
p-ADIC GROSS–ZAGIER FORMULA AT CRITICAL SLOPE AND

A CONJECTURE OF PERRIN-RIOU
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Abstract. Let p be an odd prime. Given an imaginary quadratic field K =
Q(
√
−DK) where p splits with DK > 3, and a p-ordinary newform f ∈

Sk(Γ0(N)) such that N verifies the Heegner hypothesis relative to K, we

prove a p-adic Gross–Zagier formula for the critical slope p-stabilization of
f (assuming that it is non-θ-critical). In the particular case when f = fA is

the newform of weight 2 associated to an elliptic curve A that has good ordi-

nary reduction at p, this allows us to verify a conjecture of Perrin-Riou. The
p-adic Gross–Zagier formula we prove has applications also towards the Birch

and Swinnerton-Dyer formula for elliptic curves of analytic rank one.
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1. Introduction

Fix forever an odd prime p as well as embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp.
Let N be an integer coprime to p. We let vp denote the valuation on Qp, normalized
so that vp(p) = 1.

Let f =
∞∑
n=1

anq
n ∈ Sk(Γ0(N)) be a newform of even weight k ≥ 2 and level

N ≥ 3. Let Kf := ι−1
∞ (Q(· · · , an, · · · )) denote the Hecke field of f and P the prime

of Kf induced by the embedding ιp. Let E denote an extension of Qp that contains
ιp(Kf ). We shall assume that vp(ιp(ap)) = 0, namely that f is P-ordinary. Let

α, β ∈ Q denote the roots of the Hecke polynomial X2 − ι−1
∞ (ap)X + pk−1 of f at

p. We assume that E is large enough to contain both ιp(α) and ιp(β). Since we
assume that f is P-ordinary, precisely one of ιp(α) and ιp(β) (say, without loss of
generality, ιp(α)) is a p-adic unit. Then vp(ιp(β)) = k − 1. To ease our notation,
we will omit ιp and ι∞ from our notation unless there is a danger of confusion.

The p-stabilization fα ∈ Sk(Γ0(Np)) of f is called the ordinary stabilization and
fβ is called the critical-slope p-stabilization. We shall assume throughout that fβ

is not θ-critical (in the sense of Definition 2.12 in [Bel12]).

Our main goal in the current article is to prove a p-adic Gross–Zagier formula for
the critical-slope p-stabilization fβ . This is Theorem 1.1.1. In the particular case
when f has weight 2 and it is associated to an elliptic curve A/Q, this result allows
us to prove a conjecture of Perrin-Riou. This is recorded below as Theorem 1.1.5;
it can be also translated into the statement of Theorem 1.1.4, which is an explicit
construction of a point of infinite order in A(Q) in terms of the two p-adic L-
functions associated to fA (under the assumption that A has analytic rank one, of
course). As a by product of Theorem 1.1.1, we may also deduce that at least one of
the two p-adic height pairings associated to A is non-degenerate. This fact yields
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the proof of the p-part of the Birch and Swinnerton-Dyer formula1 for A; this is
Theorem 1.1.8 below.

Before we discuss these results in detail, we will introduce more notation. Let
S denote the set consisting of all rational primes dividing Np together with the
archimedean place. We let Wf denote Deligne’s (cohomological) p-adic represen-
tation associated to f (so that the Hodge–Tate weights of Wf are (1 − k, 0), with
the convention that the Hodge–Tate weight of the cyclotomic character is +1). Set
Vf = Wf (k/2); we call Vf the central critical twist of Wf . Both Wf and Vf are
unramified outside S and they are crystalline at p.

Let Dcris(Vf ) denote the crystalline Dieudonné module and D†rig(Vf ) Fontaine’s

(étale) (ϕ,Γcyc)-module associated to Vf |GQp
. We letDα, Dβ denote the eigenspaces

of Dcris(Vf ) for the action of the crystalline Frobenius ϕ; so that ϕ|Dα = p−k/2α

and ϕ|Dβ = p−k/2β.

Let K = Q(
√
−DK) be an imaginary quadratic field and let H1

f (K,Vf ) denote
the Bloch-Kato Selmer group associated to Vf . For each λ ∈ {α, β} the submodule
Dλ ⊂ Dcris(Vf ) defines a canonical splitting of the Hodge filtration on Dcris(Vf ),
namely that we have

Dcris(Vf ) = Dλ ⊕ Fil0Dcris(Vf ).

as E-vector spaces. Note that our assumption that fβ is non-θ-critical is necessary
to ensure this splitting when λ = β (see [Bel12, Proposition 2.11(iv)]). We let

hNek
λ,K : H1

f (K,Vf )×H1
f (K,Vf ) −→ E

denote the p-adic height pairing that Nekovář in [Nek93] has associated to this
splitting.

Suppose that the prime p splits in K and write (p) = ppc. Assume also that K
verifies the Heegner hypothesis relative to N . Let εK denote the quadratic Dirichlet
character associated to K/Q. The Heegner hypothesis ensures that ords= k

2
L(f/K , s)

is odd and there exists a Heegner cycle zf ∈ H1
f (K,Vf ).

1.1. Results. Let LKob
p,β (f/K , s) be the p-adic L-function given as in (4.3.1). It is

the critical slope counterpart of Nekovář’s p-adic L-function associated to the p-
ordinary stabilization fα. It follows from its interpolation property that LKob

p,β (f/K , 1) =
0. As its predecessors, our p-adic Gross–Zagier formula expresses the first derivative
of LKob

p,β (f/K , s) in terms of the p-adic height of the Heegner cycle zf :

Theorem 1.1.1. Let f ∈ Sk(Γ0(N)) be a newform with N ≥ 3. Suppose f is
p-ordinary with respect to the embedding ιp and let fβ denote its critical-slope p-
stabilization (of slope vp(β) = k − 1). Assume also that fβ is not θ-critical. Let
K = Q(

√
−DK) be an imaginary quadratic field where the prime p splits and that

satisfies the Heegner hypothesis relative to N . Then,

d

ds
LKob
p,β (f/K , s)

∣∣
s= k

2

=

(
1− p

k
2−1

β

)4

·
hNek
β,K(zf , zf )

(4|DK |)
k
2−1

.

1Under the additional hypothesis that A be semistable, this has been proved in [BBV16,
JSW17, Zha14] using different techniques. We do not need to assume that A is semistable.
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This theorem is proved by appealing to the existence of p-adic families of finite
slope modular forms, which allows us, using the existence of a suitable two-variable
p-adic L-function2 and Theorem 3.5.4 to reduce to the case of non-critical slope.
Such a non-critical slope result is precisely Theorem 5.1.1 (p-adic Gross-Zagier
formula for non-ordinary eigenforms of arbitrary weight; which is work in progress
by Kobayashi [Kob19]). More precisely, Kobayashi’s method only establishes a p-
adic Gross–Zagier formula in the non-ordinary case for one of the two p-stabilization
of a given form (the one of smaller slope). However, this result is sufficient for our
method and moreover, our method not only yields the Gross–Zagier formula in the
case of critical slope, but also allows us to handle the case of the other non-ordinary
p-stabilization. See Theorem 1.1.11 for an even more general statement.

1.1.1. Abelian varieties of GL2-type. We assume until the end of this introduc-
tion that f has weight 2. Let Af/Q denote the abelian variety of GL2-type that
the Eichler-Shimura congruences associate to f . This means that there exists
an order Of ⊂ Kf and an embedding Of ↪→ EndQ(Af ). We shall assume that
ords=1L(f/Q, 1) = 1 and we choose K (relying on [BFH90]) in a way to ensure

that ords=1L(f/K , 1) = 1 as well. In this scenario, the element zf ∈ H1(Q, Vf )
is obtained as the Kummer image of the f -isotypical component Pf of a Heegner
point3 P ∈ J0(N)(K). Here, J0(N) is the Jacobian variety of the modular curve
X0(N) and we endow it with the canonical principal polarization induced by the
intersection form on H1(X0(N),Z). This equips Af with a canonical polarization
as well.

We let 〈 , 〉J0(N)
∞ denote the Néron-Tate height pairing on the abelian variety

J0(N). Nekovář’s constructions in [Nek93] gives rise to a pair of E-equivariant
p-adic height pairings

hNek
λ,Q : (Af (Q)⊗Of E)× (Af (Q)⊗Of E) −→ E

for each λ = α, β. We set

c(f) := −
L′(f/Q, 1)

〈Pf , Pf 〉J0(N)
∞ 2πiΩ+

f

∈ K×f

where Ω+
f is a choice of Shimura’s period. We note that Kf -rationality of c(f) is

proved in [GZ86].

Corollary 1.1.2. In addition to the hypotheses of Theorem 1.1.1, suppose that
k = 2 and ords=1L(f/Q, 1) = 1. Then for Af , Pf ∈ Af (Q) and c(f) ∈ K×f as in
the previous paragraph we have

L′p,β(f/Q, 1) = (1− 1/β)
2
c(f)hNek

β,Q (Pf , Pf ).

Remark 1.1.3. The version of Theorem 1.1.1 above for the p-ordinary stabilization
fα is due to Perrin-Riou (when k = 2) and Nekovář (when k is general). The
version of Corollary 1.1.2 concerning the p-adic L-function Lp,α(f/Q, s) follows from
Perrin-Riou’s p-adic Gross–Zagier theorem.

2The construction of this p-adic L-function follows from the work of Loeffler [Loe17] and
Loeffler-Zerbes [LZ16].

3More precisely, P ∈ J0(N)(K) is given as the trace of a Heegner point y ∈ J0(N)(HK) which
is defined over the Hilbert class field HK of K. Our restriction on the sign of the functional
equation (for the Hecke L-function of f) shows that that Pf ∈ J0(N)(Q)⊗Kf .
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1.1.2. Elliptic curves. In this subsection, we will specialize to the case when Kf =
Q, so that A = Af is an elliptic curve defined over Q of conductor N and analytic
rank one, with good ordinary reduction at p and without CM. We note that it
follows from [Eme04, Theorem 1.3] that fβ is not θ-critical.

We still assume that ords=1L(f/Q, 1) = 1 and we choose K as in Section 1.1.1.
We assume that the mod p representation

ρA : GQ −→ AutFp(A[p])
∼−→ GL2(Fp)

is absolutely irreducible. We fix a Weierstrass minimal model A/Z of A and let
ωA denote the Néron differential normalized as in [PR95, §3.4] and is such that its
associated real period Ω+

A is positive. Set V = Tp(A)⊗Qp and we let ωcris ∈ Dcris(V )
denote the element that corresponds to ωA under the comparison isomorphism.
Extending scalars (to a sufficiently large extension E of Qp) if need be, we shall
denote by Dα, Dβ ⊂ Dcris(V ) the corresponding eigenspaces as before. Set ωcris =
ωα + ωβ with ωα ∈ Dα and ωβ ∈ Dβ . We let

[−,−] : Dcris(V )× Dcris(V ) −→ E

denote the canonical pairing (induced from the Weil pairing) and we set δA :=
[ωβ , ωα]/c(f). We let ω∗A ∈ Dcris(V )/Fil0Dcris(V ) denote the unique element such
that [ωA, ω

∗
A] = 1. We remark that Dcris(V )/Fil0Dcris(V ) may be identified with

the tangent space of A(Qp) and the Bloch-Kato exponential map

expV : Dcris(V )/Fil0Dcris(V ) −→ H1
f (Qp, V ) = A(Qp)⊗ Qp

with the exponential map for the p-adic Lie group A(Qp).

