagogical.

The first four sections are devoted to the abelian case. The tauberian method,
recalled in Section 1, leads to asymptotic formulas for ϑQ,1(x) and ϑsd

Q,1(x) in Section
2 and for ϑab

Q,n(x) and ϑab,sd
Q,n (x) in Section 3. Our dicussion of the abelian case is

completed in Section 4, where we attempt to replace Q by an arbitrary number
field F . If F is neither Q nor an imaginary quadratic field then the asymptotic
behavior of ϑF,1(x) appears to be unknown, and we argue that what is needed is a
horizontal analogue of Leopoldt’s conjecture.

In the next two sections we bound ϑim,sd
Q,2 (x). Whether monomial or not, an

irreducible self-dual Artin representation is either orthogonal or symplectic – in
other words, relative to an appropriate choice of basis, its image is contained in
either the real orthogonal group On(R) or the complex symplectic group Sp2n(C) –
and hence in particular ϑim,sd

Q,2 (x) is the sum of an orthogonal term and a symplectic
term. These terms are bounded in Sections 5 and 6 respectively. The orthogonal
term is bounded by a reduction to the asymptotic formulas of Siegel [35], and then
the symplectic term is bounded by a reduction to the orthogonal term.

Our treatment of the primitive case begins in Section 7 with some background
on Schur covers. In Section 8 we bound ϑip,sd

Q,2 (x) in terms of ηQ,4(x) and ηA5
Q,5(x),

to which we then apply the results of Bhargava [3] and Bhargava, Cojocaru, and
Thorne [5] (the latter work being itself an application of Bhargava’s asymptotics
for quintic fields [4]). In principle we could have adopted a different strategy, in
the spirit of Serre’s paper [31]: bound the dimension of spaces of holomorphic
cusp forms of weight one and spaces of Maass forms of eigenvalue 1/4, and then
appeal to the Langlands correspondence to deduce a bound for ϑip,sd

Q,2 (x). In fact
the relevant bounds on spaces of automorphic forms can simply be quoted from the
work of Michel and Venkatesh [28], who vastly generalize the original breakthrough
(in the case of holomorphic cusp forms of weight one, prime level, and character the
Legendre symbol) of Duke [11]. However, in spite of the enormous progress of recent
years, the Langlands correspondence for two-dimensional Artin representations of
Q of icosahedral type and even determinant remains conjectural, and for the sake
of an unconditional result and a uniform treatment our argument will be carried
out on the Galois side of the correspondence.

By the end of Section 8 we will have assembled upper bounds for each of the
terms on the right-hand side of (1). The upshot will be that

ϑsd
Q,2(x) = O(x2−γ)(3)

for every γ < 1/60. On the other hand, from our asymptotic formula for ϑab
Q,n(x)

we will also have

ϑab
Q,2(x)� x2 log x.(4)

Since ϑQ,2(x) > ϑab
Q,2(x), it follows from (3) and (4) that limx→∞ ϑsd(x)/ϑ(x) is

indeed 0 for F = Q and n = 2.
Perhaps it is disappointing to arrive at this conclusion by comparing the totality

of self-dual representations with the abelian representations only. Thus in Section
9 we go on to show that limx→∞ ϑirr,sd(x)/ϑirr(x) = 0 for F = Q and n = 2. But
even the latter assertion rests on the trivial inequalities ϑirr,sd(x) 6 ϑsd(x) and
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ϑirr(x) > ϑim(x). Unfortunately, a direct comparison between, say, ϑip,sd(x) and
ϑip(x) seems to be out of our reach.

Apart from a short appendix, the remainder of the paper is devoted to Malle’s
conjecture and two of its consequences. One consequence, derived in Sections 10
and 11, is an upper bound for ϑip,sd(x) valid for arbitrary F and n > 2. The
other consequence, a variant of the first, is a bound for the term ϑirr,sd

Q,3 (x) in (2).
Using this bound we prove in Section 12 that under Malle’s conjecture we have
limx→∞ ϑsd(x)/ϑ(x) = 0 for F = Q and n = 3.

The many questions left open by this paper are so glaringly obvious that it would
be superfluous to enumerate them. But it may be worthwhile to point out a parallel
line of inquiry in the domain of automorphic forms: Do lifts from orthogonal and
symplectic groups have density zero among all cuspidal automorphic representations
of GL(n)? The question seems amenable to a precise formulation, and perhaps also
to a solution.

I am deeply grateful to Manjul Bhargava for providing me with a preprint of
[5] before publication. I would also like to thank Josh Zelinsky for drawing my
attention to the paper of Collins [7]. Finally, I thank the referee for a careful reading
of the text and Tata Institute and the organizers of the International Colloquium
on Automorphic Representations and L-Functions for their warm hospitality.

1. A tauberian theorem

The tauberian theorem that will be needed in this paper is a special case of Theo-
rem 7.7 on p. 154 of the book [2] by Bateman and Diamond. Let ψ(1), ψ(2), ψ(3), . . .
be a sequence of nonnegative real numbers, and let

D(s) =
∑
q>1

ψ(q)q−s

be the associated Dirichlet series and

ϑ(x) =
∑
q6x

ψ(q)

the associated summatory function. We assume that there are positive real numbers
a and a′ with a′ < a together with an integer b > 1 such that the following
conditions are satisfied:

(i) The series
∑
q>1 ψ(q)q−s converges for <(s) > a and thus defines D(s) as

a holomorphic function in this region.
(ii) D(s) extends to a meromorphic function in the region <(s) > a′.
(iii) D(s) has a pole of order b at s = a and is otherwise holomorphic for

<(s) > a′.
Let κ be the residue of (s − a)b−1D(s) at s = a, and put c = κ/(a · (b − 1)!). It
follows from the hypotheses that κ > 0 and hence that c > 0.

Proposition 1. ϑ(x) ∼ cxa(log x)b−1.

To deduce Proposition 1 from Theorem 7.7 of [2], note the definition of F̂ given
on p. 109 of [2], the special case of the definition embodied in the displayed equation
at the top of p. 110, and the definition of σc(F̂ ) on p. 119, and keep in mind that
our a, a′, and b correspond to the constants α, β, and γ of [2].
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2. Dirichlet characters

Given a positive integer q, write ψ(q) for the number of primitive Dirichlet
characters of conductor q. We consider the Dirichlet series

D(s) =
∑
q>1

ψ(q)q−s,

convergent for <(s) > 2.

Proposition 2. D(s) = ζ(s− 1)/ζ(s)2.

Proof. Assertions of this sort are antique (cf. [14], p. 268, Theorem 330), but we
include a proof nonetheless. Let µ and ϕ denote as usual the Möbius and Euler
functions, and put C(s) =

∑
q>1 ϕ(q)q−s. Since ψ(q) =

∑
q′|q µ(q/q′)ϕ(q′) we have

D(s) = C(s)/ζ(s).(5)

Now ϕ is multiplicative, so

C(s) =
∏
p

(
∑
ν>0

ϕ(pν)p−νs).

Write Cp(s) for the Euler factor on the right-hand side. Since ϕ(1) = 1 and ϕ(pν) =
(p− 1)pν−1 for ν > 1, we have

Cp(s) = 1 +
∑
ν>1

(p− 1)p−1pν(1−s) = 1 + (p− 1)p−s/(1− p1−s)

and consequently

Cp(s) = 1 +
p1−s − p−s

1− p1−s =
1− p−s

1− p1−s .

Hence C(s) = ζ(s− 1)/ζ(s). The proposition now follows from (5). �

Identifying one-dimensional characters of Gal(Q/Q) with primitive Dirichlet
characters in the usual way, we see that

ϑQ,1(x) =
∑
q6x

ψ(q).

In other words ϑQ,1(x) is the summatory function corresponding to D(s). On the
other hand, it follows from Proposition 2 that D(s) is holomorpic for <(s) > 1
apart from a simple pole at s = 2 with residue 36/π4. Hence Proposition 1 gives:

Corollary. ϑQ,1(x) ∼ 18x2/π4.

Next consider the Dirichlet series

Dsd(s) =
∑
q>1

ψsd(q)q−s,

where ψsd(q) is the number of primitive Dirichlet characters χ of conductor q such
that χ2 = 1.

Proposition 3. Dsd(s) = (1 + 4−s + 2 · 8−s) ζ(s)(1− 2−s)
ζ(2s)(1− 2−2s)

.
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Proof. The conductor of a primitive quadratic Dirichlet character can be written
2νr, where ν = 0, 2, or 3 and r is a square-free odd positive integer. Conversely,
every number of this form is the conductor of exactly one (if ν = 0 or 2) or exactly
two (if ν = 3) primitive Dirichlet characters χ with χ2 = 1. It follows that

Dsd(s) = (1 + 4−s + 2 · 8−s)R(s),(6)

where R(s) is the Dirichlet series
∑
r−s, the sum being taken over square-free odd

positive integers r. Now if the sum were taken over all square-free positive integers
then the resulting Dirichlet series would be ζ(s)/ζ(2s), so to deduce a formula for
R(s) we remove the Euler factor at 2 in ζ(s)/ζ(2s). Substitution in (6) yields the
stated formula. �

Another appeal to Proposition 1 gives:

Corollary. ϑsd
Q,1(x) ∼ 6x/π2.

Comparing this corollary with the previous one, we see that

ϑsd
Q,1(x)/ϑQ,1(x) ∼ π2/(3x),(7)

as mentioned in the introduction.

3. Abelian representations

Given positive integers n and q, let ψn(q) be the number of isomorphism classes
of n-dimensional abelian Artin representations of Q of conductor q. We put

Dn(s) =
∑
q>1

ψn(q)q−s.

In the notation of Section 2 we have ψ1(q) = ψ(q) and hence D1(s) = D(s).

Proposition 4. For n > 1,

Dn(s) =
n∑
k=1

1
k!

∑
ν1+ν2+···+νk=n

D(ν1s)D(ν2s) · · ·D(νks)
ν1ν2 · · · νk

,

where the inner sum on the right runs over k-tuples (ν1, ν2, · · · , νk) of positive
integers summing to n.

Proof. Given a one-dimensional character χ of Gal(Q/Q), let us write χ⊕ν for the
direct sum of ν copies of χ. If

ρ ∼= χ⊕n1
1 ⊕ χ⊕n2

2 ⊕ · · · ⊕ χ⊕nkk

with one-dimensional characters χ1, χ2, . . . , χk of Gal(Q/Q) and positive integers
n1, n2, . . . , nk then

q(ρ) = q(χ1)n1q(χ2)n2 · · · q(χk)nk .

Thus we have the following identity of formal power series in x with coefficients in
the ring of formal Dirichlet series:∑

ρ

q(ρ)−sxdim(ρ) =
∏
χ

(1− q(χ)−sx)−1,
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where ρ runs over a set of representatives for the distinct isomorphism classes of
abelian Artin representations of Q and χ runs over one-dimensional characters of
Gal(Q/Q). Equivalently,

1 +
∑
n>1

∑
q>1

ψn(q)q−sxn =
∏
q>1

(1− q−sx)−ψ(q).

Summing over q on the left-hand side while expressing the right-hand side as the
exponential of its logarithm, we obtain

1 +
∑
n>1

Dn(s)xn = exp

∑
ν>1

D(νs)
xν

ν

 .

