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1 Abstract

In this paper, we study the p-adic L-functions attached to a modular form
f =

∑
anq

n at a supersingular prime and mainly the case when ap = 0. It is
known in many cases that these L-functions have infinitely many zeroes (in the
“extended disc”). Therefore, the zeroes are not controlled by a single polynomial
in the Iwasawa algebra as in the ordinary case. The main result of this paper
(Theorem 7.1) describes how the zeroes of these L-functions are controlled by
two polynomials and by two “gamma-like” functions each with a fixed infinite
set of trivial zeroes. Also, asymptotic formulas for the p-part of the analytic
size of the Tate-Shafarevich group of an elliptic curve in the cyclotomic direction
are computed using this result. These formulas compare favorably with results
established by Kurihara in [9] on the algebraic side.
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2 Introduction

In the early 70’s, Mazur and Swinnerton-Dyer constructed a p-adic L-function
attached to a modular elliptic curve E/Q for each prime p of good, ordinary
reduction (see [15]). This L-function can be represented as a power series in
Zp[[T ]] ⊗ Qp that p-adically interpolates the special values of the complex L-
series of E twisted by various characters. Since this power series has bounded
coefficients, by the p-adic Weierstrass preparation theorem, it has finitely many
zeroes. The number of zeroes of the p-adic L-function and the slopes of these
zeroes are conjecturally related to certain arithmetic invariants of E via the
main conjecture (see Conjecture 3.2).

In [1] and [22] (see also [16]), the construction of p-adic L-functions was
generalized to higher weight modular forms, to supersingular primes and to
primes of bad reduction. At an ordinary prime for the modular form, the p-adic
L-function is an element of OK [[T ]] ⊗ K with K some finite extension of Qp

and therefore the L-function has finitely many zeroes. At a supersingular prime
however the situation is quite different. The L-function can have unbounded
coefficients and infinitely many zeroes. For each supersingular prime p, there are
two p-adic L-functions corresponding to the two non-unit roots of x2−apx+pk−1
where ap is the eigenvalue of Tp acting on our modular form. When the slopes
of the two roots are different, Mazur has shown that at least one of the two
L-functions has infinitely many zeroes (Theorem 5.2). In the equal slope case,
it is known that if ap vanishes then one of the two L-functions has infinitely
many zeroes (Theorem 5.4).

The infinitude of the zeroes of these L-functions makes their arithmetic na-
ture more mysterious especially in the context of a main conjecture. This paper
will attempt to shed some light on the case ap = 0. (Note that this includes the
case of a supersingular prime of an elliptic curve for p > 3.) We will sketch here
our methods and results in the elliptic curve case, though in the main body of
the paper we will work with modular forms of arbitrary weight having ap = 0.

Let E/Q be an elliptic curve and p a supersingular prime with ap = 0.
Let α and α be the two roots of x2 + p. We then have two p-adic L-functions
Lp(E,α, T ) and Lp(E,α, T ) ∈ Qp(α)[[T ]]. Write

Lp(E,α, T ) = G+(T ) +G−(T ) · α with G± ∈ Qp[[T ]].

As observed by Perrin-Riou in [17], the interpolation property defining these
L-functions forces G+ to vanish at ζp2n − 1 and G− to vanish at ζp2n−1 − 1 for
all n ≥ 1 where ζm is an m-th root of unity (see Theorem 5.4). (There is a
change in parity for p = 2.) Hence the power series G+ and G− have an infinite
set of “trivial” zeroes. Note that these zeroes are even independent of E.

We then go on to construct p-adic power series Φ+ and Φ− that vanish
precisely at the forced zeroes of G+ and G− respectively (see Lemma 6.2). These
power series are constructed as an infinite product of cyclotomic polynomials.
The next step is to examine the functions g+ := G+/Φ+ and g− := G−/Φ−.
The relation of Φ+ and Φ− to Lp(E,α, T ) can be compared to the relation of the
gamma function to the Riemann zeta function. The gamma function forces the
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zeta function to vanish at all of the negative even integers and the interesting
zeroes of the zeta function are discovered only after these zeroes are removed
from consideration. In our setting, we divide G± by Φ± respectively, hoping to
uncover its more interesting zeroes. For this reason, we refer to Φ+ and Φ− as
gamma-like functions. The properties of these functions are studied in section
6.2.

By studying the rate of growth of G± and Φ±, one sees that g± is bounded
and actually has integral coefficients. Hence, g± has only finitely many zeroes
and G± vanishes at only finitely many places apart from its fixed set of forced
roots. The integrality of g+ and g− is the main result of the paper and is proved
in Theorem 7.1.

Hence
Lp(E,α, T ) = g+(T ) · Φ+(T ) + g−(T ) · Φ−(T ) · α

with g± ∈ Zp[[T ]]. In this way, the infinite set of zeroes of Lp(E,α, T ) are
controlled by a finite set of arithmetically interesting zeroes together with an
infinite set of trivial zeroes. (Note that it is not being claimed that it is clear
how to determine the zeroes of Lp(E,α, T ) from those of g+ and g−. However,
for example, from the information of the Newton polygons of g+ and g−, one
can determine the Newton polygon of Lp(E,α, T ) which does give quite a lot
of information about the zeroes of the L-function.)

Let Q∞ be the cyclotomic Zp-extension of Q. The above result can be used
to study the analytic invariants of an elliptic curve E along this extension. This
is done in section 8. Via Kato’s Euler system, it is now know that E(Q∞) is a
finitely generated group (see [19, Corollary 8.2]). By the Birch and Swinnerton-
Dyer conjecture, this should translate into E(Q∞) having finite analytic rank.
The above result implies that its analytic rank is bounded by the sum of the
λ-invariants of g+ and g−. (The number of zeroes of an integral p-adic power
series is equal to its λ-invariant.) This bound can be tightened to just the
number of p-cyclotomic zeroes of g+ and g− (see Corollary 8.5).

Let Qn be the unique subextension of Q∞ of degree pn. Using Theorem
7.1 we compute asymptotic formulas for the analytic size of X(E/Qn)p∞ (i.e.
the size predicted by the Birch and Swinnerton-Dyer conjecture). This is done
in Proposition 8.12. In the ordinary case, these formulas involve the Iwasawa
invariants of the p-adic L-function (see section 3.2). In the supersingular case,
these invariants do not make any sense. Instead, the formulas in this case are
based upon the Iwasawa invariants of g+ and g− which do exist since these
power series have bounded coefficients.

The case where p - L(E,1)
ΩE

has been studied deeply by Kurihara in [9]. By
using Kato’s Euler system, he has managed to produce exact formulas for the
algebraic size of X(E/Qn)p∞ along the cyclotomic Zp extension of Q. Un-
der this hypothesis, the Iwasawa invariants of g+ and g− are all zero and the
asymptotic formulas derived below compare favorably with those of Kurihara
(see Proposition 8.15).
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3 A motivating example

For an ordinary prime p of an elliptic curve over Q, Iwasawa theory yields
asymptotic formulas for the growth of the p-part of the Tate-Shafarevich group
in the cyclotomic direction. The Birch and Swinnerton-Dyer conjecture also
predicts asymptotic formulas for the size of this group in terms of the Iwasawa
invariants of the p-adic L-series of this elliptic curve. Fortunately these two
formulas take on the same shape and agree perfectly via the main conjecture.

In this section, we derive these asymptotic formulas both on the algebraic
side and on the analytic side and show how they compare. This calculation
is performed in anticipation of the analytic calculations done in section 8.3 in
the supersingular case where the analogous algebraic formulas are not currently
known. We begin by reviewing Iwasawa theory in the context of class numbers
and then move on to elliptic curves.

3.1 Class numbers

In the late fifties, Iwasawa began an intensive study of how class numbers vary
in certain towers of number fields, namely in Zp-extensions. Precisely, let p be a
prime number and let K be a number field. Then a Zp-extension of K is simply
an extension L such that Gal(L/K) ' Zp. Denote by Kn the unique subfield
of L with degree pn over K. Iwasawa discovered that the p-part of the class
numbers of the Kn grow systematically along this tower and gave asymptotic
formulas for the p-part of these numbers. If hn is the class number of Kn then
Iwasawa established that for n large enough,

ordp(hn) = µpn + λn+ ν

for some non-negative constants µ, λ and ν (see [7]).
Iwasawa’s approach was to package together the p-part of the class group at

each finite level into a module over a certain large ring. The structure theory
for modules over this ring is fairly simple – reminiscent of the structure theory
of modules over a PID. The final step is then to descend information about this
large module to the Kn to be able to make deductions about class numbers.