Theorem 1.1.4. Suppose A = Af is in the previous paragraph (so k = 2, Kf = Q
and ρf is absolutely irreducible). In addition to all the hypotheses of Theorem 1.1.1,
assume that ords=1L(A/Q, 1) = 1. Then

expV

(
ω∗A ·

√
δA

(
(1− 1/α)−2 · L′p,α(f/Q, 1)− (1− 1/β)−2 · L′p,β(f/Q, 1)

))
is a Q-rational point on the elliptic curve A of infinite order.

The theorem above asserts the validity of a conjecture of Perrin-Riou. We also
note that this theorem allows for the explicit computation of rational points on
elliptic curves. Indeed one can compute the expression appearing in Theorem 1.1.4
to very high p-adic accuracy by using the methods of [PS11] where algorithms
are given to compute the derivatives of both ordinary and critical slope p-adic L-
functions. Such computations should be compared to the analogous computations
in [KP07] in the non-ordinary case.

Theorem 1.1.4 may be deduced from the next result we present (in a manner
identical to the argument in [Büy17, §2.3]), which compares the Bloch-Kato log-
arithms of two distinguished elements of the Bloch-Kato Selmer group H1(Q, V ) :
the Beilinson-Kato element BK1 and the Heegner point Pf given as above, for
an appropriate choice of the imaginary quadratic field K. Notice that under our
running hypotheses

H1
f (Q, V ) = A(Q)⊗ Qp
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and it is a one dimensional Qp-vector space. Note that Pf ∈ A(Q) is a rational
point on A and as such, it is a genuinely algebraic object, whereas BK1 ∈ A(Q)⊗
Qp is a transcendental object that relates to both p-adic L-functions. The proof
of Theorem 1.1.4 boils down to setting up an explicit comparison between BK1

and Pf . This is precisely the content of Theorem 1.1.5. It was conjectured by
Perrin-Riou and was proved independently by Bertolini–Darmon–Venerucci in their
preprint [BDV19] (their approach is different from ours).

Theorem 1.1.5. Suppose A/Q is an elliptic curve as in Theorem 1.1.4 and let
P ∈ A(Q) be a generator of the free part of its Mordell-Weil group. We have

logA (resp(BK1)) = −(1− 1/α)(1− 1/β) · c(f) · logA (resp(P ))
2
,

where logA stands for the coordinate of the Bloch-Kato logarithm associated to A
with respect to the basis (of the tangent space) dual to that given by the Néron
differential ωA.

One key result that we rely on establishing Theorem 1.1.5 is the following con-
sequence of our p-adic Gross–Zagier formula. We record it in Section 1.1.3 as we
believe that it is of independent interest; while we re-iterate that a proof of The-
orem 1.1.4 is not written down explicitly in this article as it follows verbatim as
in [Büy17].

1.1.3. p-adic heights on Abelian varieties of GL2-type and the conjecture of Birch
and Swinnerton-Dyer. Throughout this section, we still assume that f ∈ S2(Γ0(N))
has weight two; but we no longer assume that Kf = Q. We retain our hypothesis
that ords=1L(f/Q, 1) = 1 and we choose K as in Section 1.1.1. In this situation,
it follows from the work of Gross–Zagier and Kolyvagin–Logachev that the Tate-
Shafarevich group III(Af/Q) is finite and the Heegner point

P :=
∑

σ:Kf ↪→Q

Pfσ ∈ Af (Q)

generates Af (Q)⊗ Q as a Kf -vector space.

Theorem 1.1.6. Suppose f =
∑
anq

n ∈ S2(Γ0(N)) is a newform with N ≥ 3 and
such that

• vp(ιp(ap)) = 0,
• neither of the p-stabilizations of f is θ-critical,
• the residual representation ρf (associated to the P-adic representation at-

tached to f) is absolutely irreducible,
• ords=1L(f/Q, 1) = 1 .

Then either hNek
α,Q or hNek

β,Q is non-degenerate.

Remark 1.1.7. When Kf = Q and p is a prime of good supersingular reduction
for the elliptic curve A = Af , a stronger form of Theorem 1.1.6 was proved by
Kobayashi in [Kob13]. Fortunately, this weaker version is good enough for applica-
tions towards the Birch and Swinnerton-Dyer conjecture we discuss below.

The final result we shall record in this introduction (Theorem 1.1.8 below)
is a consequence of Theorem 1.1.1 and Theorem 1.1.6 towards the Birch and
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Swinnerton-Dyer conjecture for the abelian variety Af . Under the additional hy-
pothesis that Kf = Q and A be semistable, this has been proved in [BBV16, JSW17,
Zha14]4 using different techniques. Our results here allow us to adapt the proof of
[Kob13, Cor. 1.3]) to the current setting to obtain a much simpler proof of (the
p-part of) the Birch and Swinnerton-Dyer formula and eliminate the semistability
hypothesis in [JSW17].

Before we state our result, we define the Of -equivariant L-function L(Af/Q, s)
(with values in Kf ⊗ C) by setting

L(Af/Q, s) := (L(fσ/Q, s))σ∈Σ ,

where Σ = {σ : Kf ↪→ Q}. For any {xi} ⊂ Af (Q) (resp. {yj} ⊂ A∨f (Q)) that

induces a basis of Af (Q) ⊗Z Q (resp. of A∨f (Q) ⊗ Q), the Néron-Tate regulator

R∞(Af/Q) on Af (Q) is given as

R∞(Af/Q) :=
det(〈xi, yj〉∞)

[Af (Q) :
∑

Zxi] [A∨f (Q) :
∑

Zyj ]
.

We let Reg∞,σ(Af/Q) denote the σ-component of this regulator, given as in (14),
so that we have

Reg∞(Af/Q) =
∏
σ∈Σ

Reg∞,σ(Af/Q)

(see Remark 6.2.2 where we discuss this factorization). We may then write

L∗(Af/Q, 1) :=

(
− L′(fσ/Q, 1)

Reg∞,σ(Af/Q) · 2πiΩ+
fσ

)
σ∈Σ

∈ Kf ⊗ Q

to denote the algebraic part of the leading coefficient of the equivariant L-function
L(Af/Q, s) at s = 1.

Theorem 1.1.8. Suppose f ∈ S2(Γ0(N)) is a newform as in Theorem 1.1.6. If
the Iwasawa main conjecture holds true for each fσ/Q, we have

L∗(Af/Q, 1) ∈ |III(Af/Q)| · Tam(Af/Q)

|Af (Q)tor| · |A∨f (Q)tor|
(Of ⊗ Zp)

× .

Here:

• Tam(Af/Q) :=
∏
`|N c`(Af/Q) and c`(Af/Q) is the Tamagawa factor at `.

• Af (Q)tor (resp. A∨f (Q)tor) is the torsion subgroup of the Mordell-Weil group

of Af (resp. of the dual abelian variety A∨f ).

Corollary 1.1.9. Suppose A/Q is a non-CM elliptic curve with analytic rank one
and that

(MC1) A has good ordinary reduction at p,
(MC2) ρA is absolutely irreducible,
(MC3) one of the following two conditions hold:

4Besides the assumption that A be semistable, [Zha14, Theorem 7.3] has additional assumption

that p is coprime to Tamagawa factors and [BBV16, Theorem A] requires p be non-anomalous
for A. In Section 5.6 of [BBV16], the authors explain a strategy to weaken the semistability

hypothesis.
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(MC3.1) There exists a prime q||N such that p - ordq(∆q) for a minimal dis-
criminant ∆q of A at q.

(MC3.2) We have ρA(GQ) ⊃ SL2(Zp) and there exists a real quadratic field F
verifying the conditions of [Wan15, Theorem 4].

Then the p-part of the Birch and Swinnerton-Dyer formula for A holds true.

Remark 1.1.10. The Iwasawa main conjecture for fσ/Q relates the characteristic ideal

of a Selmer group of the p-adic Galois representation Tσ := lim←−Af (Q)[Pn
σ], where

Pσ is the prime of Kf that is induced by the embedding ιp ◦ σ : Kf ↪→ Qp, to one
of the p-adic L-functions Lp,λσ (fσ/Q, s) (where λσ := ιp ◦ σ(λ) for λ = α or β and

where we have extended σ to an embedding Kf (α) ↪→ Q in an arbitrary manner).
Whether or not Tσ is an ordinary Galois representation or not depends on whether
or not ιp ◦ σ ◦ ι−1

∞ (ap) is a p-adic unit and therefore, the proof of the p-part of
Birch and Swinnerton-Dyer formula for a general GL2-type abelian variety requires
the Iwasawa main conjecture both for primes of good ordinary reduction and good
supersingular reduction. There has been great progress in this direction; c.f. the
works of Skinner-Urban and Wan.

When Kf = Q and p is a prime of good ordinary reduction for A = Af , one
only needs the main conjectures for a good ordinary prime. This has been proved
in [SU14] and [Ski16, Theorem 2.5.2] (under the hypotheses (MC1), (MC2) and
(MC3.1)) and in [Wan15] (under (MC1) and (MC3.2)).

We close this introduction with a brief overview of our strategy to prove The-
orem 1.1.1. We remark that the original approach of Perrin-Riou and Kobayashi
(which is an adaptation of the original argument of Gross and Zagier) cannot be
applied in our case of interest as there is no Rankin-Selberg construction of the

critical-slope p-adic L-functions Lp(f
β
/Q, s) and Lp(f

β
/Q⊗εK , s). The main idea is to

prove a version of the asserted identity in p-adic families. That is to say, we shall
choose a Coleman family f through the p-stabilized eigenform fβ (over an affinoid
domain A ) and we shall consider the following objects that come associated to f:

• A two-variable p-adic L-function Lp(f/K , s). The construction is essentially

due to Loeffler (and it compares to that due to Belläıche); we recall its
defining properties in Section 4 below. One subtle point is that this p-
adic L-function does not5 interpolate LKob

p,β (f/K , s), but rather an explicit

multiple of it. This extra (non-interpolatable) p-adic multiplier is essentially
the p-adic interpolation factor for the adjoint p-adic L-function attached to
fβ . Crucially, the same factor also appears in the height side.
• An A -adic height pairing hf,K that interpolates Nekovář’s p-adic height

pairings for the members of the Coleman family, in the sense that the
diagram (4) below (located just before the start of Section 3.5) commutes.
It is important to compare the “correction factor”6 that appears on the right

5In fact, it could not: See Remark 4.3.2 below where we explain that LKob
p,β (f/K , s) does not

vary continuously as fβ varies in families.
6This factor appears as the ratio of the two Poincaré duality pairings on the the f -direct

summand summands of two modular curves of respective levels Γ0(N) and Γ0(N) ∩ Γ1(p). See
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most vertical arrow in the lower right square to the non-interpolatable p-
adic multiplier mentioned in the previous paragraph. The construction of
the A -adic height pairing is due to Benois and it is recalled in Section 3.3
below.
• A “universal” Heegner point Zf that interpolates the Heegner cycles as-

sociated to the central critical twists of the members of the family f. The
construction of this class is one of the main ingredients here and it is carried
out in [JLZ19, BL19].