The proposition follows on comparing the coefficient of xn on both sides. �

Proposition 5. Dn(s) is holomorphic for <(s) > 1 except for a pole of order n at
s = 2. Furthermore, the residue of (s− 2)n−1Dn(s) at s = 2 is (1/n!)(36/π4)n.

Proof. Rewrite Proposition 4 in the form

Dn(s) =
D(s)n

n!
+
n−1∑
k=1

1
k!

∑
ν1+ν2+···+νk=n

D(ν1s)D(ν2s) · · ·D(νks)
ν1ν2 · · · νk

.(8)

From Proposition 2 we know that D(s) is holomorphic for <(s) > 1 except for a
simple pole at s = 2 with residue 36/π4. Thus D(s)n/n! has the properties claimed
for Dn(s). To deduce that Dn(s) itself has these properties it suffices to observe
that for k 6 n−1 the term D(ν1s)D(ν2s) · · ·D(νks)/(ν1ν2 · · · νk) on the right-hand
side of (8) has at most n− 2 factors D(νis) with νi = 1. Hence the pole (if any) of
such a term at s = 2 is of order at most n− 2. �

As ϑab
Q,n(x) is the summatory function of Dn(s), Proposition 1 gives:

Theorem 1. ϑab
Q,n(x) ∼ (1/2)(1/n!)(36/π4)n · x2(log x)n−1.

A similar argument can be applied in the self-dual case. Write ψsd
n (q) for the

number of isomorphism classes of n-dimensional self-dual abelian Artin representa-
tions of Q of conductor q, and put

Dsd
n (s) =

∑
q>1

ψsd
n (q)q−s.

Then ψsd
1 = ψsd and Dsd

1 = Dsd in the notation of Section 2. Given a positive
integer ν, it is also convenient to set

D[ν](s) =

{
Dsd(νs) if ν is odd
D(νs) if ν is even.

Note in particular that D[1] = Dsd.

Proposition 6. For n > 1,

Dsd
n (s) =

n∑
k=1

1
k!

∑
ν1+ν2+···+νk=n

D[ν1](s)D[ν2](s) · · ·D[νk](s)
ν1ν2 · · · νk

,

where the inner sum on the right runs over k-tuples (ν1, ν2, · · · , νk) of positive
integers summing to n.
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Proof. An abelian Artin representation ρ of Q is self-dual if and only if it has the
form

ρ ∼=
(⊕

χ2=1
χ⊕ν(χ)

)
⊕
(⊕′

χ2 6=1
(χ⊕ χ−1)⊕ν(χ)

)
,

where the direct sum inside the first set of parentheses runs over one-dimensional
characters χ of Gal(Q/Q) of order 6 2, the direct sum inside the second set of
parentheses runs over pairs {χ, χ−1} of complex conjugate characters (this is the
significance of the prime) of order > 3, and ν(χ) = 0 for all but finitely many χ.
As q(χ⊕ χ−1) = q(χ)2, it follows that

1 +
∑
n>1

Dsd
n (s)xn =

∏
χ2=1

(1− q(χ)−sx)−1 ·
∏′

χ2 6=1
(1− q(χ)−2sx2)−1

=
∏
q>1

(1− q−sx)−ψ
sd(q) ·

∏
q>1

(1− q−2sx2)−ψ
∗(q)

(9)

with ψ∗(q) = (ψ(q) − ψsd(q))/2. Set D∗(s) =
∑
q>1 ψ

∗(q)q−s. Then D∗(s) =
(D(s) − Dsd(s))/2. Writing the two products in the last expression in (9) as the
exponentials of their logarithms, we obtain

1 +
∑
n>1

Dsd
n (s)xn = exp(

∑
ν>1

Dsd(νs)xν/ν) · exp(
∑
µ>1

D∗(2µs)x2µ/µ)

= exp(
∑
ν>1

D[ν](s)xν/ν).

The proposition follows on inspecting the coefficient of xn in this last expression. �

Proposition 7. Dsd
n (s) is holomorphic for <(s) > 1/2 except for a pole of order n

at s = 1. Furthermore, the residue of (s− 1)n−1Dsd
n (s) at s = 1 is (1/n!)(6/π2)n.

Proof. We observe first of all that if ν is a positive integer then D[ν](s) is holomor-
phic for <(s) > 1/2 except possibly for a simple pole at s = 1. Indeed if ν is odd
then D[ν](s) = Dsd(νs) and our assertion follows from Proposition 3, while if ν is
even then D[ν](s) = D(νs) with ν > 2 and D(s) = ζ(s− 1)/ζ(s)2 (Proposition 2).
Now Proposition 6 gives

Dsd
n (s) =

1
n!
Dsd(s)n +

n−1∑
k=1

1
k!

∑
ν1+ν2+···+νk=n

D[ν1](s)D[ν2](s) · · ·D[νk](s)
ν1ν2 · · · νk

,(10)

and by Proposition 3 we know that Dsd(s) is holomorphic for <(s) > 1/2 except
for a simple pole at s = 1 with residue 6/π2. Thus Dsd(s)n/n! has the properties
claimed for Dsd

n (s). These properties are inherited by Dsd
n (s) itself, because for

k < n the term D[ν1](s)D[ν2](s) · · ·D[νk](s)/(ν1ν2 · · · νk) on the right-hand side of
(10) has at most n − 1 factors of the form D[ν](s), and thus its pole (if any) at
s = 1 is of order at most n− 1. Of course each such factor and hence their product
is holomorphic elsewhere in the region <(s) > 1/2. �

Once again we appeal to Proposition 1, obtaining:

Theorem 2. ϑab,sd
Q,n (x) ∼ (1/n!)(6/π2)n · x(log x)n−1.

Combining Theorems 1 and 2, we see that

ϑab,sd
Q,n (x)/ϑab

Q,n(x) ∼ 2 · π2n/(6nx),(11)

a straightforward generalization of (7).
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4. Does Leopoldt’s conjecture have a horizontal analogue?

When Q is replaced by an arbitrary number field F no asymptotic relationship
comparable to (7) seems to be known, but thanks to a theorem of M. J. Taylor
([36], Theorem 1) we can assert that at least

lim
x→∞

ϑsd
F,1(x)/ϑF,1(x) = 0.(12)

Indeed let m be a positive integer not divisible by 4 such that the greatest common
divisor of m and the discriminant of F divides 2, and let ϑ(m)

F,1 (x) be the number
of characters of Gal(F/F ) of order m and absolute conductor 6 x. Then Taylor
proves that

ϑ
(m)
F,1 (x) ∼ cx(log x)τ(m)−2,(13)

where c is a positive constant depending on F and m, and τ(m) is the number of
positive divisors of m. (For the sake of simplicity we are not stating Taylor’s result
in full generality.) Taking m = 2 gives

ϑsd
F,1(x) ∼ cx,(14)

and taking m = p2 with an odd prime p not dividing the discriminant of F gives

ϑF,1(x)� x(log x).(15)

Equation (12) is an immediate consequence of (14) and (15).
Of course by making different choices of m we can replace the right-hand side

of (15) by x(log x)ν for arbitrarily large ν. But this lower bound is far from the
trivial upper bound, so the asymptotic behavior of ϑF,1(x) remains a mystery:

Proposition 8. ϑF,1(x) = O(x2), where the implied constant depends on F .

In the case where F has units of infinite order, Josh Zelinsky has proved the
stronger assertion that ϑF,1(x) = o(x2). But let us prove Proposition 8 as it stands:
First of all, we identify one-dimensional characters of Gal(F/F ) with idele class
characters of F of finite order, or equivalently with primitive ray class characters of
F . Given a nonzero integral ideal q of F , write hnar

F (q) for the order of the narrow
ray class group of F to the modulus q. Then

ϑF,1(x) 6
∑

Nq6x

hnar
F (q),(16)

because hnar
F (q) is equal to the number of primitive ray class characters of F of

conductor dividing q and is thus an upper bound for the number of such characters
of conductor exactly q.

On the other hand, let OF be the ring of integers of F and O×F its unit group. It
is convenient to put UF = O×F and to write UF (q) for the subgroup of UF consisting
of units congruent to 1 modulo q. We also write U+

F (q) for the subgroup of totally
positive units in UF (q). Finally, let hF be the class number and r1(F ) and 2r2(F )
the number of real and complex embeddings of F . According to a classic formula
(cf. [23], p. 127, Theorem 1),

hnar
F (q) = 2r1(F ) · hF · ϕF (q)/[UF : U+

F (q)],(17)

where ϕF (q) = |(OF /q)×|. As ϕF (q) 6 Nq and [UF : U+
F (q)] > 1, we see on

returning to (16) that ϑF,1(x) is bounded by a constant times
∑

Nq6x N(q). The
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latter expression is the summatory function associated to ζF (s− 1), where ζF (s) is
the Dedekind zeta function of F , so Proposition 8 now follows from Proposition 1.

Problem. Determine whether ϑF,1(x) ∼ c · xa with constants c > 0 and a > 1
depending on F .

The underlying issue here is the average size of [UF : U+
F (q)], about which little

seems to be known. Of some relevance, perhaps, is the literature on analogues of
Artin’s primitive root conjecture for units of number fields (see for example [9], [18],
[19], [20], [25], [29], and [30]). In any case, [UF : U+

F (q)] differs by a factor dividing
2r1(F ) from the order of the image of the natural map from UF to (OF /q)×, so
the problem is to understand the image of the global units in an approximation
to a group of local units. This formulation is reminiscent of Leopoldt’s conjecture,
which we now revisit for the sake of the analogy.

Fix a prime number p and let θn be the number of one-dimensional characters
of Gal(F/F ) of conductor dividing pnOF . We think of θn as a vertical analogue of
ϑF,1(x). To simplify the notation, write U+

F (pnOF ) as U+
F (pn), and put

En = U+
F (pn)(18)

for n > 2. Also put E = E2. Via the map u 7→ u ⊗ 1 we may view E as a
subset of OF ⊗Z Zp and more precisely as a subgroup of (OF ⊗Z Zp)× and indeed
of 1 + p2(OF ⊗Z Zp). We denote the p-adic closure of a subset S of OF ⊗Z Zp by S,
and we write r1(F ) and r2(F ) simply as r1 and r2. Leopoldt’s conjecture is usually
stated as (i) or (ii) below.

Proposition 9. The following statements are equivalent:
(i) rkZpHom(Gal(F/F ),Zp) = r2 + 1.
(ii) rkZpE = r1 + r2 − 1.
(iii) log θn ∼ (r2 + 1) log p · n.

Thus (iii) is another formulation of Leopoldt’s conjecture.

Proof. The equivalence of (i) and (ii) is well known, cf. [37], p. 265, Theorem 13.4.
(Strictly speaking, the unit group E1 in [37] is not quite the same as our E, but
our E is a subgroup of finite index in E1 and so the p-adic closures have the same
Zp-rank.) For the sake of completeness we will verify that (ii) is equivalent to (iii),
although the argument is in principle the same as in [37].

Put s = rkZpE and t = [F : Q]− rkZpE, so that

s+ t = r1 + 2r2.(19)

It suffices to see that there is a constant c > 0 such that

θn = cptn(20)

for n sufficiently large. Indeed (20) implies that log θn ∼ (t log p) · n, whence (iii)
becomes equivalent to t = r2 + 1; but (ii) is equivalent to s = r1 + r2 − 1, and the
equations t = r2 + 1 and s = r1 + r2 − 1 are equivalent by (19).