More precisely, let An be the p-Sylow subgroup of the ideal class group of
Kn and let A∞ := lim←−An where the limit is taken under the norm maps. Since
An is a finite p-group, it can be considered as a Zp-module. Then if we denote
Γ = Gal(L/K) and Γn = Gal(L/Kn), we can view An as a Zp[Γ/Γn]-module.
Hence, A∞ is a module over Zp[[Γ]] ' lim←−

n

Zp[Γ/Γn] the completed group algebra

of Γ which we will denote by Λ. This is the large ring referred to above and is
non-canonically isomorphic to Zp[[T ]].

Any finitely generated module over Λ is pseudo-isomorphic to the direct sum
of a free Λ-module and a torsion Λ-module. Here pseudo-isomorphic means
there exists a map having finite kernel and cokernel. Our Λ-module A∞ is
indeed finitely generated and hence we have

A∞ ∼ (⊕i Λ/fnii )⊕ Λr (1)
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for fi ∈ Λ where ∼ denotes pseudo-isomorphism.
To complete this picture, we must now connect A∞ to An for each n. We

will make this connection in the special case where there is only one prime of K
sitting over p and where this prime is totally ramified in L. For a Λ-module X,
let XΓn denote the Γn-coinvariants of X (i.e. the maximal quotient on which
Γn acts trivially). Then the natural map

(A∞)Γn → An

is an isomorphism for all n. This will allow us to transfer information between
A∞ and the An. (Without any assumptions on the primes sitting over p, the
group (A∞)Γn could be infinite and hence the above map would not even be a
pseudo-isomorphism.)

Remaining under the same hypotheses on p, let us apply this result to the
case where n = 0. Then the Γ-coinvariants of A∞ are isomorphic to A0 and
hence finite. From this we can conclude that A∞ is Λ-torsion and the r in
equation (1) is zero. (The Γ-coinvariants of a free Λ-module are infinite.)

For ease of exposition, let us assume that the fi are pairwise relatively prime.
Then A∞ ∼ Λ/f where f =

∏
i fi. Therefore, the size of An differs from

the size of (Λ/f)Γn by a constant bounded independent of n. We have con-
verted the question of computing class numbers to computing the size of the
Γn-coinvariants of a certain torsion Λ-module! The later is easy to do and we
will provide the details of this calculation in what follows (see [5]).

Pick an isomorphism of Λ with Zp[[T ]] and write the image of f as f(T ).
Then by the p-adic Weierstrass preparation theorem, we can write

f(T ) = pµ · P (T ) · U(T )

where µ is a non-negative integer, P (T ) is a distinguished polynomial of degree
λ and U(T ) is a unit power series. (A distinguished polynomial P (T ) is of the
form xλ + aλ−1x

λ−1 + · · ·+ a0 where p | ai.)
Let ωn = (1 + T )p

n − 1. Then Λ/ωn is a free Zp-module and we can view
(Λ/f)Γn as the cokernel of multiplication by f on Λ/ωn. The size of (Λ/f)Γn is
then the p-part of the determinant of this map. Since multiplication by T has
eigenvalues ζ − 1 for ζ a pn-th root of unity, the eigenvalues of multiplication
by f are just f(ζ − 1) where again ζp

n

= 1. Hence,

# (Λ/f)Γn and
∏

ζpn=1

f(ζ − 1)

differ by a p-adic unit. (Note that since (Λ/f)Γn ' Zp[[T ]]/(f(T ), ωn) is finite,
we must have that f(T ) and ωn are relatively prime and hence f(ζ − 1) 6= 0.)

The valuation of this product is easily calculated in terms of the µ and
λ-invariants of f (see section 8.3) yielding

ordp(hn) = µpn + λn+ ν

for n large enough and ν some constant independent of n.
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Note that if either µ or λ is non-zero then the class numbers in this tower
grow without bound. Also, if p - h0 then (A∞)Γ0

' A0 = 0. By a compact
version of Nakayama’s lemma, we can conclude that A∞ = 0 and hence hn = 0
for all n.

3.2 Iwasawa theory of elliptic curves at ordinary primes

In the early seventies, Mazur applied Iwasawa’s ideas to the arithmetic of elliptic
curves. Instead of studying class numbers, Mazur studied both the growth of the
Mordell-Weil group and the p-part of the Tate-Shafarevich group of an elliptic
curve along Zp-extensions.

Let E be an elliptic curve over Q and let Q∞ be the cyclotomic Zp-extension
of Q with Qn the unique subextension of degree pn. For K any algebraic
extension of Q, denote by Sel(K,Ep∞) the p-primary Selmer group of E over
K. This group fits into the following exact sequence:

0→ E(K)⊗Qp/Zp → Sel(K,Ep∞)→X(E/K)p∞ → 0.

In order to analyze E(Qn) and X(E/Qn)p∞ , Mazur studied the compact Λ-
module Sel(Q∞, Ep∞)∨. Here M∨ = Hom(M,Qp/Zp) is the Pontrjagin dual.
He proved a control theorem relating Sel(Q∞, Ep∞) to Sel(Qn, Ep∞). Namely,
the natural map

Sel(Qn, Ep∞)→ Sel(Q∞, Ep∞)Γn

has finite kernel and cokernel with sizes bounded independent of n.
From this control theorem one can deduce that Sel(Q∞, Ep∞)∨ is finitely

generated as a Λ-module. However, we cannot directly conclude that it is Λ-
torsion as in the case of ideal class groups. There we relied on the fact that ideal
class groups are always finite. If E has positive rank over Q then Sel(Q, Ep∞)
is infinite.

In [14], Mazur conjectured that Sel(Q∞, Ep∞)∨ is always Λ-torsion when E
has good ordinary reduction at p. This remained an open question until Kato’s
construction of an Euler system for the Tate module of E (see [8]). From this
Euler system, one can deduce that E(Q∞) is a finitely generated group and
that Sel(Q∞, Ep∞)∨ is indeed Λ-torsion. From this very deep result one can
prove the following theorem.

Theorem 3.1. (Kato - Mazur - Rohrlich) Let E/Q be an elliptic curve with
good, ordinary reduction at some prime number p. Then E(Q∞) is a finitely
generated group. Furthermore, assume that X(E/Qn)p∞ is finite for all n and
let #X(E/Qn)p∞ = pen . Then for n large enough,

en = µpn + λn+ ν

for some non-negative constants µ, λ and ν.

Once it is known that Sel(Q∞, Ep∞)∨ is Λ-torsion, the proof of this theorem
follows in the same manner as in the last section with the added complication
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that the Γn-coinvariants of this Λ-module could be infinite. Again, assume that
the torsion module Sel(Q∞, Ep∞)∨ has the form Λ/f for some f ∈ Λ. We then
have to worry about the zeroes of f in the form ζ − 1 where ζ is a p-power root
of unity. Call such zeroes p-cyclotomic.

As before let
f(T ) = pµ · P (T ) · U(T )

where µ is a non-negative integer, P (T ) is a distinguished polynomial of degree
λ and U(T ) is a unit power series. Write P as PMW · PX where PMW vanishes
precisely at the p-cyclotomic zeroes of P . Let λMW be the degree of PMW and
let λX be the degree of PX. Then for n large enough so that PMW divides
(1 + T )p

n − 1 we have,

(Λ/f)Γn ∼ (Λ/PMW )Γn ⊕ (Λ/PX)Γn ∼ (Λ/PMW )⊕ (Λ/PX)Γn .

From the assumption that X(E/Qn)p∞ is finite and from Mazur’s control the-
orem, we can conclude that

Λ/PMW ' (E(Qn)⊗Qp/Zp)
∨

and hence the rank of E over Qn equals λMW . Furthermore,

(Λ/PX)Γn and X(E/Qn)p∞

differ in size by a constant that is bounded independent of n. Hence, the rank
of E(Q∞) is equal to λMW and µ and λ in the above theorem are equal to µ
and λX.

3.3 An analytic approach

We will approach the question of the growth of the p-part of the Tate-Shafarevich
group using analytic methods to derive a guess at the above formulas without
using Iwasawa theory. That is, we will compute the size of X(E/Qn)p∞ pre-
dicted by the Birch and Swinnerton-Dyer conjecture. In the end, these analytic
formulas will compare well with Theorem 3.1. This method will be applied in
section 8.3 to derive similar analytic formulas in the supersingular case where
algebraic formulas are not yet known.