Relying on the density of non-critical-slope crystalline points in the family f and a
p-adic Gross–Zagier formula for these members (recorded in Theorem 5.1.1, which
is Kobayashi’s work in progress), one may easily deduce an A -adic Gross–Zagier
formula7 for Lp(f/K , s), expressing its derivative with respect to the cyclotomic

variable as the A -adic height of the universal Heegner cycle (see Theorem 5.2.2
below). The proof of Theorem 1.1.1 follows, on specializing this statement to weight
k.

Let g =
∑
n=1 an(g)qn ∈ S2r(Γ0(N)) be a normalized eigenform. We let a, b ∈ Q

denote the roots of its Hecke polynomial X2 − ap(g)X + p2r−1 at p. Suppose that
vp(ιp(ap(g))) > 0 and assume that

0 < vp(ιp(b)) ≤ vp(ιp(a)) .

Let gb ∈ S2r(Γ0(Np)) denote the p-stabilization corresponding to the Hecke root b.
Kobayashi’s forthcoming result (Theorem 5.1.1 below) proves a p-adic Gross–Zagier
formula for the p-stabilization gb alone. This is sufficient for our purposes; moreover,
the method we present here (without any modification whatsoever) allows one to
deduce the following p-adic Gross–Zagier formula at every non-θ-critical point x
on the eigencurve of tame level N , that admits a neighborhood with a dense set
of crystalline classical points (e.g., any crystalline non-θ-critical classical point x
verifies this property).

Theorem 1.1.11. Suppose x is any non-θ-critical point of weight w on the eigen-
curve of tame level N ≥ 3, that admits a neighborhood with a dense set of crys-
talline classical points. Set Lp(x, s) := LRS

p (F, κ, s)|x, where F is any Coleman

family over a sufficiently small neighborhood of x and finally LRS
p (F, κ, s) is as in

Definition 4.1.4. Then,

d

ds
Lp(x, s)|s=w

2
= Hx,K(Zx,Zx) .

Here, Hx,K is the specialization of the height pairing HF,K (given as in Defini-
tion 5.2.1) to x and likewise, Zx is the specialization of the universal Heegner
cycle ZF to x. In particular, if f ∈ Sk(Γ0(N)) is a classical newform and λ is a
ϕ-eigenvalue on Dcris(Vf ) such that fλ is non-θ-critical, then

d

ds
LKob
p,λ (f/K , s)

∣∣
s= k

2

=

(
1− p

k
2−1

λ

)4

·
hNek
λ,K(zf , zf )

(4|DK |)
k
2−1

.

Proposition 3.4.5 where we make this discussion precise. We are grateful to D. Loeffler for ex-

plaining this to us.
7See also [Dis19] where a similar formula for slope-zero families was proved independently.
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2. Notation and Set up

For any field L, we let L denote a fixed separable closure and let GL := Gal(L/L)
denote its Galois group.

For each prime λ of a number field F , we fix a decomposition group at λ and
identify it with Gλ := GFλ . We denote by Iλ ⊂ Gλ the inertia subgroup. In the
main body of our article, we will only work with the case when F = Q or F = K
(the imaginary quadratic field we have fixed above). For any finite set of places S
of F , we denote by FS the maximal extension of F unramified outside S and set
GF,S := Gal(FS/F ).

We set Cp := Q̂p, the p-adic completion of Qp. We fix embeddings ι∞ : Q ↪→ C
and ιp : Q ↪→ Cp. When the prime p is assumed to split in the imaginary quadratic
field K, we let p denote the prime of K corresponding to the embedding ιp.

We denote by vp : Cp → R∪ {+∞} the p-adic valuation on Cp which is normal-

ized by the requirement that vp(p) = 1. Set |x|p = p−vp(x).

We fix a system ε = (ζpn)n>1 of primitive pnth roots of the unity in Q such that
ζppn+1 = ζpn for all n. We set Γcyc = Gal(Q(ζp∞)/Q) and denote by

χcyc : Γcyc
∼−→ Z×p

the cyclotomic character. The group Γcyc factors canonically as Γcyc = ∆×Γ where
∆ = Gal(Q(ζp)/Q) and Γ = Gal(Q(ζp∞)/Q(ζp)). We let ω denote the Teichmüller
character (that factors through ∆) and set 〈χcyc〉 := ω−1χcyc. We let Λ := Zp[[Γ]].
We write Λι to denote the free Λ-module of rank one, on which GQ acts via

GQ � Γ
ι−→ Γ ↪→ Λ×

ι : γ 7−→ γ−1

By slight abuse, we denote all the objects (Γcyc, χcyc,∆,Γ, ω,Λ and ι) introduced
in the previous paragraph but defined over the base field Qp (in place of Q) with
the same set of symbols.
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For any a topological group G and a module M that is equipped with a contin-
uous G-action, we shall write C•(G,M) for the complex of continuous cochains of
G with coefficients in M .

Let S be a finite set of places of Q that contains p and prime at infinity. If V is
a p-adic representation of GQ,S with coefficients in an affinoid algebra A, we shall

denote by D†rig,A(V ) the (ϕ,Γcyc)-module associated to the restriction of V to the
decomposition group at p.

Let Σ denote the set of rational primes that divides Np, together with the
archimedean place. We denote the set of places of K above those in Σ also by Σ.

For our fixed imaginary quadratic field K, we let O denote the maximal order of
K. For any positive integer c, let Oc := Z + cO denote the order of conductor c in

K and let Hc denote the ring class field of K of Oc. Write H
(Np)
c for the maximal

extension of Hc outside Np and Gc := Gal(H
(Np)
c /Hc). Fix a positive integer c

coprime to N . We also set Lcps := Hcps(µps).

For any eigenform g, we shall write gK in place of g ⊗ εK for its twist by the
quadratic character associated to K/Q.

For each non-negative real number h, we let Dh denote the Qp-vector space of
h-tempered distributions on Zp and set D∞ := ∪hDh. We also let D denote the Λ-
algebra of Qp-valued locally analytic distributions on Zp. The natural map Dh → D
is an injection (for every h) since locally analytic functions are dense in the space
of continuous functions.

We let R+ denote the Qp-algebra of analytic functions on the open unit ball. In
explicit terms,

R+ :=

{ ∞∑
n=0

cnX
n : lim

n→∞
|cn|psn = 0 for every s ∈ [0, 1)

}
.

According to [PR94, Proposition 1.2.7], the algebra D is naturally isomorphic via
the Amice transform to R+.

On fixing a topological generator γ of Γ (which in turn fixes isomorphisms Γ ∼= Zp
and Λ ∼= Zp[[X]]), we may define the Qp-algebras

Dh(Γ) ⊂ D∞(Γ) ⊂ D(Γ)

of distributions on Γ. We also set

H := {f(γ − 1) : f ∈ R+} ⊂ Qp[[Γ]]

(so that H ∼= R+ via γ 7→ 1 + X). For H =
∑∞
n=0 cn(H)(γ − 1)n ∈ H ,

we shall set H ′ :=

∞∑
n=0

(n+ 1)cn+1(H)

logp χcyc(γ)
(γ − 1)n ∈H . Notice then that 1(H ′) =

c1(H)
/

logp χcyc(γ) does not depend on the choice of γ.

We shall equip Dh(Γ) (0 ≤ h ≤ ∞) and H with a Λ-module and Galois module
structure via the compositum of the maps

Λ ↪→ Λ[1/p] = D0(Γ) ↪→ D(Γ)
Amice
↪→ H .
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We set HA := H ⊗̂A given a Qp-affinoid A . We let H ι := H ⊗Λ Λι and
similarly define H ι

A .

2.1. Modular curves, Hecke correspondences and the weight space. For
each non-negative integer s ∈ Z≥2, we let Ys denote the affine modular curve of
level Γ0(N)∩Γ1(ps). It parametrizes triples (E,C,$) where E is an elliptic curve,
C is a cyclic group of E of order N and $ is a point of order ps. We let Xs denote
its compactification and Js := Jac(Xs).

For each s, we let Hs ⊂ End(Js) denote Zp-the algebra generated by all Hecke
operators {T`}`-Np together with {U`}`|Np and the diamond operators {〈m〉 : m ∈
(Z/psZ)×}.

We set Λwt := Zp[[Z×p ]]. For z ∈ Z×p , we let [z] ∈ Λwt denote the group-like
element. The Hecke algebra Hs comes equipped with a Λwt-module structure via
[z] 7→ 〈z〉. We let ms denote the maximal ideal of Hs that is determined by the
residual representation ρf associated to our fixed eigenform f . When there is no
risk of confusion, we shall abbreviate m := ms.

Following [How07], we define the critical weight character Θ : Γcyc → Λwt (cen-
tered at weight k) by setting

Θ(σ) := ω
k
2−1(σ)[〈χcyc〉1/2(σ)]

for σ ∈ Γcyc, where ω : Γcyc → Z×p is the Teichmüller character. We let Λ†wt denote

Λwt as a module over itself, but allowing GQ act via the character Θ−1. Let ξ ∈ Λ†wt

denote the element that corresponds to 1 ∈ Λwt.

For any Hs-module M on which GQ acts, we shall write

M† := M ⊗Λwt Λ†wt

which we equip with the diagonal GQ-action. Here the tensor product is over Λwt

and its action on M is given via the morphism Λwt → Hs (the diamond action).

2.2. The Coleman family (f, �). We fix an isomorphism ek−2Λwt
∼= Zp[[w]] and

let W := SpZp[[w]] denote the weight space and let U = B(k, p−r) ⊂ W denote the
closed disk about k of radius p−r for some positive integer r. We let O(U) denote
the ring of analytic functions on the affinoid U ; the ring O(U) is isomorphic to the
Tate algebra A = E 〈〈w/pr〉〉 .

For each κ ∈ k + pr−1Zp, we shall denote by ψκ the morphism

ψκ : A −→ E

w 7−→ (1 + p)κ−k − 1 .

Consider the sequence I = {κ ∈ Z≥2 | κ ≡ k (mod (p− 1)pr−1)} of integers and
let

f =

∞∑
n=1

anq
n ∈ A [[q]]
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denote a p-adic family of cuspidal eigenforms passing through fβ , in the sense of
Coleman [Col97]. This means that for every point κ ∈ I, the formal expression

f(κ) :=

∞∑
n=1

ψκ(an)qn

is the q-expansion of a cuspidal eigenform of level Γ0(Np) and weight k, with the
additional property that f(k) = f. Let us denote by � = ap for the Up-eigenvalue
for its action on f, so that we have �(k) = β. By shrinking the closed ball U if
necessary and using [Col97, Corollary B5.7.1], we may (and we will henceforth)
assume that f is a family of constant slope k − 1 (in particular, f specialises to a
classical form of weight w and slope k− 1 at any integer weight w > k lying in U).

Let Wf denote the big Galois representation associated to the family f with

coefficients in A = O(U). We define its twist Vf := Wf ⊗Λwt
Λ†wt. We recall that

Wf comes equipped with a Λwt-module structure via the diamond action. Note
then that Vf is self-dual in the sense that we have a GQ,Σ-equivariant symplectic
pairing (that we denote by 〈 , 〉Np∞)

(1) 〈 , 〉Np∞ : Vf × Vf −→ A (1) .