To derive (20) we use the fact that θn = hnar
F (pnOF ). It is readily verified that

ϕF (pnOF ) = pn[F :Q]
∏

p|p(1− (Np)−1), so (17) gives

θn = c1 · pn[F :Q]/[UF : U+
F (pn)](21)

with c1 = 2r1 · hF ·
∏

p|p(1− (Np)−1).
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On the other hand, recalling the notation (18), we can write

[UF : U+
F (pn)] = [UF : E][E : En]

for n > 2. As the natural map E/En → E/En is an isomorphism, it follows that

[UF : U+
F (pn)] = c2[E : En](22)

with c2 = [UF : E]. Now the p-adic logarithm logp gives an isomorphism

E/En ∼= (logpE)/((logpE) ∩ pnOF ),

so we have

[E : En] = [L : L ∩ (pnOF )](23)

with L = logpE. Put m = [F : Qp]. As OF ⊗Z Zp is a free Zp-module of rank m
and L is a Zp-submodule of rank s, there exists a basis e1, e2, . . . , em for OF ⊗Z Zp
together with integers ν1, ν2, . . . νs > 0 such that pν1e1, p

ν2e2, . . . , p
νses is a basis

for L. Returning to (23), we see that if n > max(ν1, ν2, . . . , νs) then

[E : En] = c3p
ns(24)

with c3 = p−(ν1+ν2+···+νs). Finally, combining (24) with (21) and (22), and setting
c = c1/(c2c3), we obtain (20) for n sufficiently large. �

5. Dihedral representations

A finite subgroup G of GLn(C) is irreducible if the tautological representation
ι : G ↪→ GLn(C) is irreducible. Similarly, G is monomial if ι is monomial, and G is
self-dual if ι is self-dual. Let D2m denote the dihedral group of order 2m (m > 3)
and Q4m the quaternion group of order 4m (m > 2). The term “quaternion group”
is used here as in [27], p. 72, but since it is often reserved for the case m = 2, let
us recall the standard presentations: D2m has generators a, b with am = 1 = b2

and bab−1 = a−1, while Q4m has generators a, b with a2m = 1, am = b2, and
bab−1 = a−1. These are the only groups that figure in ϑim,sd

Q,2 (x):

Proposition 10. Let G be a finite subgroup of GL2(C). If G is irreducible, mono-
mial, and self-dual then either G ∼= D2m with m > 3 or G ∼= Q4m with m > 2.
In the former case G is conjugate to a subgroup of O2(R) and in the latter case
G ⊂ SL2(C).

A two-dimensional irreducible monomial self-dual Artin representaton ρ will be
called dihedral or quaternionic according as the image of ρ is isomorphic to D2m

(m > 3) or to Q4m (m > 2). We also put m(ρ) = m. Since SL2(C) and Sp2(C)
coincide, we see that the orthogonal and symplectic terms in the decomposition

ϑim,sd
Q,2 (x) = ϑim,orth

Q,2 (x) + ϑim,symp
Q,2 (x)(25)

count dihedral and quaternionic Artin representations of Q respectively. In this
section we bound the the dihedral term ϑim,orth

Q,2 (x).
Proposition 10 is a standard remark, as are Propositions 11 and 12 below, but for

want of a suitable reference we supply proofs of all three assertions in an appendix
(Section 13). Given a group G, a normal subgroup H, a one-dimensional character
χ of H, and an element g ∈ G, write χg for the character h 7→ χ(ghg−1) of H.
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Proposition 11. Let G be a finite group and ρ a faithful irreducible monomial self-
dual representation of G of dimension two. Then G has a cyclic subgroup of index
two, and if H is any such subgroup then ρ is induced by a faithful one-dimensional
character ξ of H of order > 3 satisfying ξg = ξ−1 for g ∈ GrH. Furthermore, ξ
and ξ−1 are the only two characters of H inducing ρ.

Given a finite group G and a subgroup H, write Gab and Hab for their maximal
abelian quotients and tranGH : Gab → Hab for the transfer. If ξ is a one-dimensional
character of H then ξ factors through Hab, whence we can form the composition
ξ ◦ tranGH and view it as a one-dimensional character of G. We write signGH for
the sign of the permutation representation of G on the left cosets of H in G, and
we write 1 for the trivial one-dimensional character of any group. Finally, if λ is
a representation of H then indGHλ denotes the representation of G induced by λ.
Part (a) of the following proposition is a converse to Proposition 11 and part (b)
is a refinement of it.

Proposition 12. Let G be a finite group and H a subgroup of index two, and let
ξ be a faithful one-dimensional character of H of order > 3. Put ρ = indGHξ.

(a) If ξg = ξ−1 for g ∈ GrH then ρ is faithful, irreducible, and self-dual.
(b) The hypothesis of (a) holds if and only if ξ ◦ tranGH is either 1 or signGH , and

these two alternatives imply respectively that ρ is orthogonal or symplectic.

Now let F be a number field. Given a finite extension K of F (always understood
to be contained in some fixed algebraic closure F of F ) and an Artin representation
λ of K, we write indK/Fλ for the Artin representation of F induced by λ. We may
think of indK/F either as induction from Gal(F/K) to Gal(F/F ) or as induction
from Gal(L/K) to Gal(L/F ), where L is any finite Galois extension of F containing
K such that λ factors through Gal(L/K). Similarly, tranK/F denotes the transfer
from Gal(F/F )ab to Gal(F/K)ab or alternatively the transfer from Gal(L/F )ab to
Gal(L/K)ab, where L is any finite Galois extension of F containing K. Of course
in the case of a topological group like Gal(F/F ) the notation Gab refers to the
quotient of G by the closure of its commutator subgroup.

Proposition 13. Consider pairs (K, ξ) with [K : F ] = 2 and ξ a one-dimensional
character of Gal(F/K) of order m > 3 such that ξ ◦ tranK/F = 1. The formula
ρ = indK/F ξ defines a two-to-one map from the set of such (K, ξ) onto the set of
isomorphism classes of dihedral Artin representations ρ of F with m(ρ) = m, the
other preimage of the isomorphism class of ρ being the pair (K, ξ−1).

Proof. Given a dihedral Artin representation ρ of F , let L be the fixed field of
Ker ρ and put G = Gal(L/F ). By Proposition 11 and part (b) of Proposition 12,
ρ = indK/F ξ for some (K, ξ) as above. Conversely, given (K, ξ), we have ξg = ξ−1

for g ∈ Gal(F/F ) r Gal(F/K) by part (b) of Proposition 12. Hence the fixed
field L of Ker ξ is Galois over F , and part (a) of Proposition 12 shows that the
representation ρ = indK/F ξ is irreducible and orthogonal, as well as faithful as a
representation of Gal(L/F ). Hence it follows from Proposition 10 that ρ has image
D2m. Since a cyclic subgroup of index two in D2m is unique, ρ determines K
uniquely, and the last assertion of Proposition 11 then implies that ξ is unique up
to replacement by ξ−1. �

If ρ = indK/F ξ then q(ρ) = dK/F q(ξ) by the conductor-discriminant formula
(cf. [32], p. 104, Proposition 6), whence q(ρ) = dK/F q(ξ) on taking absolute norms.
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Thus Proposition 13 gives

ϑim,orth
F,2 (x) =

1
2

∑
dK/F q(ξ)6x

1,(26)

where the sum runs over ordered pairs (K, ξ) satisfying the stated inequality.
We now rewrite (26) using class field theory: A one-dimensional character ξ of

Gal(F/K) becomes an idele class character of K of finite order, and the condition
ξ ◦ tranK/F = 1 becomes ξ|A×F = 1, where A×F is the idele group of F .

Lemma. There is an ideal q of OF such that q(ξ) = qOK .

Proof. This is a straightforward deduction from the fact that ξ|A×F = 1. Only one
point deserves comment: If v is a finite place of F which ramifies in K and w is the
place of K above v, then the local component ξw of ξ has even conductor-exponent
a(ξw). To see this, let OF,v and OK,w be the completions of OF and OK , and let
πw be a uniformizer of OK,w. If a = a(ξw) is odd then the cosets of 1 + πawOK,w in
1 + πa−1

w OK,w (or in O×K,w, if a = 1) are represented by elements of O×F,v, whence
the nontriviality of ξw on the quotient contradicts the triviality of ξ on A×F . �

Given a nonzero integral ideal q of F , let gK/F (q) be the number of idele class
characters of K of finite order > 3 which are trivial on A×F and of conductor qOK .
Returning to (26), we see that ϑim,orth

F,2 (x) = 1/2
∑
gK/F (q), where the sum runs

over pairs (K, q) with dK/F (Nq)2 6 x. It follows in particular that

ϑim,orth
F,2 (x) 6

1
2

∑
dK/F (Nq)26x

hnar
K/F (q),(27)

where hnar
K/F (q) is the number of idele class characters of K of arbitrary finite order

which are trivial on A×F and of conductor dividing qOK .
Now take F = Q. We write hnar

K/F (q) simply as hnar
K/Q(q), where q is the positive

integer such that q = qOK . If the quadratic field K is imaginary then hnar
K/Q(q) may

be further abbreviated to hK/Q(q). Thus (27) becomes

ϑim,orth
Q,2 (x) 6

1
2

∑
dKq

26x
K imaginary

hK/Q(q) +
1
2

∑
dKq

26x
K real

hnar
K/Q(q).(28)

Siegel [35] proved the asymptotic formulas∑
dKq

26x
K imaginary

hK/Q(q) ∼ πx3/2/(18ζ(3))(29)

and ∑
dKq

26x
K real

hnar
K/Q(q) log εK,q ∼ π2x3/2/(18ζ(3)),(30)

where εK,q is the fundamental totally positive unit of the order OK,q = Z + qOK :
In other words, εK,q is the unique generator > 1 of the group U+

K,q = U+
K ∩ UK,q,

where UK,q = O×K,q. Since log εK,q � 1 (indeed εK,q > q
√
d/2 >

√
5/2) we deduce

the following bound from (28), (29), and (30).
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Proposition 14. ϑim,orth
Q,2 (x) = O(x3/2).

One point deserves clarification. Put d = ±dKq2, choosing the sign so that
±dK is the discriminant of K. The quantity hnar

K/Q(q) as we have defined it is the
narrow ring class number of K to the modulus q, whereas the results which we have
quoted from [35] pertain to the narrow class number of primitive binary quadratic
forms of discriminant d. The equality of these two quantities is of course classical
and can be established conceptually, but we will take the shortcut of recalling a
standard formula for hnar

K/Q(q), which upon comparison with formulas (10) and (19)
of [35] (and an application of Dirichlet’s class number formula) will assure us that
Siegel’s hd coincides with our hnar

K/Q(q). Let χK be the primitive quadratic Dirichlet
character corresponding to K. We write hnar

K for the narrow ideal class number of
K (equal to hK if K is imaginary).

Proposition 15. hnar
K/Q(q) =

hnar
K

[U+
K : U+

K,q]
· q
∏
p|q(1− χK(p)/p).

Proof. The argument is classical (see for example the references to Fueter and
Weber on p. 95 of [24], where the analogous formula is proved for wide ring class
numbers) but we recall it briefly nonetheless.