Again, let E be an elliptic curve over Q and p some ordinary prime for E.
If the complex L-series L(E/Qn, s) vanishes to order ran at 1, we define

#X
an(E/Qn) :=

L(r)(E/Qn, 1) ·#Etor(Qn)
2 ·
√
D(Qn)

ΩE/Qn
· 2rn ·R(E/k) · Tam(E/Qn)

where D(·) is the discriminant, R(E/·) is the regulator, Tam(E/·) is the product
of the Tamagawa numbers, ΩE/Qn

is the real period over Qn and rn is the rank
of E(Qn), We then define,

eann := ordp(#X
an(E/Qn)).
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A theorem of Rohrlich (see Theorem 7.11) states that L(E/Q, χ, 1) = 0 for
only finitely many Dirichlet characters χ of p-power order. Since,

L(E/Qn, s) =
∏

χ

L(E/Q, χ, s)

where the product is taken over all χ corresponding toQn/Q, we must have that
the order of vanishing of L(E/Qn, s) at s = 1 stabilizes for n large. Furthermore,
by [20, Theorem 3], E(Q∞)tor is finite. By BSD, this should imply that E(Q∞)
is finitely generated which we will assume for this calculation. Denote by r the
stable value of the rn. Choose n so large that:

1. ords=1 L(E/Qn+1, s) = ords=1 L(E/Qn, s)

2. E(Qn+1) = E(Qn)

3. Tam(E/Qn+1) = Tam(E/Qn).

Then,

#X
an(E/Qn+1)

#X
an(E/Qn)

=

(
∏

χ

L(E/Q, χ, 1)

ΩE/Q

)
·
√
D(Qn+1)

D(Qn)
· R(E/Qn)

R(E/Qn+1)
(2)

where the product is taken over all χ corresponding to Qn+1/Q but not to
Qn/Q.

The regulators R(E/Qn) do not stabilize even though E(Qn) = E(Qn+1)
for n large since the regulators are computed by height functions relative to
different fields. For any finite extension of number fields L/K, if E(K) = E(L)
we have (see [21, pg. 233])

R(E/L)

R(E/K)
= [L : K]rank(E(K))

and hence the quotient of the regulators in (2) is just pr.
The second term in (2) is readily calculated using the conductor-discriminant

formula. Namely, there are pn−1(p − 1) characters each of conductor pn+1

corresponding to Qn+1 and not to Qn. (When p = 2 these characters are of
conductor 2n+2.) Hence,

ordp

(√
D(Qn+1)

D(Qn)

)
= pn−1(p− 1) · n+ 1

2
. (3)

Analyzing the first term in (2) is a more difficult problem. We are interested
in the p-part of L(E/Q, χ, 1)/ΩE where χ is a character of both p-power order
and conductor. This is the moment where the p-adic L-function of E enters
the game. There exists a p-adic power series in Zp[[T ]] ⊗Qp interpolating the
p-part of these twisted L-values. More precisely, fix an embedding of Q into
Qp and view χ as a character with values in Qp. Let α be the unit root of
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x2 − apx + p where ap = p + 1 − #Ẽ(Fp). Then there exists a unique power
series Lp(E, T ) ∈ Zp[[T ]]⊗Qp (conjecturally in Zp[[T ]]) such that

Lp(E, ζpn − 1) =
1

αn+1
· p

n+1

τ(χ)
· L(E/Q, χ, 1)

ΩE
(4)

where n ≥ 1, τ(χ) is a Gauss sum and ζpn = χ(1 + p). (When p = 2 the
exponent of α is n + 2.) The power series Lp(E, T ) is the p-adic L-function of
E. The proof of its existence (in a much more general setting) is recalled in
section 4.

We have now reduced the question of studying the p-part of L(E/Q, χ, 1)/ΩE
over varying χ to analyzing a p-adic power series evaluated at ζpn−1 as n grows.
The later is easy to do via the p-adic Weierstrass preparation theorem. (Note
the similarities to the calculations in the previous section!) Write,

Lp(E, T ) = pµ
an · P an(T ) · Uan(T )

where µan ∈ Z, P an(T ) is a distinguished polynomial of degree λan and Uan(T )
is a unit power series.

Then for n large enough, ordp(P
an(ζpn−1)) = µan+ λan

pn−1(p−1) as the leading

term dominates. Hence,

ordp

(∏
Lp(E, ζpn − 1)

)
= µan · pn−1(p− 1) + λan

where the product is taken over all primitive pn-th roots of unity. Also, since
τ(χ) · τ(χ) = ±pn+1, we have

ordp

(
∏

χ

L(E/Q, χ, 1)

ΩE/Q

)
= µan · pn−1(p− 1) + λan − pn−1(p− 1) · n+ 1

2
. (5)

Substituting these quantities back into equation (2) yields,

eann+1 − eann = µan · pn−1(p− 1) + λan − r

(even for p = 2) and hence for n large,

eann = µan · pn + (λan − r) · n+ ν.

These analytic equations parallel those in Theorem 3.1 with µ = µan and λ =
λan − r. Let us make a more precise comparison.

Write P an = P an
MW
· P an

X
where P an

MW
vanishes precisely at the p-cyclotomic

zeroes of P . Let λan
MW

be the degree of P an
MW

and λan
X

be the degree of P an
X

. From
the interpolation property defining the p-adic L-series, each p-cyclotomic zero
forces L(E,χ, 1) = 0 for some χ. By BSD this should relate to some Mordell-
Weil group being infinite. In fact, a p-adic BSD would imply that r = λan

MW
.

Under such an assumption, we would then have

eann = µan · pn + λan
X
· n+ ν
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for n large.
But now, conjecturally, these constants µan and λan

X
should be the same as µ

and λX appearing in Theorem 3.1! The following conjecture gives a theoretical
framework that explains this connection plus a great deal more. Note that if X
is a torsion Λ-module pseudo-isomorphic to ⊕iΛ/fi, then f :=

∏
i fi is called

its characteristic power series.

Conjecture 3.2. (The Main Conjecture) Let E be an elliptic curve over Q
and let p be an ordinary prime for E. Then the characteristic power series of
Sel(Q∞, Ep∞)∨ equals the p-adic L-function of E up to an element of Λ×.

This conjecture would then imply that µ = µan, λMW = λan
MW

and λX =
λan

X
. One can think of the characteristic power series of Sel(Q∞, Ep∞)∨ as

an algebraic p-adic L-series since it is defined using purely algebraic methods.
Great progress has been made towards proving this conjecture via Kato’s Euler
system. It is now known that the algebraic p-adic L-series divides the analytic
p-adic L-series up to a power of p. (See [19, Theorem 8.7])

3.4 The supersingular case

When p is supersingular for E the situation on the algebraic side and the analytic
side are both less favorable. On the algebraic side, Sel(Q∞, Ep∞)∨ is no longer
Λ-torsion and Mazur’s control theorem fails. On the analytic side, there exist
two conjugate p-adic L-functions, but neither are elements of Zp[[T ]]⊗Qp. They
both have infinitely many zeroes (see Theorem 5.4) and lack well-defined µ and
λ invariants.

On the algebraic side, Kurihara has proved an analogue of Theorem 3.1 for
p supersingular in the special case when p - L(E, 1)/ΩE . Kurihara first studies
a submodule of Sel(Q∞, Ep∞) defined by putting a harsher local condition at
p. This submodule is in fact Λ-cotorsion and obeys a certain control theorem.
(In his special case the submodule is actually zero.) Then Kurihara uses Kato’s
Euler system to analyze the quotient of the two modules yielding formulas for
the size of the p-part of X(E/Qn).

On the analytic side, the main result of this paper (Theorem 7.1) allows one
to make sense of two µ and λ invariants attached to the p-adic L-functions of E.
In a calculation analogous to the one done in the last section (see section 8.3),
we calculate asymptotic formulas for the p-part of #X

an(E/Qn) in terms of
these µ and λ invariants. In the case when p - L(E, 1)/ΩE , all of these invariants
are zero and the formulas derived agree with Kurihara’s.

Still needed to obtain a more complete picture in the supersingular case,
would be a general version of Theorem 3.1 (whose formulas depend upon the
two µ and λ invariants constructed in this paper).

4 p-adic L-functions of modular forms

The p-adic L-function of a modular form is a function on Cp-valued characters
of Z×p defined by integration against a fixed distribution (i.e. a measure that is

11



possibly unbounded). This distribution is constructed to encode the arithmetic
properties of the modular form. In particular, by integrating against characters
of finite order, the special values of the modular form can be recovered.

In this section, we will first construct this distribution out of modular sym-
bols. Then we will describe what it means to integrate against such a distribu-
tion. (The distribution may be unbounded and naive Riemann sums will not
necessarily converge.) Having integration in hand, we can define the p-adic L-
function and discuss its analytic properties including its rate of growth. We will
then describe a power series representation of the p-adic L-function (as used in
section 3.3). Finally, we will provide a description of the p-adic L-function via
a certain interpolation property. For more details see [1],[16] and [22].