3. Selmer complexes and p-adic heights in families

3.1. Cohomology of (ϕ,Γcyc)-modules. In this subsection, we shall review the
cohomology of (ϕ,Γcyc)-modules. Fix a topological generator γ of Γ. Recall that
A stands for the affinoid algebra over E and RA for the relative Robba ring over
A . For any (ϕ,Γcyc)-module D over RA consider the Fontaine–Herr complex

C•ϕ,γ(D) : D∆ d0−→ D∆ ⊕ D∆ d1−→ D∆,

where d0(x) = ((ϕ − 1)(x), (γ − 1)x) and d1(y, z) = (γ − 1)(y) − (ϕ − 1)(z) (for
further details and properties, see [Her98, Liu08, KPX14]). We define

Hi(D) := Hi(C•ϕ,γ(D)).

It follows from [Liu08, Theorem 0.2] and [KPX14, Theorem 4.4.2] that Hi(D) is a
finitely generated A -module for i = 0, 1, 2.

In the particular case when D = D†rig,A (Vf), it follows by [Liu08, Theorem 0.1]

and [Pot13, Theorem 2.8]) that there exist canonical (up to the choice of γ) and
functorial isomorphisms

(2) Hi(D†rig,A (Vf)) ' Hi(Qp, Vf).

for each i. The following proposition is due to Benois [Ben14, Proposition 2.4.2]
and refines the isomorphism (2). Set

K•p (Vf) := Tot
(
C•
(
Gp, Vf ⊗A B̃†rig,A

)
ϕ−1−−−→ C•

(
Gp, Vf ⊗A B̃†rig,A

))
,

where B̃†rig,A is the ring of p-adic periods introduced by Berger in [Ber02].
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Proposition 3.1.1 (Benois). We have a diagram

C•(Gp, Vf)
ξ

'
// K•p (Vf),

C•ϕ,γ(D†rig(Vf))

η '

OO

where the maps η and ξ are both quasi-isomorphisms.

3.2. Selmer complexes.

3.2.1. Local conditions at primes above p. A result of Liu [Liu08, Theorem 0.3.4]

shows that the (ϕ,Γcyc)-module D†rig,A (Vf) admits a triangulation over A . In more

precise terms, the module D†rig,A (Vf ) sits in an exact sequence

(3) 0→ D� → D†rig,A (Vf )→ D̃� → 0,

where both D� and D̃� are (ϕ,Γcyc)-modules of rank 1.

Recall that we have assumed p = ppc splits, so that Kq = Qp for each q ∈ {p, pc}.
We define U+

q (Vf,D�) := C•ϕ,γ(D�). On composing the quasi-isomorphism η of

Proposition 3.1.1 with the canonical morphism U+
q (Vf,D�)→ C•ϕ,γ(D†rig,A (V )), we

obtain a map

i+q : U+
q (Vf,D�) −→ K•q (Vf)

whereK•q (Vf) := Tot
(
C•
(
Gq, Vf ⊗A B̃†rig,A

)
ϕ−1−−−→ C•

(
Gq, Vf ⊗A B̃†rig,A

))
as above.

3.2.2. Local conditions away from p. For each non-archimedean prime λ ∈ Σ \
{p, pc} of K, we define the complex

U+
λ (V ) =

[
V Iλf

Frλ−1−−−−→ V Iλf

]
,

which is concentrated in degrees 0 and 1 and where Frλ denotes the geometric
Frobenius. We define

i+λ : U+
λ (Vf) −→ C•(Gλ, Vf)

by setting

i+λ (x) = x in degree 0,

i+λ (x)(Frλ) = x in degree 1.

In order to have a uniform notation for all primes in Σ we set K•λ(Vf) := C•(Gλ, Vf)

and U+
λ (Vf,D�) := U+

λ (Vf) for a non-archimedean prime λ ∈ Σ \ {p, pc}. Since we
assume p > 2, we may safely ignore the archimedean places.
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3.2.3. The Selmer complex. We define the complexes K•Σ(Vf) :=
⊕
λ∈Σ

K•λ(Vf) and

U+
Σ (Vf,D�) :=

⊕
λ∈Σ

U+
λ (Vf,D�). Observe that we have a diagram

C•(GK,Σ, Vf)
resΣ // K•Σ(Vf)

U+
Σ (Vf,D�),

i+Σ

OO

where i+Σ = (i+λ )λ∈Σ and resΣ denotes the localization map.

Definition 3.2.1. The Selmer complex associated to these data is defined as

S•(Vf/K ,D�) = cone

(
C•(GK,Σ, Vf)⊕ U+

Σ (Vf,D�)
resΣ−i+Σ−−−−−→ K•Σ(Vf)

)
[−1].

Definition 3.2.2. We denote by RΓ(Vf/K ,D�) the class of S•(Vf/K ,D�) in the

derived category of A -modules and denote by

Hi(Vf/K ,D�) := RiΓ(Vf/K ,D�).

its cohomology.

3.3. A -adic cyclotomic height pairings. We provide in this section an overview
of the construction of p-adic heights for p-adic representations over the affinoid
algebra A , following [Ben14]. We retain our previous notation and conventions.

Let JA denote the kernel of the augmentation map

H ⊗̂A =: R+,A → A

which is induced by γ 7→ 1. Note that JA = (γ − 1)R+,A and JA /J
2
A ' A as

A -modules. The exact sequence

0→ Vf ⊗ JA /J
2
A −→ Vf ⊗R+,A /J

2
A −→ Vf −→ 0

and the functorial behaviour of Selmer complexes under base change induces the
Bockstein morphism

βcyc
Vf,D�

: RΓ(Vf/K ,D�) −→ RΓ(Vf/K ,D�)[1]⊗A JA /J
2
A .

Definition 3.3.1. The p-adic height pairing associated to the Coleman family (f, �)
is defined as the morphism

hf,� : RΓ(Vf/K ,D�)⊗L
A RΓ(Vf/K ,D�)

βcyc
Vf,D�

⊗ id

−−−−−−−→(
RΓ(Vf/K ,D�)[1]⊗ JA /J

2
A

)
⊗L

A RΓ(Vf/K ,D�)
∪−→ JA /J

2
A [−2]

where ∪ is the cup-product pairing

RΓ(Vf/K ,D�)⊗L
A RΓ(Vf/K ,D�)

∪−→ A [−3]

which is induced from the GK,Σ-equivariant symplectic pairing 〈 , 〉Np∞ of (1).

In the level of cohomology, hf,� induces a pairing

h1,1
f,� : H1(Vf/K ,D�)⊗A H1(Vf/K ,D�) −→ JA /J

2
A .
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Proposition 3.3.2. The A -adic height pairing h1,1
f,� is symmetric.

Proof. This is a direct consequence of [Ben14, Theorem I] and the fact that the
pairing 〈 , 〉Np∞ is symplectic. �

The map γ − 1 (mod J2
A ) 7→ logχcyc(γ) induces an isomorphism

∂cyc : JA /J
2
A

∼−→ A .

We define the A -valued height pairing hf,K by setting

hf,K := ∂cyc ◦ h1,1
f,� .

3.4. Specializations and comparison with Nekovář’s heights. Shrinking U
if necessary, we shall assume that 2k /∈ I. Throughout this subsection, we fix an
integer κ ∈ I with κ ≥ k and set

g := f(κ) ∈ Sκ(Γ0(Np)) and b = �(κ).

The Galois representation Vf ⊗A ,ψκ E is the central-critical twist Vg of Deligne’s
representation Wg associated to the cuspidal eigenform g.

Lemma 3.4.1. The eigenform g is non-θ-critical and old at p.

Proof. If κ > k, the eigenform for g is not critical since in this case we have
vp(b) = k − 1 < κ− 1. If κ = k, then g = fβ is non-θ-critical by assumption.

If g were new at p, we would have k − 1 = vp(b) = κ/2 − 1 and thus κ = 2k,
contradicting the choice of I. �

Corollary 3.4.2. The Galois representation Vg is crystalline at p.

Definition 3.4.3. We let g◦ ∈ Sκ(Γ0(N)) denote the newform such that g = gb◦ is
the p-stabilization of g◦.

Consider the Bloch-Kato Selmer group H1
f (K,Vg). It comes equipped with

Nekovář’s p-adic height pairing

hNek
b,K : H1

f (K,Vg)⊗H1
f (K,Vg) −→ E.

The height pairing hNek
b,K is associated to the Hodge-splitting

Dcris(Vg) = Db ⊕ Fil0Dcris(Vg)

together with the symplectic pairing

〈 , 〉N : Vg ⊗ Vg −→ E(1)

that is induced from the Poincaré duality for the étale cohomology of the modular
curve X0(N), where Vg = Vg◦ appears as a direct summand.

Our goal in this subsection is to compare these objects to those obtained by
specializing the A -adic objects we have defined in the previous section.

Definition 3.4.4.

i) We let WNp denote the Atkin-Leher operator of level Np and let 〈 , 〉Np denote the
Poincaré duality pairing on the cohomology of the modular curve of level Γ0(N) ∩
Γ1(p).
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ii) Realizing Vg as the g-isotypical (with respect to the Hecke operators T` for ` - Np
and operators U` for ` | Np) direct summand in the cohomology of the modular
curve of level Γ0(N) ∩ Γ1(p), we define

〈 , 〉′Np : Vg ⊗ Vg −→ E(1)

by setting
〈x, y〉′Np := 〈x,WNp y〉Np

and refer to it as the p-stabilized Poincaré duality pairing on Vg.

iii) We let

Pr∗b : Vg
∼−→ Vg

denote the natural isomorphism appearing in [KLZ17, Proposition 10.1.1/1]8. Here
Vg on the left is the g-isotypical direct summand in the cohomology of X0(N) (with
respect to the Hecke operators T` for ` - N and operators U` for ` | N), whereas Vg
on the right is the g-isotypical direct summand in the cohomology of the modular
curve of level Γ0(N) ∩ Γ1(p) (with respect to the Hecke operators T` for ` - Np and
operators U` for ` | Np).

We are grateful to D. Loeffler for bringing the following observation to our at-
tention.

Proposition 3.4.5.

i) 〈ψκ x, ψκ y〉′Np = ψκ ◦ 〈x, y〉Np∞ .

ii) We have
〈Pr∗b x , Pr∗b y〉′Np = b λN (g◦) E(g)E∗(g) 〈x, y〉N ,

where λN (g◦) is the Atkin-Lehner pseudo-eigenvalue of g◦, E(g) =
(

1− pκ−2

b2

)
and

E∗(g) =
(

1− pκ−1

b2

)
.

Proof. The first assertion is well-known; c.f. Proposition 4.4.8 and Theorem 4.6.6
of [LZ16]. For the second, we note that

〈Pr∗b x , Pr∗b y〉′Np = 〈Pr∗b x , WNp Pr∗b y〉Np
= 〈x , (Prb)∗WNp Pr∗b y〉N
= b λN (g◦) E(g)E∗(g) 〈x, y〉N

where the first and second equalities follows from definitions, whereas the third is
a consequence of the discussion in the final paragraph of the proof of Proposition
10.1.1 of [KLZ17]. �

Since the g is non-θ-critical (Lemma 3.4.1), the triangulation (3) gives rise to a
saturated triangulation

0 −→ Db −→ D†rig(Vg) −→ D̃b −→ 0

of the (ϕ,Γcyc)-module D†rig(Vg) by base change, where Db := D� ⊗A ,ψκ E and

D̃b := D̃� ⊗A ,ψκ E. With this data at hand, one may proceed precisely as in
Section 3.2.3 to define a Selmer complex S•(Vg/K ,Db) in the category of E-vector

8This map would have been denoted by (Prb)∗ in op. cit.
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spaces. We let RΓ(Vg/K ,Db) denote the corresponding object in the derived cate-

gory and Hi(Vg/K ,Db) denote its cohomology.