Suppose first that K is real. Write Cnar
Q

(q) and Cnar
K (q) for the narrow ray class

groups of Q and K to the moduli qZ and qOK respectively, and let ω be the natural
map from Cnar

Q
(q) to Cnar

K (q). Then hnar
K/Q(q) is the order of the cokernel of ω. Hence

hnar
K/Q(q) =

hnar
K (q)
ϕ(q)

|Ker ω|.(31)

Let UK/Q(q) be the subgroup of UK consisting of units u for which there exists a ∈ Z
with au ≡ 1 modulo qOK and au > 0 at both real places of K. Also put U+

K(q) =
U+
K(qOK). One checks that the map sending the ray class of aZ to the coset of

u modulo {±1}U+
K(q) is an isomorphism from Ker ω onto UK/Q(q)/{±1}U+

K(q)).
Hence (31) becomes

hnar
K/Q(q) =

hnar
K (q)
ϕ(q)

[UK/Q(q) : {±1}U+
K(q)].(32)

Replacing F by K in (17) and inserting the result in (32), we deduce that

hnar
K/Q(q) = hK · q

∏
p|q

(1− χK(p)/p) · 22

[UK : UK/Q(q)][{±1}U+
K(q) : U+

K(q)]
.(33)

The stated formula follows from (33), because [{±1}U+
K(q) : U+

K(q)] = 2 and
2hK [U+

K : U+
K,q] = hnar

K [UK : UK/Q(q)]. (To verify the latter equation, consider
cases according as the fundamental unit of K does or does not have norm −1, and
observe that the units in UK/Q(q) all have norm 1.)

Next suppose that K is imaginary. We take ω to be the natural map of wide
ray class groups CQ(q) → CK(q). The order of CQ(q) is ϕ(q)/2 or ϕ(q) according
as q > 2 or q 6 2, hence it equals ϕ(q)/[{±1}UK(q) : UK(q)] in all cases. Thus we
have

hK/Q(q) =
hK(q)
ϕ(q)

[UK/Q(q) : UK(q)].(34)
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in place of (32). Applying (17) as before, we obtain

hK/Q(q) =
hK

[UK : UK/Q(q)]
· q
∏
p|q

(1− χK(p)/p).(35)

Now [UK : UK/Q(q)] is 1, 2, or 3 according as dK > 4, dK = 4, or dK = 3. The
same is true of [UK : UK,q], so (35) is the stated formula. �

6. Quaternionic representations

Next we will prove an estimate for the quaternionic term in (25):

Proposition 16. ϑim,symp
Q,2 (x) = O(x3/2+ε) for every ε > 0, where the implied

constant depends on ε.

Combining Propositions 16 and 14, we will have:

Proposition 17. ϑim,sd
Q,2 (x) = O(x3/2+ε) for every ε > 0, where the implied con-

stant depends on ε.

We begin with a general remark. Given Artin representations ρ and ρ′ of a
number field F , write Pρ and Pρ′ for the projective representations of Gal(F/F )
determined by ρ and ρ′, and call ρ and ρ′ projectively equivalent if Pρ ∼= Pρ′.

Proposition 18. Suppose that ρ and ρ′ are symplectic of dimension n. Then ρ
and ρ′ are projectively equivalent if and only if ρ′ ∼= ρ⊗χ for some one-dimensional
character χ of Gal(F/F ) with χn = 1.

Proof. To say that Pρ ∼= Pρ′ means precisely that ρ′ ∼= ρ ⊗ χ for some one-
dimensional character χ of Gal(F/F ). Taking determinants of both sides, we find
that χn = 1, because symplectic representations have trivial determinant. �

Next we state an analogue for quaternionic Artin representations of an earlier
assertion about dihedral Artin representations (Proposition 13). Given a quadratic
extension K of F (understood to lie in some fixed algebraic closure F of F ), write
signK/F for the quadratic character of Gal(F/F ) with kernel Gal(F/K).

Proposition 19. Consider pairs (K, ξ) with [K : F ] = 2 and ξ a one-dimensional
character of Gal(F/K) of even order 2m > 6 such that ξ ◦ tranK/F = signK/F .
The formula ρ = indK/F ξ defines a two-to-one map from the set of such (K, ξ)
onto the set of isomorphism classes of quaternionic Artin representations ρ of F
with m(ρ) = m, the other preimage of the isomorphism class of ρ being the pair
(K, ξ−1).

This is simply Proposition 13 with three changes: the word “dihedral” is replaced
by “quaternionic” and the conditions “order m > 3” and “ξ◦tranK/F = 1” by “even
order 2m > 6” and “ξ◦tranK/F = signK/F .” (Actually the requirement that ξ have
even order is superfluous; it follows from the condition ξ◦tranK/F = signK/F ). The
proof of Proposition 19 is likewise identical to that of Proposition 13, apart from
the obvious changes. Note in particular that in terms of the presentation of Q4m

given in Section 5, the elements ajb and ajb3 have order four, whence for m > 3 a
cyclic subgroup of index two in Q4m is unique, just as it is in D2m. By contrast, Q8

has three cyclic subgroups of index two, and as a result the analogue of Proposition
19 for m(ρ) = 2 is as follows:
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Proposition 20. Consider pairs (K, ξ) with [K : F ] = 2 and ξ a one-dimensional
character of Gal(F/K) of order 4 such that ξ ◦ tranK/F = signK/F . The formula
ρ = indK/F ξ defines a six-to-one map from the set of such (K, ξ) onto the set of
isomorphism classes of quaternionic Artin representations ρ of F with m(ρ) = 2. If
L is the fixed field of Ker ρ and K1, K2 and K3 are the three quadratic extensions
of F contained in L then the six preimages of the isomorphism class of ρ have the
form (Kj , ξ

±1
j ) with 1 6 j 6 3 and one-dimensional characters ξj of Gal(F/Kj).

Our strategy for bounding the quaternionic term in (25) rests on a simple remark:
Given a quaternionic Artin representation ρ of F with m(ρ) > 3, we can define a
dihedral Artin representation ρ̂ of F by writing ρ ∼= indK/F ξ as in Proposition 19
and setting ρ̂ = indK/F ξ2. That the isomorphism class of ρ̂ is well defined follows
from Proposition 13, which also gives

m(ρ) = m(ρ̂).(36)

Using Proposition 20, we can define ρ̂ in the same way when m(ρ) = 2, but because
of the nonuniqueness of K in Proposition 20 we must make an arbitrary but fixed
choice of a quadratic extension K of F inside every biquadratic extension of F .
Note that ρ̂ is now reducible; in fact if L is the fixed field of Ker ρ then ρ̂ ∼= χ⊕χ′,
where χ and χ′ are the two quadratic characters of Gal(L/F ) which do not factor
through Gal(K/F ). Thus ρ̂ is no longer “dihedral,” but we still set m(ρ̂) = 2, so
that (36) holds in all cases. Another formula which holds in all cases is

q(ρ) > q(ρ̂),(37)

because q(ρ) = dK/F q(ξ) and q(ρ̂) = dK/F q(ξ2) by the conductor-discriminant
formula, and q(ξ) > q(ξ2). Finally, it follows from Proposition 10 that if ρ is a
quaternionic Artin representation of F and χ is a one-dimensional character of
Gal(F/F ) with χ2 = 1 then ρ ⊗ χ is again a quaternionic Artin representation of
F . Now if ρ is replaced by ρ⊗ χ then ξ is multiplied by resK/F (χ), the restriction
of χ to Gal(F/K). But as χ2 = 1 the character ξ2 is unchanged, and hence ρ̂ is
unchanged up to isomorphism. Referring to Proposition 18, we deduce that the
isomorphism class 〈ρ̂〉 of ρ̂ depends only on the projective equivalence class [ρ] of
ρ, so we obtain a map [ρ] 7→ 〈ρ̂〉.

Proposition 21. The map [ρ] 7→ 〈ρ̂〉 is injective.

Proof. In view of (36), it suffices to verify injectivity on the subset of projective
equivalence classes [ρ] for which m(ρ) has a fixed value m. To begin with we take
m > 3. So suppose that we are given quaternionic Artin representations ρ and ρ′

of F with m(ρ) = m(ρ′) = m > 3. Write ρ ∼= indK/F ξ and ρ′ ∼= indK′/F ξ′ with
pairs (K, ξ) and (K ′, ξ′) as in Proposition 19. We assume that

indK/F ξ2 ∼= indK′/F (ξ′)2(38)

and must deduce that Pρ ∼= Pρ′.
Since m > 3, the representations indK/F ξ2 and indK/F (ξ′)2 are dihedral. Hence

in view of (38), we have K = K ′ and (ξ′)2 = ξ±2 by Proposition 13. After replacing
the pair (K, ξ) by (K, ξ−1) if necessary, we may assume that (ξ′)2 = ξ2, and then
ξ′ = ξφ for some character φ of Gal(F/K) with φ2 = 1. Since ξ ◦ tranK/F and
ξ′ ◦ tranK/F both coincide with signK/F , it follows that φ ◦ tranK/F = 1. Let us
now view φ as an idele class character of K. Then the condition φ ◦ tranK/F = 1
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becomes φ|A×F = 1. In particular, φ ◦ NK/F = 1, where NK/F is the idelic norm
from A

×
K to A×F . Write σ for the nontrivial element of Gal(K/F ), and view σ as

an automorphism of A×K . Then φ(xσ+1) = 1 for all x ∈ A×K , and as φ2 = 1 we
deduce that φ(xσ−1) = 1 also. Hilbert’s Theorem 90 now implies that φ factors
through NK/F , so that φ = χ ◦ NK/F for some one-dimensional character χ of
A
×
F . Returning to the Galois setting, we see that φ = resK/F (χ) when φ and χ

are viewed as one-dimensional characters of Gal(F/K) and Gal(F/F ) respectively.
To recapitulate, we have ρ ∼= indK/F ξ, ρ′ ∼= indK′/F ξ′, K = K ′, ξ′ = ξφ, and
φ = resK/F (χ). It follows that ρ′ ∼= ρ⊗ χ, whence Pρ ∼= Pρ′.

The case m = 2 is contained in Theorem 4 on p. 146 of [12], at least for F = Q.
However for the sake of completing the present argument, we first observe that if χ
and χ′ are distinct quadratic characters of Gal(F/F ), then there is a unique pair
(K, ζ) consisting of a quadratic extension K of F and a quadratic character ζ of
Gal(F/K) such that indK/F (ζ) ∼= χ⊕ χ′. Indeed if M and M ′ are the fixed fields
of the kernels of χ and χ′ respectively then K is the third quadratic extension of
F contained in MM ′, and ζ is the unique quadratic character of Gal(F/K) which
factors through Gal(MM ′/K). It follows that in the case m = 2, the isomorphism
(38) still implies that K = K ′ and ξ2 = (ξ′)2. The proof is now completed as in
the case m > 3. �

Now take F = Q, and let X be the set of one-dimensional characters of Gal(Q/Q)
satisfying χ2 = 1. The arguments to be given next will be needed again when
we deal with primitive representations, so it is efficient to suspend our focus on
quaternionic Artin representations in favor of a more general setting. Thus A will
denote any class of two-dimensional Artin representations of Q which is symplectic
and closed under quadratic twists in the sense that the following conditions hold:

• If ρ ∈ A then det ρ = 1.
• If ρ ∈ A and χ ∈ X then ρ⊗ χ ∈ A.
• If ρ ∈ A and ρ′ ∼= ρ then ρ′ ∈ A.