4.1 Distributions attached to modular forms

Let f be a modular form of weight k, levelN and character ε that is an eigenform
for each Tn with eigenvalue an. Let K(f) be the number field generated by the
an and the values of ε and let O(f) be its ring of integers.

Define the periods of f by

φ(f, P, r) := 2πi

∫ r

i∞

f(z)P (z) dz

for r ∈ Q and P ∈ Z[T ] of degree less than or equal to k − 2. Let Lf be the
Z-module generated by φ(f, P, r) for all r ∈ Q. Then Lf is finitely generated
over Z. In fact, Lf ·K(f) has dimension at most 2 over K(f). Let

η(f, P ; a,m) := φ
(
f, P (mz − a), a

m

)

and fix the positive and negative parts of η by

η+(f, P ; a,m) :=
η(f, P ; a,m) + η(f, P ;−a,m)

2
;

η−(f, P ; a,m) :=
η(f, P ; a,m)− η(f, P ;−a,m)

2
.

We have the following theorem.

Theorem 4.1. There exist two non-zero complex numbers Ω+f and Ω−f such
that

η±(f, P ; a,m)

Ω±f
∈ O(f).

Proof. [6, Theorem 3.5.4]

Define the modular symbols of f by

λ±(f, P ; a,m) :=
η±(f, P ; a,m)

Ω±f
∈ O(f).

12



We will build our distribution out of the data of these modular symbols. First
we set some notation. Fix a prime number p and an embedding of Q ↪→ Qp.
Let ordp(·) be the associated valuation at p normalized so that ordp(p) = 1.
Let v be the prime of K(f) over p and let K := K(f)v. Call a root α of
x2 − apx + ε(p)pk−1 = 0 allowable if ordp(α) < k − 1. Finally, let Z×p,M :=

Z×p × (Z/MZ)
×

for M prime to p. (This (Z/MZ)
×

factor will allow for twists
of the modular form by a character of conductor M .)

For a fixed allowable α, we define two distributions on Z×p,M by the following
formulas:

µ±f,α(P, a+ pnMZp,M ) =
λ±(f, P ; a, pnM)

αn
− λ±(f, P ; a, pn−1M)

αn+1
∈ K(α)

where a is prime to Mp. The following proposition expresses the additivity
property of µ±f,α.

Proposition 4.2.

µ±f,α(P, a+ pnZp,M ) =

p−1∑

k=0

µ±f,α(P, a+ kpn + pn+1Zp,M )

Proof. This follows from the fact that f is an eigenform for Tp. See [16, Section
10] for more details.

In the ordinary case, ordp(ap) = 0 and there is a unique allowable α. This
α is also a unit and the above distribution is bounded. In the supersingular
case, ordp(ap) > 0 and hence there can be two allowable choices for α. Since
the above distribution contains terms with powers of α in their denominators,
µ±f,α need not be bounded.

4.2 Integrating with respect to µ±f,α

The fact that µ±f,α is in general only a distribution and not a measure presents
a problem with respect to integration. Riemann sums will not necessarily con-
verge. However, the rate at which µ±f,α grows is controllable which will suffice
to make sense of integration. The following proposition bounds this growth.

Proposition 4.3. Let h′ = ordp(α) be the slope of α. Then for i such that
0 ≤ i ≤ [h′] we have that

sup
a

∣∣∣µ±f,α
(
(x− a)i, a+ pnMZp,M

)∣∣∣

is O(pn(h
′−i)) as a function of n.

Proof. [22, Lemma 3.8].
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Now let F be a locally analytic function on Z×p,M . To approximate F we
will use more general Riemann sums that involve the first [h′] + 1 terms of the
Taylor series of F .

Let Λm be a system of representatives of Z×p,M mod pn and let h = [h′] + 1.
Define,

S±m(F ) =
∑

b∈Λm

h−1∑

i=0

F (i)(b)

i!
· µ±f,α

(
(x− bp)i, b+ pnMZ×p,M

)

where x 7→ xp is the natural projection from Zp,M to Zp.

Lemma 4.4. For F locally analytic,

lim
m→∞

S±m(F )

converges and is independent of the choice of Λm.

Proof. [22, Lemma 1.5,1.6]

We now define integration by
∫

Z
×
p,M

F dµ±f,α := lim
m→∞

S±m(F ).

Note that in the ordinary case h′ = 0 and the above reduces to just standard
Riemann sums.

4.3 Analytic properties of the p-adic L-function

The p-adic L-function of a modular form is a function defined by integration on
the Cp-valued characters of Z×p,M . Precisely,

Lp(f, α, ·) : Hom(Z×p,M ,Cp)→ Cp

by the formula

Lp(f, α, χ) :=

∫

Z
×
p,M

χdµsgnχf,α .

The space Hom(Z×p,M ,Cp) has a natural analytic structure which we will now
describe. Let q equal p for odd primes and 4 for p = 2. Fix γ a topological
generator of 1 + qZp. Note that

Hom(Z×p,M ,Cp) ' Hom((Z/MqZ)
×
,Cp)×Hom(1 + qZp,Cp)

and
Hom(1 + qZp,Cp) ' {z ∈ Cp : |z − 1|p < 1}

via ψ 7→ ψ(γ). So Hom(Z×p,M ,Cp) is composed of several copies of the open
unit disc of Cp. With respect to this analytic structure, Lp(f, α, χ) is analytic
in χ.
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We will make this more explicit. Call characters on Z×p,M tame if they factor

thru (Z/Mq)× and wild if they factor thru 1 + qZp. Define a particular wild
character χu ∈ Hom(Z×p,M ,Cp) by

χu : Z×p,M ³ Z×p ³ 1 + qZp → Cp

where the first and second maps are the natural projections (the second map
sends x to x

ω(x) with ω(x) the Teichmüller character). The third map simply

sends our chosen generator γ onto u. Fix a tame character ψ on Z×p,M . Then,
under the above identification, Lp(f, α, ψχu) is analytic as a function of u.

Before proving this fact and discussing the rate of growth of Lp(f, α, ·), we
will first need to recall the basic theory of the Newton polygon (see [3] for more
details).

4.3.1 Newton polygon

Definition 4.5. For K/Qp, denote by A(K) the set of rigid analytic functions
on the unit disc with coefficients in K. That is,

A(K) =

{
F =

∞∑

k=0

akT
k
∣∣∣ ak ∈ K;F converges on the open unit disc of Cp

}

Definition 4.6. Let F ∈ A(K). Define the Newton polygon of F by

MF (t) := logp

(
sup

|z|p<p−t
|F (z)|p

)

for t ∈ R, t > 0. Here logp is the usual real valued logarithm having its base
equal to p.

Remark 4.7. The above definition is the only place in this paper where logp
will refer to the usual logarithm. In all other places it will refer to the p-adic
logarithm.

Proposition 4.8. For F ∈ A(K), we have that

1. MF (t) is a piecewise linear function.

2. For z in the unit disc, F (z) = 0 if and only if ordp(z) is a breakpoint of
MF (t).

3. For t a breakpoint of MF (t), the number of zeroes of F with valuation
exactly t is the difference between the slopes of the lines joining at t.

Example 4.9. We will now analyze MF (t) where F = logp(1+z) — the p-adic
logarithm. Since the zeroes of logp(z) are exactly the pn-th roots of unity, the
breakpoints of MF (t) are given by

1

φ(pn)
=

1

(pn − pn−1) .
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Let tn = 1/φ(pn). Note that the slope of MF (t) between tn+1 and tn is
−∑n

r=0 φ(p
r) = −pn. Hence,

MF (tn+1)−MF (tn) = pn · (tn − tn+1) = 1.

Since MF (t1) = −1/(p− 1), we have

MF (tn) = n− p/(p− 1).

Definition 4.10. For F and G ∈ A(K), we say that F is O(G) if

sup
|z|<r

|F (z)|p is O

(
sup
|z|<r

|G(z)|p
)

as r 7→ 1−.

This is equivalent to
lim
t→0+

MF (t)−MG(t) <∞.

We define F being o(G) similarly and this is equivalent to

lim
t→0+

MF (t)−MG(t) = −∞.

Finally, say F ∼ G if F is O(G) and G+ is O(F ).

The following lemma is useful in proving convergence of analytic functions.

Lemma 4.11. Suppose that fn is a sequence in A(K) and that ti is some
sequence of positive real numbers tending to 0. Then fn → f uniformly on all
closed subdiscs of the unit disc iff limn→∞Mf−fn(ti) = −∞ for all i.