The general formalism to construct p-adic heights we outlined in Section 3.3
(where we utilize the symplectic pairing

〈 , 〉′Np : Vg ⊗ Vg −→ E(1)

given in Definition 3.4.4 to determine an isomorphism V ∗g (1)
∼→ Vg) also equips us

with an E-valued height pairing

hg,b,K : H1(Vg/K ,Db)⊗H
1(Vg/K ,Db) −→ E .

Lemma 3.4.6.

i) We have a natural morphism (which we shall denote by ψκ, by slight abuse)

ψκ : H1(Vf/K ,D�)⊗A ,ψκ E−→H1(Vg/K ,Db)

of E-vector spaces, which is an isomorphism for all but finitely many choices of g.

ii) The following diagram commutes:

H1(Vf/K ,D�)

ψκ

��

⊗A H1(Vf/K ,D�)

ψκ

��

hf,K // A

ψκ

��
H1(Vg/K ,Db) ⊗E H1(Vg/K ,Db) hg,b,K

// E

Proof. Let ℘κ := ker(ψκ) be the prime of A corresponding to g. Notice then that

H1(Vf/K ,D�)⊗A ,ψκ E = H1(Vf/K ,D�)/℘κH
1(Vf/K ,D�)

and the general base change principles for Selmer complexes (c.f. [Pot13, Section
1]) shows that the sequence

0 −→ H1(Vf/K ,D�)/℘κH
1(Vf/K ,D�) −→ H1(Vg/K ,Db) −→ H2(Vf/K ,D�)[℘κ]

of E-vector spaces is exact. The first assertion now follows. The second follows
easily from definitions. �

Proposition 3.4.7. There is a natural isomorphism

H1(Vg/K ,Db)
∼−→ H1

f (K,Vg) .

Moreover, the height pairing hg,b,K coincides with hNek
b,K

/
b λN (g◦) E(g)E∗(g).

Proof. The proof of the first assertion reduces to [Ben14, Theorem III] once we
verify

(i) Dcris(Vg)
ϕ=1 = 0,

(ii) H0(D̃b) = 0.

Assume first κ 6= k (so that g 6= fβ). Let g◦ be as in Definition 3.4.3. The roots of
the Hecke polynomial for g◦ at p could not be the pair {1, pκ−1}, as otherwise we
would have κ− 1 = vp(b) = k − 1. This verifies both conditions in this case.
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When κ = k and g = fβ , both conditions follow as a consequence of the
Ramanujan-Petersson conjecture for f (as proved by Deligne), according to which
the roots of the Hecke polynomial of f at p could not be the pair {1, pk−1}.

The assertion concerning the comparison of two p-adic heights follows from
[Ben14, Theorem 11] together with Proposition 3.4.5. (We find it instructive to
compare Benois’ result to [Nek06, Theorem 11.4.6] in the ordinary case.) �

The following commutative diagram summarizes the discussion in this subsec-
tion:

(4) H1(Vf/K ,D�)

ψκ

��

⊗A H1(Vf/K ,D�)

ψκ

��

hf,K // A

ψκ

��
H1(Vg/K ,Db) ⊗E H1(Vg/K ,Db) hg,b,K

// E

b λN (g◦) E(g)E∗(g)
��

H1
f (K,Vg)

∼= Pr∗b

OO

⊗E H1
f (K,Vg)

∼= Pr∗b

OO

hNek
b,K

// E

3.5. Universal Heegner points. In this subsection, we shall introduce elements
in the Selmer groups on which we shall calculate the A -adic height hf,K .

3.5.1. Heegner cycles. We recall the definition of Heegner cycles on Kuga-Sato va-
rieties, following the discussion in [Nek95]. Recall that we have fixed an imaginary
quadratic field K such that all primes dividing the tame level Np splits completely
in K/Q. Let g ∈ Sκ(Γ0(N)) be a cuspidal eigenform of weight κ > 2.

Let Y (N) denote the modular curve over Q which is the moduli of elliptic curves
with full level N structure and we let j : Y (N) → X(N) denote its non-singular
compactification. Since we assume N ≥ 3, there is a universal generalized elliptic
curve E → X(N) that restricts to the universal elliptic curve f : E → Y (N). The
(κ − 2)-fold fibre product of E with itself over Y (N) has a canonical non-singular
compactification W described in detail in [Del71, Sch90]. We have natural maps

(5) Hκ−1
ét (W ×Q Q,Qp)(κ/2)→ H1

ét(X(N)×Q Q, j∗Symκ−2(R1f∗Qp))(κ/2)→ Vg .

Scholl defines a projector ε (where his w corresponds to our κ− 2) and proves that
there is a canonical isomorphism

H1
ét(X(N)×Q Q, j∗Symκ−2(R1f∗Qp))

∼−→ εHκ−1
ét (W ×Q Q,Qp) .

We finally define

B :=

{(
∗ ∗
0 ∗

)}/
{±1} ⊂ GL2(Z/NZ)

/
{±1}

and the idempotent εB := 1
|B|
∑
g∈B g (which acts on the modular curves Y (N)

and X(N)).

Definition 3.5.1. We let N be an ideal of O such that O/N ∼= Z/NZ. For an
arbitrarily chosen ideal A ⊂ O, consider the isogeny C/A → C/AN−1. It represents
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the Heegner point y = yA on Y0(N)(C). It is defined over the Hilbert class field H
of K.

Choose any point ỹ ∈ Y (N)×Q H over the Heegner point y (viewed as a closed
point of Y0(N) ×Q H). The fiber Eỹ is a CM elliptic curve defined over H whose
endomorphism ring is isomorphic to O. We let

Γ√DK ⊂ Eỹ × Eỹ
denote the graph of

√
DK ∈ O (fix any one of the two square-roots)

Definition 3.5.2. We let

Y := Γ√DK × · · · × Γ√DK︸ ︷︷ ︸
κ/2−1 times

⊂ Eỹ × · · · × Eỹ︸ ︷︷ ︸
κ−2 times

= (W ×Q H)ỹ

and call the cycle (with rational coefficients) that is represented by εBεY inside of

εBεCHκ/2(W ×Q H)0 ⊗ Q (which we also denote by the same symbol εBεY ) the
Heegner cycle.

The cohomology class of εY in Hκ
ét(W ×Q Q,Qp)(κ/2) vanishes, so that one may

apply the Abel-Jacobi map

AJ : CHκ/2(W ×Q H)0 ⊗ Q −→ H1(H,Hκ−1
ét (W ×Q Q,Qp)(κ/2))

on the Heegner cycle εBεY .

Definition 3.5.3. We let AJg : CHκ/2(W ×Q H)0 ⊗ Q → H1(H,Vg) denote the
compositum of the map (5) with the Abel-Jacobi map and define the Heegner cycle

zg := corH/K (AJg(εBεY )) ∈ H1(K,Vg) .

Since p - N , all X(N), X0(N) and W have good reduction at p and it follows
from [Nek00, Theorem 3.1(i)] that

zg ∈ H1
f (K,Vg) .

3.5.2. Heegner cycles in Coleman families. For a classical weight κ ∈ I and ψκ as
in Section 2.2, we let f(κ)◦ ∈ Sκ(Γ0(N)) denote the newform whose p-stabilization
(with respect to �(κ)) is the eigenform f(κ).

The following result (construction of a big Heegner point along the Coleman
family f) is [BL19, Proposition 4.15(iii)] and [JLZ19, Theorem 5.4.1].

Theorem 3.5.4 (Büyükboduk–Lei, Jetchev–Loeffler–Zerbes). There exists a unique
class Zf ∈ H1(Vf/K ,D�) that is characterized by the requirement that for any κ ∈ I
we have

ψκ
(
Zf

)
= u−1

K (2
√
−DK)1−κ2

(
1− p

κ
2−1

�(κ)

)2

zf(κ)◦ ∈ H1
f (K,Vf(κ)),

where uK = |O×K |/2 and −DK is the discriminant of K.

Remark 3.5.5. Jetchev–Loeffler–Zerbes in [JLZ19] rely on the overconvergent étale
cohomology of Andreatta–Iovita–Stevens. The construction of “universal” Heeg-
ner cycles in [BL19] exploits the p-adic construction of rational points, a theme
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first observed by Rubin [Rub92], and dwells on the formula of Bertolini–Darmon–
Prasanna which relates the Bloch–Kato logarithms of these cycles to appropriate
Rankin–Selberg p-adic L-values. In [BPS19], we will give another construction of
“universal” Heegner cycles in the context of Emerton’s completed cohomology (on
realizing the family f on Emerton’s eigensurface).

4. p-adic L-functions over the imaginary quadratic field K

We introduce the needed p-adic L-functions for the arguments in this paper.
We first discuss a Rankin-Selberg p-adic L-function defined over our imaginary
quadratic field K. We then compare this p-adic L-function to a näıve product of
p-adic L-functions defined over Q.

4.1. Ranking-Selberg p-adic L-functions. Loeffler and Zerbes in [LZ16] have
constructed p-adic L-functions (in 3-variables) associated to families of semi-ordinary
Rankin-Selberg products f1 ⊗ f2 of eigenforms, where f1 runs through a Coleman
family and f2 through a p-ordinary family. (See also [Loe17] where the correct
interpolation property is extended from all crystalline points to all critical points.)
We shall let f2 vary in a (suitable branch of the) universal CM family associated to
K (which we shall recall below), and thus we may reinterpret this p-adic L-function
as a p-adic L-function associated to the base change of f to K.

4.1.1. CM Hida families. For a general modulus n of K, let K(n) denote the

maximal p-extension contained in the ray class field modulo n. We set H
(p)
n :=

Gal(K(n)/K). In particular, K(p∞) := ∪K(pn) is the unique Zp-extension of K

which is unramified outside p. We let Γp := lim←−nH
(p)
pn denote its Galois group

over K. We fix an arbitrary Hecke character ψ0 of ∞-type (−1, 0), conductor
p and whose associated p-adic Galois character factors through Γp. Notice then

that ψ0 ≡ 1p mod mE , where we have let 1p : (O/p)
× → O×E denote the trivial

character modulo p.

Remark 4.1.1. If the class number of K is prime to p, then the Hecke character ψ0

is unique, as the ratio of two such characters would have finite p-power order and
conductor dividing p.

The theta-series

Θ(ψ0) :=
∑

(a,p)=1

ψ0(a)qNa ∈ S2(Γ1(|DK |p), εKω−1)

is a newform and it is the weight two specialization (with trivial wild character)
of the CM Hida family g with tame level |DK | and character εKω. The weight
one specialization of this CM Hida family with trivial wild character equals the
p-ordinary theta-series Θord(1p) :=

∑
(a,p)=1 q

Na ∈ S1(Γ1(|DK |p), εK) of 1p.