The third condition is an inessential nicety intended only to eliminate ambiguities.
We write ϑA(x) for the number of isomorphism classes of representations ρ ∈ A
such that q(ρ) 6 x.

Let E denote the set of projective equivalence classes of A, and write [ρ] as before
for the projective equivalence class of ρ. Proposition 18 implies that

ϑA(x) 6
∑

[ρ]∈E

∑
χ∈X

q(ρ⊗χ)6x

1,(39)

the inner sum being independent of the choice of representative ρ of [ρ]. The reason
for inequality rather than equality in (39) is that sometimes ρ⊗ χ ∼= ρ with χ 6= 1.

In order to bound the right-hand side of (39) it is convenient to introduce the
notion of the “ρ-conductor” qρ(χ) of a character χ ∈ X. Let ordp denote the p-adic
valuation of Z. We define qρ(χ) by deleting from q(χ) the contributions of the
primes dividing q(ρ):

qρ(χ) =
∏
p-q(ρ)

pordpq(χ).(40)

Then we have the following elementary remark:
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Proposition 22. Each projective equivalence class E ∈ E has a representative ρ
such that q(ρ⊗ χ) > q(ρ)qρ(χ)2 for all χ ∈ X.

Proof. Write E = [λ] with λ ∈ A. We must exhibit a character φ ∈ X such that
the representation ρ = λ⊗ φ satisfies the stated inequality for all χ ∈ X.

Given a prime p, let Xp ⊂ X be the subset of characters χ ∈ X which are
unramified outside p and infinity. Thus |X2| = 4, and if p is odd then |Xp| = 2. In
particular, Xp is finite, so for each p dividing q(λ) we can choose φp ∈ Xp minimizing
ordp q(λ ⊗ φp). We put φ =

∏
p|q(λ) φp, and as already indicated, ρ = λ ⊗ φ. By

construction, every prime p dividing q(ρ) divides q(λ), and for every such p and
every χ ∈ X we have

ordp q(ρ⊗ χ) > ordp q(ρ) (p|q(ρ)).(41)

On the other hand, if p - q(ρ) then the restriction of ρ to an inertia subgroup at p is
the two-dimensional trivial representation, whence the restriction of ρ⊗χ coincides
with that of χ⊕ χ. Therefore

ordp q(ρ⊗ χ) = 2 ordp q(χ) (p - q(ρ)).(42)

The stated inequality follows from (41) and (42). �

Henceforth we assume that in the sum in (39) over equivalence classes [ρ] ∈ E ,
the representative ρ is chosen as in Proposition 22. Then

ϑA(x) 6
∑

[ρ]∈E

∑
χ∈X

qρ(χ)6(x/q(ρ))1/2

1,(43)

because the summation in (39) runs over a subset of the set of summation in (43).
The next step eliminates the inner sum in (43):

Proposition 23. For every ε > 0,

ϑA(x)� x1/2
∑

[ρ]∈E
q(ρ)6x

q(ρ)−1/2+ε,

where the implicit constant depends on ε.

Proof. Given [ρ] ∈ E , we define a map χ 7→ χρ from X to itself as follows: Write
χ =

∏
p|q(χ) χp with χp ∈ X and χp unramified outside p and infinity; then

χρ =
∏
p|q(χ)
p-q(ρ)

χp.

Recalling the definition (40) of qρ(χ), we see that

qρ(χ) = q(χρ).(44)

for all χ ∈ X. Furthermore an element λ ∈ X has at most 2τ(q(ρ)) preimages
under the map χ 7→ χρ, where τ(q) denotes the number of positive divisors of q.
Hence on making the substitution (44) in (43) and setting λ = χρ, we obtain

ϑip,sd
Q,2 (x) 6 2

∑
[ρ]∈E

∑
λ∈X

q(λ)6(x/q(ρ))1/2

τ(q(ρ)).(45)
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The inner sum in (45) equals τ(q(ρ)) ·ϑsd
Q,1((x/q(ρ))1/2) if q(ρ) 6 x and 0 otherwise.

Furthermore τ(q) = O(qε) for every ε > 0. Hence the stated estimate for ϑA(x)
follows from the corollary to Proposition 3. �

We now specialize to the case where A is the class of quaternionic Artin represen-
tations of Q and E is the set of projective equivalence classes of such representations.
Combining (37) with Proposition 23, we find that

ϑim,symp
Q,2 (x)� x1/2

∑
[ρ]∈E
q(ρ̂)6x

q(ρ̂)−1/2+ε(46)

provided ε < 1/2. In view of Proposition 21 we deduce that

ϑim,symp
Q,2 (x)� x1/2

∑
〈%〉 im, orth
q(%)6x

q(%)−1/2+ε + x1/2
∑

〈%〉 ab, sd
q(%)6x

q(%)−1/2+ε,(47)

where in the first sum 〈%〉 denotes an arbitrary isomorphism class of dihedral Artin
representations of Q (not just one of the form 〈ρ̂〉) and in the second sum 〈%〉
denotes an arbitrary isomorphism class of two-dimensional abelian self-dual Artin
representations of Q (not just one of the form 〈χ ⊕ χ′〉 with distinct quadratic
characters χ and χ′ of Gal(Q/Q)). Next we apply Abel summation to the two
sums in (47). However since similar appeals to Abel summation will occur later on,
the referee has suggested that it would be efficient to formulate a statement that
covers all cases.

Proposition 24. Fix µ, ν > 0 with µ 6= ν, and let n(1), n(2), n(3), . . . be a fixed
sequence of nonnegative integers. If

∑
q6y n(q) is O(yν) then

∑
q6y n(q)q−µ is

O(yν−µ) or O(1) according as ν > µ or ν < µ.

The proof is elementary. To apply the proposition to the first sum on the right-
hand side of (47), take n(q) to be the number of isomorphism classes of dihedral
Artin representations % of Q with q(%) = q. Since ϑim,orth

Q,2 (x) = O(x3/2) by Propo-
sition 14, we deduce that ∑

〈%〉 im, orth
q(%)6x

q(%)−1/2+ε = O(x1+ε).(48)

The second sum in (47) is handled similarly: Theorem 2 gives ϑab,sd
Q,2 (x) = O(x log x),

so we find that ∑
〈%〉 ab, sd
q(%)6x

q(%)−1/2+ε = O(x1/2+2ε).(49)

Inserting (48) and (49) in (47), we obtain Proposition 16.

7. Schur covers

As before, if G is a finite subgroup of GLn(C) then we attribute properties of the
tautological representation ι : G ↪→ GLn(C) to G itself. Thus G is irreducible or
self-dual or primitive if these adjectives are applicable to ι. We denote the image of
G in PGLn(C) by PG, and we write Sn and An for the symmetric and alternating
groups on n letters. The following result is classical (cf. [38], Section 68).
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Proposition 25. Let G be a finite subgroup of GL2(C). If G is irreducible and
primitive then PG ∼= A4, S4, or A5.

Note that it is PG and not G itself which is isomorphic to A4, S4, or A5. In
fact A4, S4, and A5 do not have faithful two-dimensional representations over C,
so none of them is isomorphic to G. But if G is self-dual then there is an analogous
tripartition for G itself (cf. [39], p. 131, Lemma 1). To state it, put Ã4 = SL2(F3)
and Ã5 = SL2(F5), and let S̃4 be the subgroup of SL2(F9) generated by SL2(F3)
and iη, where i ∈ F9 is a fixed square root of −1 and

η =
(
−1 0
0 1

)
.

Since η normalizes SL2(F3) and (iη)2 = −1 we have S̃4 = SL2(F3) ∪ (iη)SL2(F3).
We denote the center of a group G by Z(G).

Proposition 26. Let G be a finite subgroup of GL2(C). If G is irreducible,
primitive, and self-dual then G ∼= Ã4, S̃4, or Ã5. Furthermore G ⊂ SL2(C) and
Z(G) = {±1}.

Conversely, these three groups do all have faithful two-dimensional irreducible
primitive self-dual representations over C. In fact up to isomorphism Ã4 has exactly
one such representation, while S̃4 and Ã5 have exactly two. These facts can all be
read from a character table (see for example [15], p. 44 or [16], p. 89 in the case of
Ã4; [15], p. 43 in the case of S̃4; and [16], p. 140 in the case of Ã5). On the other
hand, to derive Proposition 26 from Proposition 25, we will use the theory of Schur
covers, a few elements of which will now be recalled. All of the results about Schur
covers to be quoted here can be found in [17], and some of them are also usefully
summarized in [15]. Given a group G we denote its commutator subgroup by G′,
and we say that G is perfect if G = G′.

Let G and J be finite groups. We say that G is a representation group of J if
there is a subgroup C ⊂ Z(G) ∩G′ such that C ∼= H2(J,C×) and G/C ∼= J . The
group H2(J,C×) is the Schur multiplier of J , and a representation group of J is
also called a Schur cover of J . Every finite group has at least one Schur cover,
and up to isomorphism it has only finitely many. Furthermore, if the orders of
H2(J,C×) and J/J ′ are relatively prime – in particular, if J is perfect – then the
isomorphism class of a Schur cover of J is unique.

In keeping with tradition we have referred to G itself as a Schur cover of J ,
but it is also convenient to apply the term to any epimorphism ϕ : G → J with
kernel C. In practice G and ϕ are largely interchangeable, for if Z(J) is trivial
(as it will be in the cases of primary interest to us) then G determines C: In
fact C = Z(G), because Z(G) has trivial image in J and is therefore contained in
C. Furthermore, the fundamental property of a “representation group” (and the
property which explains the terminology itself) is that projective representations
of J lift to genuine representations of G, and we claim that the validity of this
property is unaffected by the choice of ϕ. To justify the claim, let us state the
property at issue more precisely: If π is a projective representation of J then there
exists a representation ρ of G such that Pρ ∼= π◦ϕ, where Pρ denotes the projective
representation determined by ρ. Now if ψ : G → J is another epimorphism with
kernel Z(G) then ψ = α◦ϕ for some automorphism α of J , and as π◦α is a projective
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representation of J there exists a representation ρ′ of G such that Pρ′ = (π ◦α)◦ϕ.
Then Pρ′ = π ◦ ψ.

While the lifting property will be used in Section 8, our immediate concern is
simply to identify the Schur covers of A4, S4, and A5. It is actually more instructive
to consider An and Sn for arbitrary n. First An: It is known that H2(An,C×) is
trivial if n 6 3, cyclic of order six if n = 6 or 7, and cyclic of order two otherwise.
Furthermore An is perfect for n > 5, while for n = 4 we have |A4/A

′
4| = 3. It

follows that for all n > 1 the groups H2(An,C×) and An/A′n are of relatively prime
order, whence a Schur cover of An is unique up to isomorphism. If n > 4 and
n 6= 6, 7 then a Schur cover of An is typically denoted Ãn or Ân. Granted, if n = 4
or 5 then Ãn has already been assigned a meaning, but we will check in a moment
that SL2(F3) and SL2(F5) are indeed Schur covers of A4 and A5.