Proof. We have that fn → f uniformly on the closed disc of radius pt if and
only if sup|z|p<pt |f(z)− fn(z)| → 0 as n → ∞. This last limit is equivalent to
Mf−fn(t)→ −∞ as n→∞.

4.3.2 Growth estimates on Lp(f, α, ·)
Proposition 4.12. (Visik, Amice-Vélu) The function Lp(f, α, χu) is analytic

in u and is O(logh
′

p ) where h′ = ordp(α).

Proof. This proof is taken nearly verbatim from [22, Theorem 2.3] except that
there the weaker estimate of o(loghp) (where h = [ordp(α)] + 1) is obtained.

The bound of O(pn(h
′−i)) from Proposition 4.3 yields the big-O estimate on the

L-function.
Note that it suffices to see that u 7→

∫
1+pZp

χuµ
±
f,α is analytic and O(logh

′

p ).

Let {γj} with 0 ≤ j ≤ pm−1 be our set of representatives of 1 + pZp mod pm

where γ is our chosen generator. Then

S±m(χu) =

pm−1−1∑

j=0

h−1∑

i=0

χ
(i)
u (γj)

i!
· µ±f,α

(
(x− γj)i, γj + pmZp

)

which we will denote simply by Sm(u). The following three facts about Sm are
proved in [22].
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1. Sm(u) = R
(m)
0 (u)+R

(m)
1 (u) · logp(u)+ · · ·+R

(m)
h−1(u) · logh−1p (u) where the

R
(m)
i (u) are polynomials in u.

2. supu |R
(m)
i (u)|p is O(pm(h

′−i)).

3. Sm+1 − Sm ≡ 0 mod

(∏h−1
i=0

((
u
γi

)pm
− 1

))
.

Actually, in [22] condition 2 is only stated as o(pm(h−i)), but from proposition
4.3 the stronger bound is clear.

Let tn = 1/φ(pn) and let Mm = MSm+1−Sm . Then to see that Lp(f, α, χu)
is analytic in u it suffices to see that limm→∞Mm(tn) = −∞ for all n. This
follows from Lemma 4.11.

First note that condition 3 implies that Sm+1 − Sm vanishes at γj · ζpk for

0 ≤ j ≤ h − 1 and for k ≤ m. Let F denote loghp . Then for t ≥ tm, the slope
of Mm(t) is greater than or equal to the slope of MF (t) as F vanishes with
multiplicity h at all of the p-power roots of unity.

From example 4.9, we know that MF (tn+1) −MF (tn) = h and hence, we
have that

Mm(tm)−Mm(tn) ≥ h(m− n) for m > n. (6)

Now from condition 2, we have that limm→∞M
R

(m)
l

(t)−m(h−i) = −∞ for any

t. (Here we are only using 2 its its weaker form as it appeared in [22].) Also,
Mlogip

(tm) = i (m− p/(p− 1)). Hence from condition 1,

Mm(tm) = mh+ d(m) (7)

where limm→∞ d(m) = −∞.
Then from (6) and (7), we have

d(m) ≥Mm(tn)− hn

and hence Mm(tn) → −∞ as m → ∞. This proves that our L-function is
analytic.

Now we move on to prove the growth estimate. Let L = limm→∞ Sm. In

order to check that L is O(logh
′

p ), we need that

lim
n→∞

ML(tn)− h′n <∞.

Note that L = S1 +
∑∞
m=1 Sm+1 − Sm and hence

MG(tn) ≤ max

(
sup
m≤n

Mm(tn), sup
m>n

Mm(tn),MS1
(tn)

)
.

The last term is easy to control since S1 is O(logh−1p ) and hence O(logh
′

p ).
For m ≤ n, we have from conditions 1 and 2,

Mm(tn) ≤ max
0≤l≤h−1

nl − lp

p− 1
+mh′ −ml + d(m)
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where limm→∞ d(m) < ∞. This uses the stronger version of condition 2 as
stated in this paper. We then have that

Mm(tn) ≤ max
0≤l≤h−1

nh′ + (m− n)(h′ − l)− lp

p− 1
+ d(m)

≤ nh′ − (n−m)h′ + d(m)

≤ nh′ + d(m)

as m ≤ n.
For m > n, as in the first part of this proof, we have

Mm(tm)−Mm(tn) ≥ h(m− n) ≥ h′(m− n)

and
Mm(tm) = mh′ + c(m)

where c(m) is bounded as m → ∞. (This again uses the stronger estimate in
condition 2.) Combining the above two formulas yields,

Mm(tn) ≤ nh′ + c(m).

Finally, combining the two cases of m ≤ n and m > n yields,

Mm(tn) ≤ nh′ + C

where C is independent of n establishing the result.

4.3.3 Power series representation of Lp(f, α, ·)
Now that we know Lp(f, α, ψχu) is analytic in u, we can form its power series
expansion at 1. Denote this by Lp(f, α, ψ, T ) and hence

Lp(f, α, ψ, u− 1) = Lp(f, α, ψχu).

Note that this expression of the L-function as a power series depends upon our
choice of γ generating 1 + qZp. However, the dependence is not serious and γ
will always be suppressed from the notation. Also, if we are in the ordinary
case, α is uniquely determined and will be dropped from the notation.

This power series converges on the open unit disc. If the tame part of χ is
ϕ then

∫
Z
×
p
χ dµ±f,α ∈ K(α,ϕ). From this it follows that

Lp(f, α, ψ, T ) ∈ K(α,ϕ)[[T ]].

If ψ is the trivial character then we write Lp(f, α, T ) for Lp(f, α, ψ, T ).

Remark 4.13. The p-adic L-function of f also depends upon our choice of Ω±f
which are only defined up to an element of O×K . In the case of elliptic curves,
we will specify a particular choice of periods and pin down the L-function up
to sign.
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4.4 Evaluating at finite order characters

We will make explicit the values of Lp(f, α, ·) at characters of the form xjp · ϕ
for 0 ≤ j ≤ k − 2 where xp is the natural projection from Z×p,M to Z×p and ϕ is
a character of finite order. This is equivalent to computing the values

Lp(f, α, ψ, γ
j · (ζpn − 1)) for 0 ≤ j ≤ k − 2

where ζpn is a pn-th root of unity. In this way, Lp(f, α, ψ, T ) can be thought of
as a solution to an interpolation problem. In the ordinary case this completely
determines Lp(f, α, ψ, T ). In the supersingular case this will also completely

determine the L-function with the added condition that it be o(loghp) where
h = [ordp(α)] + 1. (Any two functions satisfying the interpolation property will

differ by a function that vanishes so often it must grows like loghp .)

Let χ = xjp ·ϕ where ϕ is some finite order character of conductor m = pνM
with M prime to p and τ(ϕ) be a Gauss sum. Define the p-adic multiplier by

ep(α, χ) =
1

αν

(
1− ϕ(p)ε(p)pk−2−j

α

)(
1− ϕ(p)pj

α

)
.

Proposition 4.14. For ϕ as above,

Lp(f, α, χ) = ep(α, χ) ·
mj+1

(−2πi)j ·
j!

τ(ϕ)
· L(fϕ, j + 1)

Ω±f

where L(fϕ, s) is the complex L-series attached to f twisted by ϕ.

Proof. [16, Section 14]

Remark 4.15. Note that the above formula only depends upon α in the first
factor. If ν > 0 the above formula simplifies greatly since ep(α, χ) =

1
αν .

5 Results on the infinitude of zeroes of super-

singular L-functions

Assume for the moment that we are in the ordinary case so that ordp(ap) = 0.
Then there is a unique allowable root α to x2 − apx + ε(p)pk−1 = 0 which is
necessarily a unit. In fact, α ∈ O×K and hence µ±f,α takes its values in OK .
Therefore Lp(f, α, ψ, T ) has integral coefficients and by the p-adic Weierstrass
preparation theorem we can write

Lp(f, α, ψ, T ) = pµ · P (T ) · U(T )

with P (T ) a distinguished polynomial and U(T ) a unit. In particular, this
L-function has only finitely many zeroes all encoded in the polynomial P (T ).
This is remarkably different from the supersingular case where we will see in
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many instances that the coefficients of Lp(f, α, ψ, T ) are unbounded and that
this power series has infinitely many zeroes.

Assume now that ordp(ap) > 0 and that (p,N) = 1. Then there are two
allowable roots to x2 − apx + ε(p)pk−1 = 0. Call these two roots α1 and α2
and to each we have an associated p-adic L-function. The relationship between
these two L-functions will allow us in many cases to prove that one (or both)
have infinitely many zeroes.