Remark 4.1.2. One may construct the Hida family g as follows. We let T|DK |p
denote the Hecke algebra given as in [LLZ15, §4.1] and we define the maximal ideal
Ip ⊂ T|DK |p as in [LLZ15, Definition 5.1.1]. Note that in order to determine the
map φp that appears in this definition, we use the algebraic Hecke character ψ0 we
have chosen above.
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It follows by [LLZ15, Prop. 5.1.2] that Ip is non-Eisenstein, p-ordinary and p-
distinguished. By [LLZ15, Theorem 4.3.4], the ideal Ip corresponds uniquely to a
p-distinguished maximal ideal I of the universal ordinary Hecke algebra T|DK |p∞

acting on H1
ord(Y1(|DK |p∞)) (definitions of these objects may be found in [LLZ15,

Definition 4.3.1]). The said correspondence is induced from Ohta’s control theo-
rem [Oht99, Theorem 1.5.7(iii)], which also attaches to Ip a unique non-Eisenstein,
p-ordinary and p-distinguished maximal ideal Ipr of T|DK |pr for each r ≥ 1 (it is
easy to see that it is the kernel of the compositum of the arrows

T|DK |pr
φpr−→ OL[Hpr ] −→ OE −→ OE/$E ,

and therefore with its original form given in [LLZ15, Definition 5.1.1]). The ideal
I determines the CM Hida family g alluded to above.

We shall henceforth identify the rigid analytic ball SpZp[[Γp]] with the weight
space for the Hida family g. We let κ̃ ∈ SpZp[[Γp]] denote the point corresponding

to the weight one specialization Θord(1℘).

4.1.2. The p-adic L-function and interpolation property. We fix an affinoid neigh-
borhood Y ⊂ SpZp[[Γp]] and let

LRS
p (f,g|Y ) ∈ O(Y ) ⊗̂HA

denote the 3-variable Rankin-Selberg p-adic L-function of Loeffler and Zerbes [LZ16,
Loe17]. Since g is a p-ordinary family, we may choose Y as large as we like and
obtain a p-adic L-function

LRS
p (f,g) ∈H (Γp) ⊗̂HA .

As explained in detail in [BL17a], the p-adic L-function may be thought as a relative
p-adic L-function for f over K, interpolating the algebraic parts of the L-values
L(f(κ)/K ,Ψ, 1) where Ψ runs through the algebraic Hecke characters of K with
infinity type (a, b) with 0 ≤ a ≤ b ≤ κ− 2.

Definition 4.1.3. We let DRS
f/K
∈ HA denote the p-adic distribution obtained

by specializing LRS
p (f,g) to the point κ̃ ∈ SpZp[[Γp]] in the weight space for g,

corresponding to the weight one specialization Θord(1℘).

The following interpolation property characterizes the distribution DRS
f/K

.

Theorem 4.1.4 (Loeffler). For every κ ∈ I, any j ∈ Z∩ [1, κ−1] and all Dirichlet
characters η of conductor pr (we allow r = 0) we have

(ψκ ⊗ ηχj−1
cyc )(DRS

f/K
) = (−1)j−1 ×

V(f(κ)◦, η, j)2 p2r(j− 1
2 )W (η ◦ NK/Q)

�(κ)2rE(f(κ))E∗(f(κ))

× iκ−1N2j−κ+1Γ(j)2

22j+κ−1π2j
×
L(f(κ)◦/K , η

−1 ◦ NK/Q, j)
〈f(κ)◦, f(κ)◦〉N

where V(f(κ)◦, η, j) is as in Theorem 4.2.1, W (η ⊗ NK/Q) is the root number for
the complete Hecke L-series Λ(η ◦ NK/Q, s) (c.f. [Nek95, Page 626]) and finally,

E(f(κ)) :=

(
1− pκ−2

�(κ)2

)
, E∗(f(κ)) :=

(
1− pκ−1

�(κ)2

)
.
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Remark 4.1.5. The p-adic L-function (and its interpolation property) recorded in
Theorem 4.1.4 is a slight alteration of Loeffler’s original formulation in [Loe17]. It
can be obtained following the calculations carried out in [BL18] based on Loeffler’s
work in op. cit.

4.2. Näıve p-adic L-functions over K. We now consider a näıve version of a
p-adic L-function over K by taking the product of two p-adic L-functions over Q.
We begin by recalling two-variable p-adic L-functions over the eigencurve. This
construction is due to Glenn Stevens, but first appeared in the literature in [Bel12].

Suppose that h is a Coleman family over a sufficiently small affinoid disc Sp(A )
about a non-θ-critical point g of weight k0 on the eigencurve (in the sense of Defini-
tion 2.12 in [Bel12]) with Up-eigenvalue �. Let I denote the set of classical weights
of forms occurring in A .

Theorem 4.2.1. There exists a unique p-adic distribution Dh ∈ HA which is
characterized by the following interpolation property: For every κ ∈ I, any j ∈
Z ∩ [1, κ− 1] and all Dirichlet characters η of conductor pr ≥ 1,

(ψκ ⊗ ηχj−1
cyc )(Dh) = (−1)jΓ(j)V(h(κ)◦, η, j)τ(η)

p(j−1)r

�(κ)r
L(h(κ)◦, η−1, j)

(2πi)jΩ±h(κ)

C±h(κ)

where,

• τ(η) is the Gauss sum (normalized to have norm pr/2),
• V(h(κ)◦, η, j) =

(
1− pj−1η(p)

/
�(κ)

) (
1− pκ−1−jη−1(p)

/
�(κ)

)
,

• Ω+
h(κ) and Ω−h(κ) are canonical periods in the sense of [Vat99, §1.3],

• C+
h(κ) and C−h(κ) are non-zero constants that only depend on κ and C+

h(k0) =

C−h(k0) = 1,

• the sign ± is determined so as to ensure that (−1)(j−1)η(−1) = ±1.

Proof. See [Bel12, Theorem 3 and (4)]. �

Remark 4.2.2. If the slope of h is smaller than h, then Dh/K
∈Hh⊗̂A .

Definition 4.2.3. For the Coleman family f we have fixed above, mimicking Kobayashi
[Kob13, Kob12], we set

Dnaive
f/K

:= Df/Q
·DfK

/Q
∈HA .

Here, fK is the family obtained by twisting the Coleman family f by the quadratic
character εK . We call Df/K

the näıve base change p-adic L-function.

Remark 4.2.2 tells us that we in fact have Df/K
∈H2k−2 ⊗̂A .

The näıve base change p-adic L-function is then characterized by the following
interpolation property:
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For every κ ∈ I, any j ∈ Z∩ [1, κ−1] with j ≡ k/2 mod 2, and all even Dirichlet
characters η of conductor pr (we allow r = 0),

(ψκ ⊗ ηχj−1
cyc )(Dnaive

f/K
) = Γ(j)2 V(f(κ)◦, η, j)2 τ(η)2 p

2r(j−1)

�(κ)2r
× L(f(κ)◦, η−1, j)

(2πi)2j
(6)

×
Cεf(κ)C

ε
f(κ)K

Ωεf(κ)Ω
ε
f(κ)K

where ε ∈ {±} is the sign of (−1)k/2−1.

4.3. A factorization formula. We will be working with the following locally
analytic functions on U × (1 + pZp):

Definition 4.3.1. Given a locally analytic distribution D on Γcyc, we set

Lp(D , s) := 〈χcyc〉s−1ωk/2−1 (D)

where ω is the Teichmüller character. We define LRS
p (f, κ, s) and Lnaive

p (f/K , κ, s)

on U × (1 + pZp) by setting

LRS
p (f/K , κ, s) := �−1λN (f)−1iκ−1N |DK |−1/2(−1)k/2−1Lp(D

RS
f/K

, s)
∣∣∣
w=(1+p)κ−k−1

,

Lnaive
p (f/K , κ, s) := Lp(D

naive
f/K

, s)
∣∣∣
w=(1+p)κ−k−1

.

We also set

LKob
p,�(κ)(f(κ)◦/K , s) := �(κ)λN (f(κ)◦) E(f(κ)) E∗(f(κ))LRS

p (f/K , κ, s)

for each choice of κ ∈ I. In the particular case when κ = k, we shall write
LKob
p,β (f/K , s) in place of LKob

p,�(k)(f(k)◦/K , s).

See Remark 4.3.7 below for a comparison of LKob
p,�(κ)(f(κ)◦/K , s) to Nekovář’s p-adic

L-function in the p-ordinary set up.

Remark 4.3.2. Observe that the p-adic multipliers E(f(κ)) E∗(f(κ)) do not vary
continuously, the p-adic L-functions LKob

p,�(κ)(f(κ)◦/K , s) do not interpolate as κ ∈ I
varies.

Let us consider the meromorphic function

Rf/K := LRS
p (f/K , κ, s)

/
Lnaive
p (f/K , κ, s).

Notice that for any κ0 ∈ I, the specialization Lp(f/K , κ0, s) is non-zero, soRf/K(κ0, s)
is a meromorphic function in s.

Lemma 4.3.3. The meromorphic function r(κ) := Rf/K(κ, k/2) (in the variable
κ) specializes to

〈N〉k−κ〈2〉−κ+k21−k(−1)k/2|DK |1/2

�(κ)λN (f(κ))E(f(κ)) E∗(f(κ)) 〈f(κ)◦, f(κ)◦〉N
×

Ωεf(κ) Ωεf(κ)K

Cεf(κ) C
ε
f(κ)

=
〈N〉k−κ(−1)k/2|DK |1/2

〈2〉κ−k2k−1〈f(κ), f(κ)〉N,p
×

Ωεf(κ) Ωεf(κ)K

Cεf(κ) C
ε
f(κ)K

(7)

whenever κ ∈ I. Here, 〈 , 〉N,p is the Petersson inner product at level Γ0(Np).
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Proof. This is immediate on comparing the interpolation formulae for LRS
p (f/K , κ, s)

and Lnaive
p (f/K , κ, s) at s = k/2 and κ ∈ I. The equality in (7) follows from the

following well-known comparison of Petersson inner products:

〈f(κ), f(κ)〉N,p = �(κ)λN (f(κ))E(f(κ)) E∗(f(κ)) 〈f(κ)◦, f(κ)◦〉N .

�

Lemma 4.3.4. Rf/K = 〈N〉2s−kr(κ).

Proof. The interpolation formulae for LRS
p (f/K , κ, s) and Lnaive

p (f/K , κ, s) (given by

taking η = 1 and j ≡ k/2 mod (p − 1) in Theorems 4.2.1 and 4.1.4, so that the
character η〈χcyc〉j−1ωk/2−1 is crystalline at p) together with Lemma 4.3.3 show
that

LRS
p (f/K , κ, j) = 〈N〉2j−κr(κ)Lnaive

p (f/K , κ, j)

for every κ ∈ I and j ∈ Z ∩ [1, κ − 1] with j ≡ k/2 mod (p − 1). The asserted
equality follows from the density of these specializations. �

Corollary 4.3.5. Rf/K(k, s) =
〈N〉2s−k(−1)k/2|DK |1/2

2 〈fβ , fβ〉N,p
Ωεf ΩεfK . In particular,

Rf/K(k, k/2) = (−1)k/2
Ωεf ΩεfK |DK |1/2

2 〈fβ , fβ〉N,p
.

Corollary 4.3.6.

LKob
p,β (f/K , s) =

〈N〉2s−k(−1)k/2|DK |1/2

2 〈f, f〉N
Ωεf ΩεfK Lp(f

β
/Q, s)Lp(f

β,K
/Q , s) .