The situation for Sn is as follows: H2(Sn,C×) is trivial for n 6 3 but cyclic of
order two for all n > 4 without exception. Furthermore, if n > 4 and n 6= 6 then up
to isomorphism there are exactly two Schur covers of Sn. In the literature, the two
Schur covers are variously denoted S̃n and Ŝn (cf. [15], p. 23), or S∗n and S∗∗n (cf.
[17], p. 523), or 2+Sn and 2−Sn (cf. [8], p. xxiii), the second member of each pair
being characterized by the fact that the preimages of the transpositions of Sn have
order two. (Warning: Although we follow [15] in distinguishing between S̃n and Ŝn,
the opposite convention is also in use; see e. g. the characterization of S̃4 in [22],
p. 199 and of S̃n in [34], p. 97.) If n > 4 and n 6= 6, 7 then the respective inverse
images of An under S̃n → Sn and Ŝn → Sn are Schur covers of An and are therefore
isomorphic, whence we obtain the notations Ãn and Ân already mentioned.

The next proposition will justify our original definition of Ã4, S̃4, and Ã5 and
will show in addition that we may take Ŝ4 = GL2(F3). By an involution in a group
we mean as usual an element of order two (which of course is central if unique).

Lemma. Let G and J be finite groups. Assume:

(i) H2(J,C×) has order two, and J ′ has even order.
(ii) G has a unique involution, and if C is the subgroup generated by the invo-

lution then G/C ∼= J .

Then G is a Schur cover of J .

Proof. The only point to be checked is that C ⊂ G′. As C is the unique subgroup
of order two in G it is contained in every subgroup of even order, and G′ is of even
order because its quotient J ′ is. �

Proposition 27. In each of the following cases, G is a Schur cover of J , and
J ∼= G/C with C = Z(G) = {±1}:

• J = A4 and G = SL2(F3).
• J = A5 and G = SL2(F5).
• J = S4 and G = SL2(F3) ∪ (iη)SL2(F3).
• J = S4 and G = GL2(F3).

Furthermore, −1 is the unique involution in G in the first three cases, but every
transposition in S4 lifts to an involution in GL2(F3).

Proof. Over any field F the scalar matrix −1 is the unique involution in SL2(F ),
and we have identifications A4

∼= PSL2(F3) and A5
∼= SL2(F4) (∼= PSL2(F5)) by
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virtue of the transitive action of PGL2(F ) on the projective line P1(F ). The first
two cases of the proposition now follow from the lemma.

To justify the fourth case we note that the identification S4
∼= PGL2(F3) is again

a reflection of the action of PGL2(F ) on P1(F ). Since the subgroup C = {±1}
of GL2(F3) is both central and contained in GL2(F3)′ = SL2(F3), we conclude
directly from the definition that GL2(F3) is a Schur cover of S4. Now when we
identify PGL2(F3) with S4 via its action on P1(F ), the image of the matrix η
in PGL2(F3) maps to the transposition in S4 interchanging the points [1 : 1] and
[−1 : 1] of P1(F3). Since the transpositions form a conjugacy class of S4, we deduce
that every transposition in S4 lifts to an involution in GL2(F3).

Finally, in the third case G ⊂ SL2(F9), and consequently −1 is the unique
involution in G. Hence to conclude from the lemma that G is a Schur cover of
S4 it suffice to see that G/C ∼= S4, or equivalently that G/C ∼= PGL2(F3). But
GL2(F3) = SL(2,F3) ∪ ηSL2(F3), and η and iη have the same image in PGL2(F9).
Thus the identity embedding of PGL2(F3) into PGL2(F9) is an isomorphism of
PGL2(F3) onto G/C. �

Proof of Proposition 26. By Proposition 25, PG is A4, S4, or A5. As already noted,
none of these groups has a faithful irreducible two-dimensional representation, so G
intersects the group of scalar matrices in GL2(C) nontrivally. On the other hand,
G is self-dual, so the only scalar matrices which can belong to G are ±1. It follows
that −1 ∈ G, that the group C = {±1} coincides with Z(G) (by Schur’s lemma),
and that G/C ∼= PG. Now G is symplectic, for otherwise it is orthogonal, and a
two-dimensional irreducible orthogonal representation is monomial (because O2(R)
contains the abelian subgroup SO2(R) with index two). Thus G ⊂ SL2(C). As −1
is the only involution in SL2(C) and a fortiori the only involution in G, the lemma
shows that G is a Schur cover of PG. Proposition 26 now follows from Proposition
27 and the fact that a Schur cover of A4 or A5 is unique up to isomorphism, as is
a Schur cover of S4 with only one involution. �

8. Primitive representations

As already mentioned, some of the arguments used to bound the quaternionic
term in Section 6 will now find application in the primitive case. We take the class
A of Section 6 to be the collection of two-dimensional irreducible self-dual primitive
Artin representations of Q. That A is symplectic and closed under quadratic twists
follows from Proposition 26. Hence Proposition 23 gives

ϑip,sd
Q,2 (x)� x1/2

∑
[ρ]∈E
q(ρ)6x

q(ρ)−1/2+ε,(50)

where E is the set of projective equivalence classes of A. Although the validity of
(50) depends on the choice of a particular representative ρ for the equivalence class
[ρ], in the arguments that follow no further use will be made of this choice. Our
goal is the following bound:

Proposition 28. Fix γ < 1/60. Then ϑip,sd
Q,2 (x) = O(x2−γ), where the implicit

constant depends on γ.

Our strategy for proving Proposition 28 is to replace conductors by discriminants
in (50) and then to appeal to the results of Bhargava and of Bhargava, Cojocaru
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and Thorne. Consider the fixed field L of the kernel of Pρ. By Proposition 25,
Gal(L/Q) is isomorphic to one of A4, S4, and A5, and we write m for the degree
of the permutation group in question: thus m = 4 in the first two cases and m = 5
in the third. In the following proposition K is any subfield of L with [K : Q] = m.
While the choice of K is arbitrary, L is the normal closure of K over Q for every
possible choice.

Proposition 29. dK 6 cq(ρ)(m−1)/2 with an absolute constant c > 1.

Proof. A standard bound for wild ramification (cf. [33], p. 127, Proposition 2) gives

dK 6 c
∏
p|dK
p>m

pm−1.(51)

with c = 21137 if m = 4 and c = 2143959 if m = 5. (Thus we may take c = 2143959

in all cases.) On the other hand, let M be the fixed field of the kernel of ρ itself.
Then Proposition 26 implies that Gal(M/Q) is Ã4, S̃4, or Ã5 according as Gal(L/Q)
is A4, S4, or A5. Thus if p > m then p does not divide the order of the image of
ρ, and consequently the restriction of ρ to an inertia group I at p factors through
the tame quotient of I. Hence ordp q(ρ) is dim(V/V I), where V is the space of ρ
and V I the subspace of inertial invariants. Now if p|q(ρ) then V/V I has dimension
1 or 2, but if the dimension is 1 then V is the direct sum of a line on which I
acts trivially and a line on which it acts nontrivially, contradicting the fact that
det ρ = 1 (Proposition 26 again). Therefore

q(ρ) >
∏
p|q(ρ)
p>m

p2,(52)

Since L is the normal closure of K, every prime dividing dK divides q(ρ), whence
the proposition follows from (51) and (52). �

Remarks. 1) The inequalities (51) and (52) are both deduced from the fact that
one side of the inequality is divisible by the other.

2) Using the fact that A4 has no elements of order > 3, one finds that dK 6 cq(ρ)
when Gal(L/Q) ∼= A4. However this improvement in Proposition 29 does not lead
to an improvement in Proposition 28, because the latter combines all three cases.

Proposition 30. Let L be a finite Galois extension of Q such that Gal(L/Q) is
isomorphic to A4, S4, or A5. Then the number of elements [ρ] ∈ E such that L is
the fixed field of Ker (Pρ) is bounded by an absolute constant.

Proof. Put J = Gal(L/Q). We may assume that there is a quadratic extension M

of L, Galois over Q, such that the group G = Gal(M/Q) is isomorphic to Ã4, S̃4,
or Ã5 according as J is isomorphic to A4, S4, or A5. Indeed if there exists [ρ] ∈ E
such that L is the fixed field of Ker (Pρ) then we may take M to be the fixed field
of Ker (ρ), and if no such [ρ] exists then there is nothing to prove. Now up to
isomorphism, there are exactly three two-dimensional irreducible representations ϕ
of G if G ∼= Ã4 or S̃4 and exactly two if G ∼= Ã5. (Note that we are not requiring
ϕ to be faithful or self-dual or primitive.) Let us declare ϕ and ϕ′ to be equivalent
if ϕ′ ∼= ϕ ⊗ χ for some one-dimensional character χ of G. Then there is exactly
one equivalence class if G ∼= Ã4 and there are exactly two if G ∼= S̃4 or Ã5. So
the proposition will follow (with the absolute constant equal to 2) if we define an
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injective map [ρ] 7→ [ϕ] from the set of [ρ] ∈ E such that L is the fixed field of
Ker (Pρ) to the set of equivalence clases [ϕ] as above.

Given [ρ], view Pρ as a projective representation of J . Since G is a Schur cover
of J we can lift Pρ to a genuine representation ϕ of G. It is immediately verified
that the equivalence class [ϕ] of ϕ is uniquely determined by [ρ] and that the map
[ρ] 7→ [ϕ] is injective. �

Reviewing the preceding paragraphs, we see that we have defined a function
[ρ] 7→ K: Given [ρ] ∈ E , we let L be the fixed field of Ker (Pρ) and then we choose
a subfield K ⊂ L with [K : Q] = m. Since L is determined by K (indeed L is the
normal closure of K) Proposition 30 shows that the number of preimages [ρ] of K
is bounded by an absolute constant. Thus Proposition 29 gives∑

[ρ]∈E
q(ρ)6x

q(ρ)−1/2+ε �
∑

[K:Q]=4

dK6cx
3/2

d
−1/3+ε/3
K +

∑
[K:Q]=5

Gal(L/Q)∼=A5

dK6cx
2

d
−1/4+ε/2
K(53)

for 0 < ε < 1/2, where the first sum on the right-hand side runs over number
fields K with [K : Q] = 4 and dK 6 cx3/2, and the second sum runs over K
with [K : Q] = 5, dK 6 cx2, and Gal(L/Q) ∼= A5, L being the normal closure of
K. Of course the first sum could be confined to K such that Gal(L/Q) ∼= A4 or
Gal(L/Q) ∼= S4, but (53) will suffice as it stands.

We now apply Proposition 24 (i. e. Abel summation) to the first sum on the
right-hand side of (53). Since ηQ,4(x) = O(x) by [3], we deduce that∑

[K:Q]=4

dK6cx
3/2

d
−1/3+ε/3
K = O(x1+ε).(54)

The second sum on the right-hand side of (53) can be treated in the same way: By
[5] we have ηA5

Q,5(x) = O(x1−β) for any β < 1/120, so we obtain∑
[K:Q]=5

Gal(L/Q)∼=A5

dK6cx
2

d
−1/4+ε/2
K � O(x3/2−2β+ε).(55)

Inserting (54) and (55) in (53) and then concatenating the result with (50), we
obtain Proposition 28.