Let h1 = ordp(α1) and h2 = ordp(α2) ordered so that h1 ≤ h2. Then h1
ranges from 0 to (k− 1)/2. When h1 = 0 we are in the ordinary case and when
h1 = (k − 1)/2 then h2 = h1 and we are in the “most” supersingular case. The
first result of this section will discuss the case when h1 6= h2 and the second
result will discuss the case when ap = 0 which is a special subcase of the most
supersingular case.

We first begin with a lemma that says that if a p-adic power series has finitely
many zeroes then its coefficients are bounded.

Lemma 5.1. (Iovita) Let K be some finite extension of Qp and let A(K) be
the subring of K[[T ]] consisting of power series convergent on the open unit
disc. Then f(T ) ∈ K[[T ]] has only finitely many zeroes if and only if f(T ) ∈
OK [[T ]]⊗K.

Proof. By the Weierstrass preparation theorem, any element of OK [[T ]] ⊗ K
has only finitely many zeroes. Conversely, take f(T ) ∈ K[[T ]] with only finitely
many zeroes. Then all of its zeroes must be algebraic over K. Let P (T ) be a
polynomial in K[T ] with the same roots (counting multiplicity) as f(T ). Then
from [10, Lemma 1] there is some g(T ) ∈ A(K) such that f(T ) = P (T ) · g(T ).
Since g(z) is non-zero for all z in the open unit disc, we have that g(T ) is a unit
in A(K) [10, Proposition 4.1]. Finally, the units of A(K) areK× ·(1+TOK [[T ]])
[10, (4.8)] which completes the proof.

Theorem 5.2. (Mazur) Suppose that h1 > 0 and h1 6= h2. Then for a fixed
tame character ψ on Z×p,M , at least one of Lp(f, α1, ψ, ·) and Lp(f, α2, ψ, ·) has
infinitely many zeroes in the open unit disc.

Proof. From the remark following Proposition 4.14, we have that

Lp(f, α1, ψ, ζpn−1 − 1) =
cn
α1n

Lp(f, α2, ψ, ζpn−1 − 1) =
cn
α2n

for some constant cn independent of the αi. (Here we are implicitly assuming
that p 6= 2. For p = 2 the exponent on the αi would be n + 1 making little
difference in the argument below.)

Suppose that both Lp(f, α1, ψ, T ) and Lp(f, α2, ψ, T ) have finitely many
zeroes. Then Lemma 5.1 says that they both have bounded coefficients. By the
Weierstrass preparation theorem, we can write

Lp(f, α1, ψ, T ) = pr1P1(T )U1(T ) and Lp(f, α2, ψ, T ) = pr2P2(T )U2(T ),
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where the Pi are distinguished polynomials of degree di and the Ui are unit
power series. Then for large n, Lp(f, αi, ψ, ζpn−1 − 1) will have valuation ri +
di · ordp(ζpn−1 − 1). We also know that

αn1 · Lp(f, α1, ψ, ζpn−1 − 1) = αn2 · Lp(f, α2, ψ, ζpn−1 − 1).

Taking valuations of the above equation yields

h1 · n+ r1 + d1 · ordp(ζpn−1 − 1) = h2 · n+ r2 + d2 · ordp(ζpn−1 − 1),

for large n. Since ordp(ζpn−1 − 1) tends to 0 for large n and h1 6= h2, we have a
contradiction. Hence, one of the two power series has infinitely many zeroes.

Remark 5.3. Note that this proof does not indicate which of the two L-
functions vanishes infinitely often. It is believed to be true that both of these
L-functions have infinitely many zeroes.

We now consider f with ap = 0 which puts us in the special case of the most
supersingular case. Again we will prove that one of the two L-functions has
infinitely many zeroes and in some cases we will see that both have infinitely
many.

Theorem 5.4. (Perrin-Riou; Visik) Suppose that ap = 0 (and hence h1 =
h2). Then for a fixed tame character ψ on Z×p,M one of Lp(f, α1, ψ, ·) and
Lp(f, α2, ψ, ·) have infinitely many zeroes in the open unit disc. If K(ψ, α1) 6=
K(ψ) then both L-functions have infinitely many zeroes.

Proof. Let

G+ψ (T ) =
Lp(f, α1, ψ, T ) + Lp(f, α2, ψ, T )

2
∈ K(ψ)[[T ]] and

G−ψ (T ) =
Lp(f, α1, ψ, T )− Lp(f, α2, ψ, T )

2α1
∈ K(ψ)[[T ]].

Then
Lα1

(T ) = G+ψ (T ) +G−ψ (T ) · α1.
As before, we have that

Lp(f, α1, ψ, ζpn − 1) =
cn

α1n+1
and Lp(f, α2, ψ, ζpn − 1) =

cn
α2n+1

for some constant cn independent of the αi. (If p = 2 the exponents on the αi
should be n+ 2.) Since ap = 0, we have α1 = −α2. Hence

Lp(f, α1, ψ, ζpn − 1) = Lp(f, α2, ψ, ζpn − 1)

for n odd and

Lp(f, α1, ψ, ζpn − 1) = −Lp(f, α2, ψ, ζpn − 1)
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for n even. This forces G+ψ (ζp2n − 1) = 0 and G−ψ (ζp2n−1 − 1) = 0 for all n > 0.
(If p = 2 then the parities are reversed.)

Assume now that both Lp(f, α1, ψ, T ) and Lp(f, α2, ψ, T ) have finitely many
zeroes. Again Lemma 5.1 guarantees that they both have bounded coefficients.
Hence, both G+ψ and G−ψ also have bounded coefficients. But G+ψ and G−ψ have
infinitely many zeroes which is a contradiction.

Therefore, one of Lp(f, α1, ψ, T ) and Lp(f, α2, ψ, T ) has infinitely many ze-
roes. Now if K(ψ, α1) 6= K(ψ) the two power series are conjugate and hence
both have infinitely many zeroes.

Corollary 5.5. Suppose p is a supersingular prime for an elliptic curve E
over Q. Then at least one of Lp(E,α1, ψ, T ) and Lp(E,α2, ψ, T ) have infinitely
many zeroes in the open unit disc. If Qp(ψ, α) 6= Qp(α) then both functions
have infinitely many zeroes.

Proof. For p > 3, we have that ap = 0 since p | ap and ap < 2
√
p. Therefore,

the above theorem applies. In the case p = 2 or 3 and ap 6= 0, then ap = ±2
or ±3. In these four cases, α1/α2 is not −1 but rather a fourth or sixth root
of unity. This still forces G+ψ and G−ψ to have infinitely many zeroes which is
enough to make the above argument work.

6 The gamma-like functions Φ+ and Φ−

In the previous proof it was shown that when ap = 0 we can write

Lp(f, α, ψ, T ) = G+ψ (T ) +G−ψ (T ) · α

where G+ψ (T ) vanishes at ζp2n−1 and G−ψ (T ) vanishes at ζp2n−1−1 for all n > 0.

The interpolation data also forces G+ψ (T ) to vanish at γj · (ζp2n − 1) and G−ψ (T )

to vanish at γj · (ζp2n−1 − 1) for 0 ≤ j ≤ k − 1. One of the main results of this
paper is that G+ψ and G−ψ have only finitely more zeroes than this fixed set of
forced roots.

In fact, there exists two power series Φ+ and Φ− ∈ Qp[[T ]], depending only
on k and γ, such that Φ+ and Φ− have simple zeroes at γj · (ζp2n − 1) and
γj · (ζp2n−1 − 1) respectively for 0 ≤ j ≤ k − 1, for all n > 0 and such that

G+ψ (T )

Φ+(T )
and

G−ψ (T )

Φ−(T )

have bounded coefficients. (Recall that if p = 2 then there is a parity switch
and the roles of Φ+ and Φ− should be interchanged.)

In this section we will first construct Φ+ and Φ− as an infinite product
of cyclotomic polynomials. After this, we will study their rates of growth by
computing their Newton polygons. Finally, we will see that they satisfy a trivial
functional equation.

22



6.1 Construction of Φ+ and Φ−

For the remainder of the paper, we will abbreviate the notation for a pn-th
root of unity ζpn to ζn. Let Φn(T ) = Φpn(T ) =

∑p−1
t=0 T

pn−1·t be the pn-th
cyclotomic polynomial.

We first construct two functions Φ+j (T ) and Φ−j (T ) that vanish at γj ·(ζ2n−1)
and γj · (ζ2n−1 − 1) respectively for a fixed integer j and all n > 0. We then
take the product of these functions over j between 0 and k−2 to form our main
functions Φ+(T ) and Φ−(T ).