Proof. This is an immediate consequence of Lemma 4.3.3 and 4.3.4, on recalling
that our choices enforce the requirement that C±

fβ
= C±

fβ,K
= 1. �

Remark 4.3.7. Only in this remark, h denotes a primitive Hida family of tame level
N and Up-eigenvalue �. We let h denote its specialization to weight 2r; suppose h
is old at p and let us write α for the Up-eigenvalue on h. In this situation, Nekovář
in [Nek95, I.5.10] constructed a two-variable p-adic L-function associated to h. We
let LNek

p (h/K , s) denote its restriction to cyclotomic characters.

In this particular case, the distribution DRS
h was constructed by Hida and it

enjoys an interpolation property that is identical to one recorded in Theorem 4.1.4.
One may specialize LRS

p (h/K , κ, s) to the p-stabilized form h and obtain a p-adic

L-function LKob
p,α (h◦/K , s) as above. One may compare the interpolation formulae

for the respective distributions giving rise to LNek
p (h/K , s) and LKob

p,α (h◦/K , s) to
deduce that

LKob
p,α (h◦/K , s+ r − 1) = LNek

p (h/K , s) .

5. Proofs of Theorem 1.1.1 and Corollary 1.1.2

We shall assume until the end of this article that K 6= Q(i),Q(
√
−3). Notice in

particular that uK = 1.
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5.1. p-adic Gross–Zagier formula for non-ordinary eigenforms at non-
critical slope. Suppose g =

∑
n=1 an(g)qn ∈ S2r(Γ0(N)) is a normalized eigen-

form. We let a, b ∈ Q denote the roots of its Hecke polynomial X2−ap(g)X+p2r−1

at p. Suppose that vp(ιp(ap(g))) > 0 and assume that

0 < h := vp(ιp(b)) < vp(ιp(a))

so that we have 2h < 2r − 1. Let gb ∈ S2r(Γ0(Np)) denote the p-stabilization
corresponding to the Hecke root b and let g be a Coleman family which admits

gb as its specialization in weight 2r. Theorem 4.1.4 applies and equips us with a
two-variable p-adic L-function LRS

p (g
/K
, κ, s). Let us set

LKob
p,b (g/K , s) := b λN (g) E(g) E∗(g)LRS

p (g
/K
, 2r, s)

as in Definition 4.3.1. The following p-adic Gross–Zagier formula is Kobayashi’s
work [Kob19] in progress.

Theorem 5.1.1 (Kobayashi).

d

ds
LKob
p,b (g/K , s)

∣∣
s=r

=

(
1− p

w
2 −1

b

)4 hNek
b,K (zg, zg)

(4|DK |)
w
2 −1

.

The corollary below is a restatement of Theorem 5.1.1, taking the diagram (4)
and Theorem 3.5.4 into account. Recall that we have to assume K 6= Q(i),Q(

√
−3)

since we rely on Kobayashi’s results here, so that uK = 1.

Corollary 5.1.2. For each κ ∈ I as in Section 3.4 with κ ≥ 2k,

d

ds
LRS
p (f/K , κ, s)

∣∣
s=κ

2

=

(
1− p

κ
2
−1

b

)4

(4|DK |)
κ
2−1

· hf(κ)◦,�(κ),K(zf(κ)◦ , zf(κ)◦)

= ψκ ◦ hf,K
(
Zf,Zf

)
.

Remark 5.1.3. Note that the assumption that κ ≥ 2k guarantees that we have
2vp(�(κ)) < κ− 1, as required to apply Kobayashi’s Theorem 5.1.1.

The reason why we record this trivial alteration of Theorem 5.1.1 here is because
both sides of the asserted equality interpolate well as κ varies (unlike its predecessor
Theorem 5.1.1). See Remark 4.3.2.

5.2. A -adic Gross–Zagier formula. Recall the Coleman family f over the affi-
noid algebra A = A (U) from Section 2.2. Recall also the A -valued cyclotomic
height pairing hf,K we have introduced in Section 3.3 and the universal Heegner
point Zf ∈ (Vf/K ,D�) given as in Theorem 3.5.4. Recall finally also the two-variable

p-adic L-function LRS
p (f/K , κ, s) from Section 4.

Definition 5.2.1. Let us write Hf,K for the Amice transform of the height pairing
hf,K . In explicit terms,

Hf,K(x, y) := hf,K(x, y)
∣∣
w=(1+p)κ−k−1

.
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Theorem 5.2.2 (A -adic Gross–Zagier formula). With the notation as above, the
following identity is valid in A :

∂

∂s
LRS
p

(
f/K , κ, s+

κ− k
2

) ∣∣∣
s= k

2

= Hf,K(Zf,Zf) .

Proof. Consider the difference

D(κ) :=
∂

∂s
LRS
p

(
f/K , κ, s+

κ− k
2

) ∣∣∣
s= k

2

−Hf,K(Zf,Zf) .

It follows from the interpolative properties of LRS
p (f/K , κ, s), the A -adic height

pairing hf,K outlined in (4) and that of the universal Heegner cycle (Theorem 3.5.4)
together with Corollary 5.1.2 show that

D(κ) = 0, ∀ κ ∈ I ∩ Z≥2k .

By the density of I ∩ Z≥2k in the affinoid U , we conclude that D is identically
zero, as required. �

5.3. Proof of Theorem 1.1.1. On specializing the statement of Theorem 5.2.2
(A -adic Gross–Zagier formula) to κ = k and relying once again on the interpolative
properties of the A -adic height pairing hf,K and that of the universal Heegner cycle
Zf, the proof of Theorem 1.1.1 follows at once. �

5.4. Proof of Corollary 1.1.2. Recall that we are assuming that the weight k = 2.
Recall also that Af/Q stands for the abelian variety of GL2-type that the Eichler-
Shimura congruences associate to f and that we assume that L(f/Q, s) has a simple
zero at s = 1.

It follows from the classical (complex) Gross–Zagier formula and Theorem 1.1.1
that

(8)
d

ds
LKob
p,β (f/K , s)

∣∣
s=1

=

(
1− 1

β

)4
L′(Af/K, 1) |DK |1/2

〈Pf , Pf 〉∞,K 8π2 〈f, f〉N
hNek
β,K(Pf , Pf )

where we recall that Pf ∈ Af (K) is the Heegner point and 〈 , 〉∞,K is the Néron-Tate
height pairing over K. Since we know in our set up that TrK/QPf is non-torsion, it
is a non-zero multiple of P within the one-dimensional Q-vector space Af (Q) ⊗ Q.
We may therefore replace in (8) the height pairings of Pf over K with those of P
over Q to deduce that

(9)
d

ds
LKob
p,β (f/K , s)

∣∣
s=1

=

(
1− 1

β

)4
L′(Af/K, 1)|DK |1/2

〈P, P 〉∞ 8π2 〈f, f〉N
hNek
β,Q (P, P )

On the other hand we have

(10) L′(Af/K, 1) = L′(Af/Q, 1)L(AKf /Q, 1)

and

d

ds
LKob
p,β (f/K , s)

∣∣
s=1

=
−4π2Ω+

f Ω+
fK
|DK |1/2

8π2〈f, f〉N
× d

ds
Lp,β(f/Q, s)

∣∣
s=1

(11)

×
(

1− 1

β

)2 L(AKf /Q, 1)

−2πiΩ+
fK

(12)
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by the definition of LKob
p,β (f/K , s) and the interpolation property of Lp,β(fK/Q, s).

Plugging the identities (10) and (11) in (9), the desired equality follows. �

6. Applications

We shall illustrate various applications of the p-adic Gross–Zagier formula at
critical slope (Theorem 1.1.1 and Corollary 1.1.2). These were already recorded in
Section 1 as Theorems 1.1.5, 1.1.6 and 1.1.8. Before we give proofs of these results,
we set some notation and record a number of preliminary results.

6.1. Perrin-Riou’s big logarithm map and p-adic L-functions. Until the end
of this article, we assume that f ∈ S2(Γ0(N)) is a newform that does not admit
a θ-critical p-stabilization. Recall that Af/Q denotes the abelian variety of GL2-
type that the Eichler-Shimura congruences associate to f . Our assumption that
L(f/Q, s) has a simple zero at s = 1 is still in effect. We assume also that the
residual representation ρf (associated to the P-adic representation attached to f)
is absolutely irreducible.

Let P denote the prime of Kf above that is induced by the embedding ιp and

set T := (lim←−Af (Q)[Pn]) ⊗Of,P O and V = T ⊗O E. Here, we recall that E is

a finite extension of Kf,P that contains both α and β (where α is the root of
X2 − ap(f)X + p which is a p-adic unit and β = p/α is the other root) and O is
its ring of integers. Since we assumed p > 2, the Fontaine-Laffaille condition holds
true for V . In particular, there is an integral Dieudonné module Dcris(T ) ⊂ Dcris(V )
constructed as in [Ber04, §IV]. We fix a ϕ-eigenbasis {ωα, ωβ} of Dcris(T ). Let

LogV : H1(Qp, V ⊗ Λι)⊗H −→ Dcris(V )⊗H

denote Perrin-Riou’s big dual exponential map. We let

LPR := LogV ◦ resp (BK1) ∈ Dcris(V )⊗H

denote Perrin-Riou’s vector valued p-adic L-function, where BK1 ∈ H1(Q, V ⊗ Λι)

is the Beilinson-Kato element. Set HE := H ⊗Qp E and define L
(α)
PR,L

(β)
PR ∈HE as

the coordinates of LPR with respect to the basis {ωα, ωβ}, so that we have

LPR = L
(α)
PR ωα + L

(β)
PR ωβ .

Note that L
(α)
PR and L

(β)
PR are well-defined only up to multiplication by an element

of O×.

Definition 6.1.1. Set Dfβ
/Q

:= ψ2(Df/Q
) ∈ Dk−1(Γ) ⊗ E. Associated to the other

(p-ordinary) stabilization fα of f , we also have the Mazur–Swinnerton-Dyer mea-
sure Dfα

/Q
∈ D0(Γ) ⊗ E. We remark that the measure Dfα

/Q
is characterized by an

interpolation formula identical to that for Dfβ
/Q

(which does not characterize Dfβ
/Q

itself), exchanging every α in the formula with β and vice versa.

For λ = α, β, we set Lp,λ(f, s) := Lp(Dfλ
/Q
, s).

The following result is due to Kato (when λ = α) and has been announced by
Hansen (when λ = β). See also related work by Ochiai [Och18].
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Theorem 6.1.2. Suppose that fβ is non-critical. Then for each λ ∈ {α, β}, there

exists cλ ∈ O× with L
(λ)
PR = cλ ·Dfλ

/Q
.

Remark 6.1.3. When Kf = Q and Af is an elliptic curve, there is a choice for the
ϕ-eigenbasis of Dcris(V ) with which we can take cλ = 1 for λ = α, β. In this remark,
we explain how to make this choice.

Let A/Z be a minimal Weierstrass model of the elliptic curve Af . Let ωA

denote a Néron differential that is normalized as in [PR95, §3.4] and is such that
Ω+
Af

:=
∫
Af (R)

ωA > 0. Let ωcris ∈ Dcris(V ) denote the element that corresponds to

ωA under the comparison isomorphism. The eigenbasis {ωα, ωβ} is then given by
the requirement that

ωα + ωβ = ωcris .