9. Monomial representations revisited

Assembling our estimates for the three terms on the right-hand side of (1), we
see that Theorem 2, Proposition 17, and Proposition 28 together imply the upper
bound for ϑsd

Q,2(x) claimed in (3). On the other hand, Theorem 1 gives the lower
bound for ϑab

Q,2(x) in (4), so we conclude that indeed limx→∞ ϑsd(x)/ϑ(x) = 0 for
F = Q and n = 2, as asserted in the introduction. We will now show that the limit
of ϑsd(x)/ϑirr(x) and a fortiori of ϑirr,sd(x)/ϑirr(x) is 0 also. Since ϑirr(x) > ϑim(x)
it will suffice to show that

ϑim
Q,2(x)� x2.(56)

I do not know how to replace (56) by an asymptotic equality.
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To prove (56), fix an imaginary quadratic field K, and let ϑK
Q,2(x) be the number

of isomorphism classes of two-dimensional monomial Artin representations of Q
which are induced from K and of absolute conductor 6 x. Write ϑim,K

Q,2 (x) and
ϑab,K
Q,2 (x) for the number of such classes of irreducible representations and abelian

representations respectively. Then

ϑim,K
Q,2 (x) = ϑK

Q,2(x)− ϑab,K
Q,2 (x).(57)

We shall prove that

ϑab,K
Q,2 (x)� x(58)

and then deduce that

ϑim,K
Q,2 (x) ∼ cx2(59)

with a constant c > 0 depending on K. Since ϑim
Q,2(x) > ϑim,K

Q,2 (x) the lower bound
(56) will then follow. In principle we would get a better result in (56) if instead
of fixing K we were to sum (59) over all K, taking account of any duplications.
However even after summing over K we would not be able to replace (56) by an
asymptotic formula, because we do not have the analogue of (59) for real quadratic
fields.

To prove (58), we observe that the two-dimensional abelian Artin representations
of Q induced from K are precisely the representations ρ ∼= χ⊕χ · signK/Q, where χ
is an arbitrary one-dimensional character of Gal(Q/Q) and signK/Q is the character
with kernel Gal(Q/K). As q(ρ) > q(χ)2/dK we have

ϑab,K
Q,2 (x) 6

∑
q(χ)26dKx

1,

where the sum runs over all χ satisfying the stated inequality. Recognizing this
sum as ϑQ,1(

√
x/dK), we obtain (58) from the corollary to Proposition 2.

It remains to prove (59). The Artin representations of Q counted by ϑK
Q,2(x)

are precisely the representations of the form ρ ∼= indK/Qξ, where ξ runs over one-
dimensional characters of Gal(Q/K) such that dKq(ξ) 6 x. Furthermore, if ρ is
irreducible then there are precisely two characters ξ such that indK/Qξ ∼= ρ, while
if ρ is abelian the ρ uniquely determines ξ. Therefore (57) becomes

ϑim,K
Q,2 (x) = (1/2)ϑK,1(x/dK)− (1/2)ϑab,K

Q,2 (x).(60)

Now put

c = (π/(2d5/2
K )) · (hK/(wKζK(2)))2,(61)

where ζK(s), hK , and wK are as usual the Dedekind zeta function, class number,
and number of roots of unity in K. We obtain (59) with c as in (61) by combining
(60) with (59)

the following assertion:

Theorem 3. ϑK,1(x) ∼ (π/
√
dK)(hKx/(wKζK(2)))2.

Proof. Given a nonzero integral ideal q of K, put ϕK(q) = |(OK/q)×| as before,
and set µK(q) = (−1)t if q is the product of exactly t distinct prime ideals of K



26 DAVID E. ROHRLICH

and µK(q) = 0 otherwise. Also write h∗K(q) for the number of primitive ray class
characters of K of conductor q, so that

ϑK,1(x) =
∑

Nq6x

h∗K(q)(62)

and

h∗K(q) =
∑
q′|q

µK(q/q′)hK(q′).(63)

Let wK(q) the number of roots of unity in K which are congruent to 1 modulo q.
Since K has no real embeddings, the narrow ray class number hnar

K (q) is indistin-
guishable from the wide ray class number hK(q), and consequently

hK(q) = hK · ϕK(q) · (wK(q)/wK)(64)

by (17). Combining (63) and (64), we have

h∗K(q) = (hK/wK)
∑
q′|q

µK(q/q′)ϕK(q′)wK(q′).(65)

Put ψK(q) =
∑

q′|q µK(q/q′)ϕK(q′). It is convenient to rewrite (65) in the form

h∗K(q) = (hK/wK)ψK(q) +O(1)(66)

with O(1) = (hK/wK)
∑

q′|q µK(q/q′)ϕK(q′)(wK(q′)− 1).
The expression which we have denoted O(1) is indeed bounded by a constant

depending only on K, because wK(q′) = 1 unless q′|6OK . Hence by substituting
(66) in (62) we obtain

ϑK,1(x) = (hK/wK)
∑

Nq6x

ψK(q) +O(
∑

Nq6x

1).(67)

Denote the first and second sums on the right-hand side of (67) by Σ1 and Σ2:

ϑK,1(x) = (hK/wK)Σ1 +O(Σ2).(68)

Then Σ2 is the summatory function of ζK(s), and consequently Proposition 1 gives
Σ1 ∼ λKx, where λK is the residue of ζK(s) at s = 1. In particular, Σ1 = O(x). On
the other hand, if we redo the proof of Proposition 2 with ϕ and ψ replaced by ϕK
and ψK and with the rational prime p replaced by a prime ideal p of K or by Np, as
appropriate, then we find that Σ1 is the summatory function of ζK(s− 1)/ζK(s)2.
Hence another appeal to Proposition 1 gives

Σ1 ∼ λK/(2ζK(2)2) · x2.(69)

Since Σ2 = O(x), it follows from (67) and (69) that

ϑK,1(x) ∼ λKhkx2/(2wKζK(2)2).

Substituting λK = (2π)hK/(wK
√
dK), we obtain the stated asymptotic formula.

�
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10. Malle’s conjecture

Only a weak form of Malle’s conjecture will be needed here, but for the sake of
completeness we first state the conjecture in its original form: Given a number field
F , an integer m > 2, and a transitive subgroup G of Sm, there are constants a, b,
and c satisfying 0 < a 6 1, b > 1, and c > 0 such that

ηGF,m ∼ cxa(log x)b−1.(70)

What distinguishes Malle’s conjecture from previous hypotheses of this type (cf.
Cohen [6]) is that explicit values are proposed for a and b, as we now describe.

The value of a depends only on G, not on F ; Malle denotes it a(G). To define
a(G) we recall that the index of an element g ∈ G is the quantity

ind(g) = m− cyc(g),

where cyc(g) is the number of cycles in the exhaustive disjoint cycle decomposition
of g. Here “exhaustive” means that cycles of length 1 are included; for example if
g = 1 then we write g = (1)(2) · · · (m) and find that cyc(g) = m and ind(g) = 0,
while if g 6= 1 then ind(g) > 0. We put

ind(G) = min
g∈G
g 6=1

ind(g)

and a(G) = ind(G)−1.
The quantity b depends on F as well as G. The function g 7→ ind(g) is constant

on conjugacy classes of G, so we can speak of the index of a conjugacy class, and
we let C be the set consisting of all conjugacy classes C such that ind(C) = ind(G).
We define an action of Gal(F/F ) on C by setting σ · C = Cω(σ) for σ ∈ Gal(F/F )
and C ∈ C, where ω : Gal(F/F ) → Ẑ

× is the cyclotomic character (Ẑ being the
ring of adelic integers) and Cω(σ) is the conjugacy class consisting of the elements
gω(σ) with g ∈ C. If one prefers one can take ω to be the mod-e cyclotomic
character Gal(F/F ) → Z/eZ

× for any positive integer e divisible by the order of
every element of G. In any case, b is the number of orbits of Gal(F/F ) on C.

A counterexample of Klüners [21] shows that with these definitions Malle’s orig-
inal conjecture (70) is false: If F = Q, n = 6, and

G = ((Z/3Z)× (Z/3Z))o (Z/2Z)

(embedded in S6 by identifying the first factor of Z/3Z with 〈(123)〉, the second
with 〈(456)〉, and Z/2Z with 〈(14)(25)(36)〉) then a = 1/2 and b = 1, but Klüners
shows that the left-hand side of (70) is � x1/2 log x. However if we state Malle’s
conjecture in the weaker form

ηGF,m(x)� xa(G)+ε(71)

for all ε > 0, where the implicit constant depends on F , G, and ε, then the con-
jecture has so far proved unassailable, and henceforth it is (71) to which reference
will be made. We shall call (71) the weak form of Malle’s conjecture.

At this juncture we change perspective slightly by viewing G as an abstract group
of order m > 2. If we wish to regard G as a permutation group then we do so via
the regular representation, so that the associated embedding G ↪→ Sm is uniquely
determined up to conjugacy in Sm. Now fix an integer n > 2 and let ϑGF,n(x) be the
number of isomorphism classes of n-dimensional irreducible Artin representations ρ
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of F with image isomorphic to G and q(ρ) 6 x. We would like to compare ϑGF,n(x)
with ηGF,m(x). In Section 11 we will prove the inequality

dL/F 6 q(ρ)|G|−n(n−1),(72)

where L is the fixed field of the kernel of ρ and ρ is as before an n-dimensional
irreducible Artin representation of F with image isomorphic to G. Granting (72),
and making the trivial remark that if q(ρ) 6 x then q(ρ)|G|−n(n−1) 6 x|G|−n(n−1),
we see that

ϑGF,n(x) 6 in(G) · ηGF,m(x|G|−n(n−1)),(73)

where in(G) is the number of isomorphism classes of faithful n-dimensional irre-
ducible complex representations of G.

Proposition 31. Let p be the smallest prime divisor of |G|, and fix

γ < pn(n− 1)/((p− 1)|G|).

If the weak form of Malle’s conjecture holds then

ϑGF,n(x)� xp/(p−1)− γ ,

where the implied constant depends on F , G, n, and γ.

Proof. Since G is a permutation group via the regular representation, we have
cyc(g) = |G|/|g| for g ∈ G, where |g| is the order of g. Thus ind(G) = |G| − |G|/p
and a(G) = p/((p − 1)|G|). Inserting this value in (71) and then combining (71)
with (73) gives the stated estimate. �

Next we recall a theorem of Jordan: If G is a finite subgroup of GLn(C) then
G has an abelian normal subgroup of index bounded by a constant depending only
on n. We denote the optimal choice of this constant j(n). The value j(2) = 60 is
classical, and the value of j(n) for arbitrary n was determined by Collins [7]. For
example if n > 71 then j(n) = (n+ 1)!.

Proposition 32. Let G be a finite irreducible self-dual subgroup of GLn(C). If G
is primitive then |G| 6 2j(n).

Proof. Let ι : G ↪→ GLn(C) be the tautological representation and A an abelian
normal subgroup of G of index 6 j(n). Then ι|A is a direct sum of one-dimensional
characters of A. Let χ be a one-dimensional character of A occurring in ι|A.
If the multiplicity of χ in ι|A is < n then the subgroup of G stabilizing χ is a
proper subgroup from which ι is induced, contradicting the primitivity of ι. Hence
ι|A = χ⊕n, and therefore

|G| = [G : A]|Ker χ|.