Lemma 6.1. For any integer j, the products

Φ+j (T ) :=
1

p
·
∞∏

n=1



Φ2n

(
T
γj + 1

)

p




Φ−j (T ) :=
1

p
·
∞∏

n=1



Φ2n−1

(
T
γj + 1

)

p




converge and define power series in Qp[[T ]] that are convergent on the open
unit disc. The zeroes of Φ+j (T ) (resp. Φ−j (T )) are precisely γj · (ζ2n − 1) (resp.

γj · (ζ2n−1 − 1)) for n > 0 and these are all simple zeroes.

Proof. We will prove this for the first product since the argument for the second
one is virtually identical. Fix some R < 1 and let D(0, R) be the closed disc of
radius R about zero. To see that the product converges, it suffices to see that

Φ2n

(
T
γj + 1

)

p
→ 1 as n→∞.

We have

∣∣∣∣∣∣

Φ2n

(
T
γj + 1

)

p
− 1

∣∣∣∣∣∣
≤ max
0≤t≤p−1

∣∣∣∣∣∣∣




(
T
γj + 1

)p2n−1·t

− 1

p




∣∣∣∣∣∣∣

≤ max
t,s

∣∣∣∣∣

(
p2n−1·t

s

)

p
·
(
T

γj

)s∣∣∣∣∣ .

For 1 ≤ s < pn, pn
∣∣∣
(
p2n−1·t

s

)
and so pn−1

∣∣∣ (
p2n−1·t

s )
p ·

(
T
γj

)s
since γj ∈ Z×p .

For pn ≤ s ≤ p2n−1 · t, T pn
∣∣∣ (

p2n−1·t
s )
p ·

(
T
γj

)s
.

Since we are on a closed disc of radius R < 1, picking n large enough forces
all of these terms to tend to 0. This proves convergence of the products. Since
the space of convergent power series on the open disc is complete, our power
series is automatically convergent on the open unit disc.

23



As for the zeroes of these power series, by construction Φ+j (T ) (resp. Φ
−
j (T ))

vanishes at γj · (ζ2n − 1) (resp. γj · (ζ2n−1 − 1)). To see that these are the only
zeroes, note that

logp

(
1 +

T

γj

)
= lim
n→∞

(
T
γj + 1

)pn
− 1

pn

and hence,

p2 · Φ+j (T ) · Φ−j (T ) =
logp

(
1 + T

γj

)

T
γj

.

Since logp

(
1 + T

γj

)
has simple zeroes at γj · (ζn − 1) for n ≥ 0, Φ−j (T ) and

Φ+j (T ) have no extra zeroes and all of their zeroes are simple.

Lemma 6.2. The power series

Φ+(T ) :=
k−2∏

j=0

Φ+j (T )

Φ−(T ) :=

k−2∏

j=0

Φ−j (T )

in Qp[[T ]] (depending only on k and our chosen generator γ) are convergent on
the open unit disc and the only zeroes of Φ+ (resp. Φ−) are simple zeroes at
γj · (ζ2n − 1) (resp. γj · (ζ2n−1 − 1)) for 0 ≤ j ≤ k − 2 and for all n > 0.

Proof. This all follows from the previous lemma.

6.2 The rate of growth of Φ+ and Φ−

Lemma 6.3. Φ+ ∼ Φ− ∼ log(k−1)/2p .

Proof. We will prove this simply by calculating the Newton polygons of both
Φ+ and Φ−. It may be useful to compare the following to example 4.9.

We begin by computing the Newton polygon of F = Φ+j (T ). The breakpoints

of MF (t) are then given by 1/φ(p2n). The slope of MF (t) between t2n+2 and
t2n is

−
n∑

r=1

φ(p2r) = −p · (p
2n − 1)

p+ 1
.

Hence,

MF (t2n+2)−MF (t2n) =
p · (p2n − 1)

p+ 1
· (t2n − t2n+2) = 1− 1

p2n
.
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Since MF (t0) = 1, we have

MF (t2n) = n−
n∑

k=1

1

p2k
+ 1.

Similarly, for F = Φ−j (T ),

MF (t2n+1) = n−
n∑

k=1

1

p2k
+ 1.

For F = Φ+ or Φ− then MF is given by k − 1 times the appropriate formula
above.

From our computation of the Newton polygon for log(k−1)/2p in example 4.9,
a simple comparison of all these formulas yields the lemma.

6.3 Functional equations for Φ+ and Φ−

The natural change of variables in the T -variable for a functional equation is
T 7→ 1

1+T − 1. The next lemma shows that Φ+ and Φ− are invariant under this
change of variable.

Lemma 6.4. We have Φ+
(

1
1+T − 1

)
= Φ+(T ) and Φ−

(
1

1+T − 1
)
= Φ−(T ).

Proof.

Φ+
(

1

1 + T
− 1

)
=

1

p

∞∏

k=1

Φ2k(
1

1+T )

p

=
1

p

∞∏

k=1

Φ2k(1 + T ) · (1 + T )φ(p
2k)

p

as the root of Φ2k are invariant under z 7→ z−1;

=
1

p

∞∏

k=1

Φ2k(T + 1)

p
= Φ+(T )

as
∏∞
k=1(1 + T )φ(p

2k) = 1. Similarly,

Φ−
(

1

1 + T
− 1

)
= Φ−(T ).
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7 Description of p-adic L-functions in terms of

Φ+ and Φ−

7.1 Main result

Recall that f is a modular form of weight k, level N and character ε that is an
eigenform for all Tn. We have that K(f) is the number field generated by the
eigenvalues of f and the value of ε. Let p be a prime number and let K be the
completion of K(f) at our chosen prime over p. Let ψ be a Dirichlet character
of conductor M . Here both M and N are prime to p. Let Kψ be the field
generated by the values of ψ over K and let Oψ be its ring of integers. Finally,
let Λψ = Oψ[[T ]] be the Iwasawa algebra.

Theorem 7.1. Suppose that ap = 0 and p is odd. Then

Lp(f, α, ψ, T ) = g+ψ (T ) · Φ+(T ) + g−ψ (T ) · Φ−(T ) · α

where g±ψ ∈ Λψ ⊗Kψ. If p = 2 then

L2(f, α, ψ, T ) = g+ψ (T ) · Φ−(T ) + g−ψ (T ) · Φ+(T ) · α

where g±ψ ∈ Λψ ⊗Kψ.

Proof. We argue in the case where p is odd. Write

Lp(f, α, ψ, T ) = G+ψ (T ) +G−ψ (T ) · α

as in the proof of Theorem 5.4. Then the interpolation property from section
4.4 forces

G+ψ (γ
j · (ζ2n − 1)) = 0 and G−ψ (γ

j · (ζ2n−1 − 1)) = 0

for 0 ≤ j ≤ k − 2 and all n > 0. Since all the zeroes (counting multiplicity) of
Φ+ (resp. Φ−) are also zeroes of G+ψ (resp. G−ψ ), [10, (4.8)] tells us that

Φ+
∣∣∣G+ψ and Φ−

∣∣∣G−ψ

in Kψ[[T ]] (even in A(Kψ)). Let

g+ψ =
G+ψ
Φ+

and g−ψ =
G−ψ
Φ−

.

By Lemma 4.12, G+ψ and G−ψ are O(log(k−1)/2p ) and by Lemma 6.3, Φ+ ∼ Φ− ∼
log(k−1)/2p . Hence, both g+ψ and g−ψ are O(1) (i.e. bounded). From the following

lemma, we can concluded that g+ψ and g−ψ have bounded coefficients.

Lemma 7.2. If G(z) =
∑
i aiz

i is a bounded analytic function (i.e. O(1)) then
G has bounded coefficients.
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Proof. Assume not and pick i large enough so that |ai|p > 2N for an arbitrary
integer N À 0. Note that

|ai|p · |z|ip ≤ sup
i,z
|aizi|p = sup

z
|G(z)|p

for all i and z. We can then pick z with |z|p arbitrarily close to 1. This forces
|G(z)|p > N contradicting the boundedness of G.

7.2 The case of elliptic curves

7.2.1 Definition of p-adic L-functions

Let E be an elliptic curve over Q. Since E is modular, we will define the p-adic
L-function of E to be the p-adic L-function of the corresponding modular form.
More precisely, let fE be the normalized newform corresponding to E of weight
2 and level N . To define the p-adic L-function of fE we need to make a choice
of periods (see Theorem 4.1). We will pin down these two periods up to sign.

