Kida’s formula and congruences. (English summary)

A Kida-type formula (an analogue for Iwasawa \(\lambda \)-invariants of the Riemann-Hurwitz genus formula) is proved for the Selmer groups of a rather general class of \(p \)-adic representations. Let \(F \) be a number field which is totally real or totally imaginary, \(p \) an odd prime number, \(V \) a nearly ordinary \(p \)-adic Galois representation of \(F \) (i.e. of \(G_F = \text{Gal}(\overline{F}/F) \)) defined over a sufficiently large finite extension \(K \) of \(\mathbb{Q}_p \), and \(T \) a \(G_F \)-stable \(\mathfrak{O} \)-lattice in \(V \), where \(\mathfrak{O} \) is the ring of integers of \(K \). Set \(A = V/T \). Then one can define the Selmer group \(\text{Sel}(F_\infty, A) \) of \(A \) over the cyclotomic \(\mathbb{Z}_p \)-extension \(F_\infty \) of \(F \). It is a module over \(\Lambda = \mathfrak{O}[[\text{Gal}(F_\infty/F)]] \), and its algebraic Iwasawa invariants \(\lambda(F_\infty, A) \) and \(\mu(F_\infty, A) \) are defined. If \(F'/F \) is a finite extension and \(F'_\infty = F'F_\infty \), then \(\text{Sel}(F'_\infty, A) \) and its invariants \(\lambda(F'_\infty, A) \) and \(\mu(F'_\infty, A) \) are defined similarly. The main result is: Theorem. Let \(F'/F \) be a finite Galois extension of a \(p \)-power degree. Assume that \(T \) satisfies some technical assumptions. If \(\text{Sel}(F_\infty, A) \) is \(\Lambda \)-cotorsion with algebraic \(\mu \)-invariant zero, then so is \(\text{Sel}(F'_\infty, A) \). Moreover, in this case, one has \(\lambda(F'_\infty, A) = [F'_\infty:F_\infty] \cdot \lambda(F_\infty, A) + \sum_{w'} m_{w'}(V) \).

Here, the sum is over the places \(w' \) of \(F'_\infty \) which are prime to \(p \) and ramified in \(F'_\infty/F_\infty \), and \(m_{w'}(V) \) is a certain local invariant of \(V \) defined in terms of the behavior of \(V \) when twisted by characters of \(\text{Gal}(F'_\infty/F_\infty) \). If \(V \) is associated to a cuspidal (elliptic modular) eigenform \(f \) and \(F' \) is abelian over \(\mathbb{Q} \), then the same results hold for the analytic Iwasawa invariants of \(f \).

The theorem is reduced to the case where \(F'_\infty/F_\infty \) is abelian. Then \(\text{Sel}(F'_\infty, A) \) is approximated by the sum of the Selmer groups \(\text{Sel}(F'_\infty, A_\chi) \) of the twisted Galois modules \(A_\chi \) by the characters \(\chi \) of \(G = \text{Gal}(F'_\infty/F_\infty) \). These \(\text{Sel}(F'_\infty, A_\chi) \) are “congruent” to each other if \(G \) has \(p \)-power order. The theorem is then proved by using the formulas of Weston [Manuscripta Math. 118 (2005), no. 2, 161–180; MR2177683 (2006k:11211)] and of M. Emerton, Pollack and Weston [Invent. Math. 163 (2006), no. 3, 523–580; MR2207234 (2007a:11059)] relating the \(\lambda \)-invariants of congruent Galois representations.

Reviewed by Yuichiro Taguchi

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2008