But ι is self-dual, hence so is ι|A. Thus χ2 = 1 and consequently |Ker χ| 6 2. �

Finally we deduce a conditional bound on ϑip,sd
F,n (x):

Proposition 33. Fix γ < n(n − 1)/j(n). If the weak form of Malle’s conjecture
holds then

ϑip,sd
F,n (x)� x2−γ ,

where the implied constant depends on F , n, and γ.
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Proof. The only irreducible self-dual representation of a group of odd order is the
one-dimensional trivial representation. Hence it follows from Proposition 32 that

ϑip,sd
F,n (x) 6

∑
|G|62j(n)
|G| even

ϑGF,n(x),(74)

where the sum on the right-hand side runs over a set of representatives for the
distinct isomorphism classes of groups of even order 6 2j(n). Taking p = 2 in
Proposition 31, we obtain the stated estimate. �

11. Lower bounds for the conductor

We must still prove (72), the inequality between conductors and discriminants.
Fix a number field F and a finite Galois extension L of F , and put G = Gal(L/F ).

Lemma. Let ρ and λ be finite-dimensional complex representations of G, with ρ
faithful. Then q(λ) divides q(ρ)dim(λ).

Proof. Fix a prime ideal p of F , and let a(ρ) and a(λ) be the exponent of p in q(ρ)
and q(λ) respetively. It suffices to see that

a(λ) 6 dim(λ)a(ρ).(75)

Let I ⊂ G be the inertia subgroup of some fixed prime ideal of L above p. If I = {1}
then both sides of (75) are 0 and there is nothing to prove. Hence we may assume
that I 6= {1}.

Let G0 = I ⊇ G1 ⊇ G2 ⊇ . . . be the higher ramification subgroups of I in the
lower numbering (cf. [32], p. 62). Since I is nontrivial there exists an integer n > 1
such that Gi 6= {1} for 0 6 i 6 n and Gi = {1} for i > n + 1. Writing V for the
space of ρ and V Gi for the subspace of vectors fixed by Gi, we have

a(ρ) =
n∑
i=0

|Gi|
|G0|

dim(V/V Gi)(76)

(cf. [32], p. 100). Similarly,

a(λ) =
n∑
i=0

|Gi|
|G0|

dim(W/WGi),(77)

where W is the space of λ. Now as ρ is faithful we have V Gi 6= V for 1 6 i 6 n
and hence dim(V/V Gi) > 1. Thus

dim(W/WGi) 6 dim(W ) = dim(λ) 6 dim(λ)dim(V/V Gi).

Substituting this inequality in (77) and comparing the result with (76), we obtain
(75). �

The inequality (72) is an immediate consequence of the following proposition:

Proposition 34. Let ρ be a faithful irreducible complex representation of G. Then
dL/F divides q(ρ)|G|−(n2−n), where n = dim(ρ).
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Proof. We apply the lemma to a set of representatives λ for the distinct isomorphism
classes of irreducible representations of G. Raising both ideals in the divisibility of
the lemma to the power dimλ and then taking the product over λ 6≡ ρ, we see that∏

λ6∼=ρ

q(λ)dimλ divides q(ρ)
∑
λ 6∼=ρ(dimλ)2

.(78)

Let regG denote the regular representation of G, and multiply the divisor and
dividend in (78) by the same ideal q(ρ)n. Since regG ∼= ⊕λλ⊕dimλ, we obtain

q(regG) divides q(ρ)(
∑
λ(dimλ)2)−n2+n.

Now q(regG) = dL/F by Artin’s conductor-discriminant formula (cf. [32], p. 104).
Since |G| =

∑
λ(dimλ)2, the proposition follows. �

12. A conditional result in dimension three

To evaluate limx→∞ ϑsd(x)/ϑ(x) conditionally when F = Q and n = 3, we must
bound each of the three terms on the right-hand side of (2). The first term is easily
dealt with:

ϑab,sd
Q,3 (x) = O(x(log x)2).(79)

by Theorem 2.
To bound ϑ1+2,sd

Q,3 (x), we observe that if a self-dual representation is a direct sum
of a one-dimensional and an irreducible two-dimensional representation then the
one-dimensional and two-dimensional representations are self-dual. Thus

ϑ1+2,sd
Q,3 (x) =

∑
q6x

ψsd(q)ϑirr,sd
Q,2 (x/q),(80)

where ψsd(q) is the number of primitive Dirichlet characters χ of conductor q sat-
isfying χ2 = 1, as in Section 2. But (3) gives

ϑirr,sd
Q,2 (x/q) 6 ϑsd

Q,2(x/q)� (x/q)2−ε

for any ε < 1/60, so (80) becomes

ϑ1+2,sd
Q,3 (x)� x2−ε

∑
q6x

ψsd(q)
q2−ε .(81)

Applying Proposition 24 with n(q) = ψsd(q), we find that∑
q6x

ψsd(q)
q2−ε = O(1),(82)

because ϑsd
Q,1(t)� t by the corollary to Proposition 3. In view of (82) we have

ϑ1+2,sd
Q,3 (x)� x2−ε(83)

after substitution in (81).
It remains to bound ϑirr,sd

Q,3 (x). We will use a variant of Proposition 32:

Proposition 35. Let G be a finite irreducible self-dual subgroup of GLn(C). If n
is odd then |G| 6 2nj(n).
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Proof. The proof is similar to the proof of Proposition 32. If A is an abelian
normal subgroup of G of index 6 j(n) and ι : G ↪→ GLn(C) is the tautological
representation then ι|A is a direct sum of one-dimensional characters of A, and it
follows from the self-duality of ι|A that the multiplicity of any character χ occurring
in ι|A equals the multiplicity of χ−1. Furthermore, since A is normal in G and ι
is irreducible, all of the one-dimensional characters χ of A occurring in ι|A are
conjugate under the action of G and thus have the same order w. If w > 3 then
χ 6= χ−1, whence ι|A is a direct sum of two-dimensional representations of the form
χ ⊕ χ−1, contradicting the assumption that n is odd. Thus w = 2. Since A is
abelian we may assume after a conjugation in GLn(C) that A is contained in the
group of diagonal matrices, hence in the group of diagonal matrices of order 6 2.
Thus |A| 6 2n and |G| = [G : A]|A| 6 j(n)2n. �

We apply the proposition with n = 3. Using the value j(3) = 360 [7], and
recalling once again that a group of odd order does not have nontrivial irreducible
self-dual representations, we see that

ϑirr,sd
Q,3 (x) 6

∑
|G|62880
|G| even

ϑG
Q,3(x),(84)

where the sum on the right-hand side runs over a set of representatives for the
distinct isomorphism classes of groups of even order 6 2880. Applying Proposition
31 with p = 2, we obtain:

Proposition 36. Fix γ < 1/240. If the weak form of Malle’s conjecture holds then

ϑirr,sd
Q,3 (x)� x2−γ ,

where the implied constant depends on γ.

Using the proposition together with (79) and (83) on the right-hand side of (2),
we obtain the conditional bound ϑsd

Q,3(x) = O(x2−γ) for every γ < 1/240. Since
ϑab
Q,3(x) � (x log x)2 by Theorem 1, we conclude under Malle’s conjecture that

limx→∞ ϑsd(x)/ϑ(x) = 0 for F = Q and n = 3.

13. Appendix: Proof of Propositions 10, 11, and 12

We shall prove the propositions in reverse order.

Proof of Proposition 12. (a) The irreducibility of ρ follows from Mackey’s criterion,
because the assumption that χ has order > 3 means that χ 6= χ−1 and hence that
χ 6= χg for g ∈ GrH. The self-duality of ρ follows from the calculation

ρ∨ = (indGHχ)∨ ∼= indGHχ
−1 ∼= indGHχ

g ∼= ρ.

Finally, induction preserves faithfulness.
(b) A straightforward calculation shows that if g ∈ G r H and h ∈ H then

tranGH(h) = hghg−1. Consequently χ ◦ tranGH |H = χχg, whence χg = χ−1 if and
only if χ ◦ tranGH |H = 1. Since signGH and 1 are precisely the characters of G trivial
on H we obtain the first half of (b). Now an irreducible self-dual representation is
either orthogonal or symplectic, and we have just observed that if χg = χ−1 then
χ ◦ tranGH is either 1 or signGH . Thus to prove the second half of (b) it suffices to
see that χ ◦ tranGH = signGH if and only if ρ is symplectic, or equivalently (since
Sp2(C) = SL2(C)) if and only if det ρ = 1. We now appeal to the formula for the
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determinant of an induced representation (cf. [13] or [10], p. 508, Proposition 1.2),
which takes the form det ρ = (signGH)(χ ◦ tranGH) in the case at hand. �

Proof of Proposition 11. Since ρ is monomial, there exists a subgroup H of index
two in G and a one-dimensional character χ of H such that ρ is induced by χ. Since
ρ is irreducible, χ 6= χg for g ∈ G r H, and ρ|H = χ ⊕ χg. Thus by Frobenius
reciprocity χ and χg are precisely the two characters of H inducing ρ. But ρ is
self-dual, so χ−1 also induces ρ. Hence either χ−1 = χg and χ is of order > 3 or
else χ−1 = χ and χ is quadratic. In the latter case ρ is realizable over R, hence
orthogonal. Viewing G as a subgroup of O2(R), we can replace H by SO2(R) ∩G
to get a cyclic subgroup of index two in G. On the other hand, if χ−1 = χg then
ρ|H ∼= χ⊕ χ−1. Since ρ is faithful, so is χ, whence H is cyclic.

Thus G has a cyclic subgroup of index two. If H is any such subgroup then
ρ|H ∼= χ⊕ χ′ with one-dimensional characters χ and χ′ of H, and χ 6= χ′ because
ρ is irreducible (if H is central then G is abelian). The irreducibility also gives
χ′ = χg for g ∈ G r H, whence ρ ∼= indGHχ. We are now in the situation of the
previous paragraph, but this time H is cyclic and so has at most one quadratic
character. Thus if χ is quadratic then χg, which is consequently also quadratic,
coincides with χ, a contradiction. Hence χ has order > 3 and χ−1, which induces
ρ and thus coincides with one of χ and χg, coincides with χg. �

Proof of Proposition 10. Applying Proposition 11 to the tautological representation
ι : G → GL2(C), we see that ι = indGHχ for some cyclic subgroup H of index two
in G and some character χ of H as in the proposition. Let a be a generator of H
and choose b ∈ GrH. Then χb = χ−1, and since χ is faithful we get bab−1 = a−1.
Also b2 ∈ H as [G : H] = 2. If b2 = 1 then G ∼= D2m with m > 3. Otherwise b2 is
a nontrivial element of the center of G, whence b2 (= ι(b2)) is a scalar 6= 1 (Schur’s
lemma). Since ι is self-dual we get b2 = −1. But b2 ∈ H, so H has even order.
Write |H| = 2m; then am = b2 and G ∼= H4m.

The second assertion of the proposition follows from Proposition 12, because
tranGH(b) = 1 or −1 according as G ∼= D2m or H4m.

�
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ings of the Durham Symposium, A. Fröhlich ed. Academic Press (1977), 1 – 87

[28] P. Michel and A. Venkatesh, On the dimension of the space of cusp forms associated to 2-
dimensional complex Galois representations, Internat. Math. Research Notices (2002), 2021

– 2027.
[29] M. R. Murty, Artin’s conjecture for primitive roots, Math. Intelligencer 10 (1988), 59 – 67.

[30] H. Roskam, A quadratic analogue of Artin’s conjecture on primitve roots, J. Number Theory

81 (2000), 93 – 109.
[31] J.-P. Serre, Modular forms of weight one and Galois representations In: Algebraic Number

Fields, Proceedings of the Durham Symposium, A. Fröhlich ed. Academic Press (1977), 193
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