6.1.1. Proof of Theorem 1.1.6 (non-triviality of p-adic heights). Suppose on the
contrary that both hNek

α,Q and hNek
β,Q were trivial. It follows from Corollary 1.1.2

and Perrin-Riou’s p-adic Gross–Zagier formula for the slope-zero p-adic L-function
Lp(Dfα/Q, s) that

1 (L′PR) = 0 .

Using [PR93, Proposition 2.2.2], we conclude that logV (BK1) = 0, or equiva-
lently, that resp(BK1) = 0. Since ords=1L(f/Q, s) = 1, the theorem of Kolyvagin-
Logachev shows that the compositum of the arrows

Af (Q)⊗Of ,ιpE
∼−→ H1

f (Q, V )
resp−→ Hf(Qp, V ) = Af (Qp)⊗Of,P E

is injective. It follows that BK1 ∈ H1
f (Q, V ) is a torsion class, contradicting [Büy17,

Theorem 1.2]9. �

6.2. Birch and Swinnerton-Dyer formula for analytic rank one (Proof of
Theorem 1.1.8). Recall the set Σ := {σ : Kf ↪→ Q} of embeddings of Kf into

Q. Each embedding σ extends to σ : Kf (α) ↪→ Q; fix one such extension. Recall

that P is the prime induced by the embedding ιp : Q ↪→ Qp, which we extend to an

isomorphism ιp : C
∼−→ Cp. To save ink, let us set λσ in place of ιp ◦ σ(λ), where

λ ∈ {α, β}.

For each σ ∈ Σ, the field σ(Kf ) is the Hecke field Kfσ of fσ and let Pσ ⊂ σ(Kf )
denote its prime induced by ιp. Let E = Kf,P(ιp(α)) denote the extension of Kf,P

generated by ιp(α) and let O denote its ring of integers, m its maximal ideal. We
shall set Eσ := Kfσ,Pσ (ασ) to ease notation and write Oσ for its ring of integers,

mσ for its maximal ideal. Let us write Tσ := lim←−Af (Q)[Pn
σ], where the action of

Pσ act on Af is induced from σ(Kf )
σ−1

−→ Kf , and we set V σ = Tσ ⊗ Eσ.

We retain the set up in the previous section, except that we write for each σ ∈ Σ

LσPR ∈ Dcris(V
σ)⊗HEσ

for Perrin-Riou’s vector valued p-adic L-function associated to fσ and the prime
Pσ of Kf .

9The proof of this result is provided in op. cit. only when Kf = Q, but the argument carries

over to treat the general case.
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Proposition 6.2.1. Suppose the Iwasawa main conjecture holds true for each fσ/Q.

Then for each σ ∈ Σ, there exists λσ ∈ {ασ, βσ} such that p-adic height pairing

hNek
λσ,Q : H1

f (Q, V σ)⊗H1
f (Q, V σ) −→ Eσ

is non-trivial.

Proof. If ιp ◦ σ ◦ ι−1
∞ (ap) is a p-adic unit, then this assertion is already proved

in Theorem 1.1.6. Otherwise, the assertion follows (still as in the proof of The-
orem 1.1.6) from Kobayashi’s p-adic Gross-Zagier formulae [Kob12, Theorem 3],
validity of main conjectures up to µ-invariants in that set up (which we assume)
and [Büy17, Theorem 1.2]. �

Proof of Theorem 1.1.8. Since we assume the validity of main conjectures for fσ,
Perrin-Riou’s leading term formulae10 for her module of p-adic L-functions11 in
[PR93, §3] together with Theorem 6.1.2 and Proposition 6.2.1 show that the mσ-
adic Birch and Swinnerton-Dyer conjecture (which corresponds to the statement
BSDDλ(V ) in [PR93, Proposition 3.4.6]) for Af is true up to mσ-adic units:

ordmσ

(
(1− 1/λσ)

−2 L
′
p,λσ (fσ/Q, 1)

RegPσ (Af/Q)

)
= lengthOσ (III(Af/Q)[P∞σ ])

(13)

+ ordmσTam(Af/Q)

for every σ ∈ Σ. Here,

(14) RegPσ (Af/Q) =
hNek
λσ,Q(Pfσ , Pfσ )

[Af (Q)⊗Of Oσ : Oσ · Pfσ ]
.

and notice that the terms concerning the torsion groups Af (Q)[P∞σ ] and A∨f (Q)[P∞σ ]
are omitted from this formula, as they are both trivial since we assume that ρf =

Af (Q)[Pσ] is absolutely irreducible.

Applying either Corollary 1.1.2 (if the p-adic valuation of λσ is 1), or Perrin-
Riou’s p-adic Gross–Zagier formula at slope-zero (if λσ is a p-adic unit) or Kobayashi’s
p-adic Gross-Zagier formula at supersingular primes (if the p-adic valuation of λσ

is positive but less than 1), we see that

(15) − L′(fσ/Q, 1)

Reg∞,σ(Af/Q) 2πiΩ+
fσ

= (1− 1/λσ)
−2 L′p,λσ (fσ, 1)

RegPσ (Af/Q)

where Reg∞,σ(Af/Q) := 〈Pfσ , Pfσ 〉∞/[Af (Q)⊗Of Oσ : Oσ · Pfσ ]. We remark that
this equality takes place in the field Eσ = σ(Kf )Pσ (ασ). Combining (13) and (15),
we infer that

ordmσ

(
− L′(fσ/Q, 1)

Reg∞,σ(Af/Q)2πiΩ+
fσ

)
= lengthOσ (III(Af/Q)[P∞σ ])

+ ordmσTam(Af/Q) .

10Perrin-Riou’s Proposition 3.4.6 in [PR93] is written for the p-adic Tate module of an elliptic

curve, but it works verbatim for the Galois representation Tσ (the Pσ-adic Tate-module of Af ).
11Note that the element LσPR we have introduced above is a generator of this module since we

assume the truth of main conjectures.
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The proof of the first assertion in Theorem 1.1.8 follows.

We now explain the proof of its second portion; that the Birch and Swinnerton-
Dyer formula for an elliptic curve A/Q (satisfying the conditions of the second
portion of our theorem) is valid up to p-adic units. Let f denote the newform
associated to A. Based on our results above in the general case, we only need
to prove that the rational number 2πiΩ+

f

/
Ω+
A is a p-adic unit. This amounts to

showing that the Manin constant cA is a p-adic unit. In our setting, this follows
from [Maz78, Corollary 4.1], which states that if p | cA, then p2 | 4N .

�

Remark 6.2.2. Recall the σ-part Reg∞,σ(Af/Q) of the regulator Reg∞(Af/Q)
which we defined as

Reg∞,σ(Af/Q) :=
〈Pfσ , Pfσ 〉∞

[Af (Q)⊗Of Oσ : Oσ · Pfσ ]
,

where the ring Oσ is given as above. Note that the set {Pfσ}σ∈Σ ⊂ Af (Q) gives
rise to an orthogonal basis of Af (Q) ⊗ Q (with respect to the archimedean height
pairing), so that we have the factorization

Reg∞(Af/Q) =
∏
σ∈Σ

Reg∞,σ(Af/Q) .

6.3. Proof of Theorem 1.1.5 (Perrin-Riou’s conjecture). We assume through-
out Section 1.1.5 that f = fA is an eigenform of weight 2, which is associated to
the elliptic curve A/Q that has good ordinary reduction at p and that has analytic
rank one. We also assume throughout that ρA is absolutely irreducible.

We shall follow the argument in the proof of Theorem 2.4(iv) of [Büy17] very
closely, where the analogous assertion has been verified in the case when the prime
p is a prime of good supersingular reduction. Essentially, the argument in op. cit.
works verbatim, on replacing all references to Kobayashi’s work with references
to Corollary 1.1.2, Perrin-Riou’s p-adic Gross–Zagier formula at slope zero and
Theorem 1.1.6. We summarize it here for the convenience of the readers.

Let us write

LogV = LogV,α · ωα + LogV,β · ωβ .

Recall that ω∗A ∈ Dcris(V )/Fil0Dcris(V ) stands for the unique element such that
[ωA , ω

∗
A ] = 1. We define logA(resp(BK1)) according to the identity

logV (resp(BK1)) = logA(resp(BK1)) · ω∗A .

The dual basis of {ωα, ωβ} with respect to the pairing [ , ] is {ω∗β , ω∗α}, where ω∗β
(respectively, ω∗α) is the image of ω∗A under the inverse of the isomorphism

sDβ : Dβ
∼→ Dcris(V )/Fil0Dcris(V )
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(respectively, under the inverse of sDα). Let λ ∈ {α, β} be such that the height
pairing hNek

λ,Q is non-trivial and let λ∗ be given so that {λ, λ∗} = {α, β}. Then,

(1− 1/λ)2 · c(f) · hNek
λ,Q (P, P ) = L′p,λ(f, 1)

= 1
(
LogV,λ(∂λBK1)

)
=
[
exp∗(∂λBK1), (1− p−1ϕ−1)(1− ϕ)−1 · ω∗λ∗

]
= (1− p−1λ∗)(1− 1/λ∗)−1 [exp∗(∂λBK1), ω∗A ]

= (1− 1/λ)(1− 1/λ∗)−1 [exp∗(∂λBK1), logV (resp(BK1))]

logA(resp(BK1))

= −(1− 1/λ)(1− 1/λ∗)−1
hNek
λ,Q (BK1,BK1)

logA(resp(BK1))
.

Here:

• The first equality follows from Perrin-Riou’s p-adic Gross–Zagier formula if
λ = α, or else it is Corollary 1.1.2.
• The second equality follows from the definition of LogV,λ and the fact that

it maps to Beilinson-Kato class to Dfλ
/Q

(Theorem 6.1.2); as well as the

definition of the derived Beilinson-Kato class

∂λBK1 ∈ H1
Iw(D̃λ)

which is given within the proof of Theorem 2.4 in [Büy17].
• The element

∂λBK1 ∈ H1
/f(Qp, V ) := H1(Qp, V )/H1

f (Qp, V )

is the projection of the derived Beilinson-Kato class ∂λBK1 under the nat-
ural map

pr0 : H1
Iw(D̃λ) −→ H1

/f(Qp, V )

and the third equality follows from the explicit reciprocity laws of Perrin-
Riou (as proved by Colmez) (c.f. the discussion in [BL17b, Section 2.1]).
• Fourth and fifth equalities follow from definitions (and using the fact that
λλ∗ = p).
• The final equality follows from the Rubin-style formula proved in [BB17,

Theorem 4.13] and the comparison of various p-adic heights summarized in
the diagram (4).

We therefore infer that

(16)
hNek
λ,Q (BK1,BK1)

logA(resp(BK1))
= −(1− 1/α)(1− 1/β) · c(f) · hNek

λ,Q (P, P ) .

The fact that hNek
λ,Q (∗, ∗) and (logA ◦ resp (∗))2

are both non-trivial quadratic forms

on the one dimensional Qp-vector space A(Q) ⊗ Qp and combining with (16), we
conclude that

hNek
λ,Q (P, P )

logA(resp(P ))2
=

hNek
λ,Q (BK1,BK1)

logA(resp(BK1))2
= −(1−1/α)(1−1/β)·c(f)·

hNek
λ,Q (P, P )

logA(resp(BK1))
.

�
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