Let ωE be the Néron differential of E and let γ± generate H1(E,Z)
±. Define

Ω±E :=
∫
γ±
ωE which is uniquely determined up to sign. We then define the p-

adic L-function of E by Lp(E,α, ·) = Lp(fE , α, ·) where the p-adic L-function of
fE is defined using Ω±E . If p is ordinary, we will write this as Lp(E, ·) dropping
α from the notation.

Remark 7.3. In section 4.1, modular symbols were notated by λ±(f, P ; a,m)
where P is an integral polynomial of degree less than or equal to k − 2. Since
k = 2 for elliptic curves, the P term becomes irrelevant. Furthermore, when P
is trivial, λ±(f, P ; a,m) depends only on the rational number a

m . In the case of
elliptic curves, we will adopt the (standard) notation,

[ a
m

]±
:= λ±(fE , 1; a,m).

Remark 7.4. The periods Ω±E do not necessarily satisfy the requirements of
Theorem 4.1. For example, take E = X0(11) and p = 5. Then

[0]+ =

(∫ 0
i∞
fE

)

Ω+E
=

1

5
.

However, for a fixed E, the denominators of the modular symbols are bounded.
This is made more precise in the next lemma.

Lemma 7.5. Let E be an elliptic curve over Q of conductor N . Let m be some
integer prime to N . Then

2 · (p+ 1− ap) ·
[ a
m

]+
∈ Z and 2 ·

[ a
m

]−
∈ Z

for any prime p of good reduction for E.
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Proof. First note that if r, s ∈ Q are two equivalent cusps of X0(N) then

2πi

∫ s

r

fE(z) dz ∈ ZΩ+E ⊕ ZΩ−E .

(Here and in what follows, all integrals will be taken over some path in the
upper half plane connecting the two endpoints of integration.) Now

2 ·
[ a
m

]+
· Ω+E =

∫ a
m

i∞

fE +

∫ − a
m

i∞

fE = 2 ·
∫ 0

i∞

fE +

∫ a
m

0

fE +

∫ − a
m

0

fE .

Since m is relatively prime to N , we have that 0, am and − a
m are all equivalent

cusps in X0(N). Hence the sum of the last two terms in the above formula
yields an integral multiple of Ω+E .

As for the first term, see [2, pg. 30] for the following formula:

(p+ 1− ap) ·
∫ i∞

0

fE =

p−1∑

a=1

∫ a
p

0

fE .

Since E has good reduction at p, we have that p - N and hence 0 and a
p are

equivalent cusps of X0(N). Therefore, the right hand side is an integral multiple
of Ω+E which proves the first part of the claim.

Since

2 ·
[ a
m

]−
· Ω−E =

∫ a
m

i∞

fE −
∫ − a

m

i∞

fE =

∫ a
m

− a
m

fE

and a
m and − a

m are equivalent cusps, we have 2 ·
[ a
m

]−
∈ Z.

Even though the modular symbols may carry denominators, the p-adic L-
function of an elliptic curve is conjectured to be an integral power series in the
ordinary case. This is known in many setting. The above lemma handles the
following easy case.

Proposition 7.6. Let E be an elliptic curve over Q and p a prime of good
reduction such that ap 6≡ 0, 1 (mod p). Then Lp(E, T ) is an integral power
series.

Proof. Note that α is dropped from the notation since we are in the ordinary

case. For p odd, from Lemma 7.5 we have that (p + 1 − ap) ·
[
a

pr

]+
∈ Zp.

Since ap 6≡ 0 (mod p), we have that α ∈ Z×p . Since ap 6≡ 1 (mod p), we have

that

[
a

pr

]+
∈ Zp. Therefore, µ+fE takes values in Zp from which it is clear that

Lp(E, T ) ∈ Zp[[T ]].
For p = 2, µ+fE may take values in 1

2Z2. However, in each Riemann sum both
µfE (a + 2nZ2) and µfE (−a + 2nZ2) appear. Since these are equal our needed
extra factor of 2 appears.
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Remark 7.7. The complex L-series of an elliptic curve is invariant under
isogeny. However, this is not the case for the p-adic L-function. Since fE is
a normalized newform it is invariant under isogeny. However, the periods Ω±E
may change by a rational constant under isogeny which will then change the
p-adic L-function by a rational constant. Such a change could at worst affect
the µ-invariant of the p-adic L-series.

7.2.2 Main result for elliptic curves

When ap ≡ 0 (mod p), we are in the supersingular case and then certainly
Lp(E,α, T ) /∈ Zp[[T ]]. In fact, by Theorem 5.4, Lp(E,α, T ) /∈ Zp[[T ]]⊗Qp. We
know from Theorem 7.1 that the g+ and g− functions corresponding to E have
bounded coefficients. In the case of elliptic curves, we can strengthen this to
say they are actually integral power series.

Theorem 7.8. Let E/Q be an elliptic curve. Let

Lp(E,α, T ) = g+(T ) · Φ+(T ) + g−(T ) · Φ−(T ) · α

for p 6= 2 and let

L2(E,α, T ) = g+(T ) · Φ−(T ) + g−(T ) · 1
2
· Φ+(T ) · α

as in Theorem 7.1. Then g+(T ), g−(T ) ∈ Zp[[T ]].

Remark 7.9. The extra factor of 1
2 appearing when p = 2 is necessary to

ensure that g− ∈ Z2[[T ]].

This theorem will be proved by an explicit computation. In the proof of
Proposition 4.12, a sequence Sn(T ) of polynomials in Qp(α)[T ] was constructed
such that Sn(T )→ Lp(E,α, T ). Write

Sn(T ) = G+n (T ) +G−n (T ) · α

where G±n ∈ Qp[[T ]]. Since the weight of fE is 2, Lp(E,α, T ) is defined by a
limit of standard Riemann sums which lend themselves to explicit computation.
The following lemma will give precise formulas for G+n and G−n . The proof of
the above theorem will then follow from simply counting the number of p’s in
the denominator and seeing that there are none.

Lemma 7.10. For p odd,

G+n (T ) =





(−p)−n
2

pn−1−1∑

j=0

(
p−1∑

a=0

[
ω(a)γj

pn

]+)
(T + 1)j 2 | n

(−p)−(n+1
2 )

pn−1−1∑

j=0

(
p−1∑

a=0

[
ω(a)γj

pn−1

]+)
(T + 1)j 2 - n
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and

G−n (T ) =





(−p)−(n2+1)
pn−1−1∑

j=0

(
p−1∑

a=0

[
ω(a)γj

pn−1

]+)
(T + 1)j 2 | n

(−p)−(n+1
2 )

pn−1−1∑

j=0

(
p−1∑

a=0

[
ω(a)γj

pn

]+)
(T + 1)j 2 - n.

Proof. As in Proposition 4.12, we choose representatives of Z×p mod pn, namely

{ω(a)γj} with 1 ≤ a ≤ p− 1 and 0 ≤ j ≤ pn−1 − 1 where ω(a) the Teichmüller
character. Then we have,

Sn(T ) =

pn−1−1∑

j=0

p−1∑

a=0

µ+f,α(ω(a)γ
j + pnZp) · (T + 1)j (8)

and

µ+f,α(ω(a)γ
j + pnZp) =

1

αn

[
ω(a)γj

pn

]+
− 1

αn+1

[
ω(a)γj

pn−1

]+
. (9)

Combining (8) and (9) and writing everything in terms of 1 and α gives the
above formulas for G+n and G−n (recalling that α2 = −p).

Proof of 7.8. Note that for 1 ≤ k ≤ n − 1, Sn(ζk − 1) = Lp(E,α, ζk − 1)
since the Riemann sum perfectly approximates the integral. We know that
G+(ζ2k − 1) = 0 and hence, we have that G+n (ζ2k − 1) = 0 for 1 ≤ k ≤

[
n−1
2

]
.

Therefore, we can write

G+n (T ) =



1

p

[n−1
2 ]∏

k=1

Φ2k(T + 1)

p


 · g+n (T ) with g+n (T ) ∈ Qp[[T ]].

But from Lemma 7.10, we see that p[
n+1

2 ] ·G+n ∈ Zp[[T ]]. Hence g+n has integral
coefficients.

Taking limits yields,

G+(T ) = Φ+(T ) · g+(T ) with g+(T ) ∈ Zp[[T ]].

Similarly for g−(T ) and for p = 2.

The following theorem of Rohrlich guarantees that the p-adic L-function and
g± are not identically zero.

Theorem 7.11. Let E/Q be an elliptic curve and p a prime number. Then for
only finitely many χ of p-power order, we have that L(E,χ, 1) = 0.

Proof. See [18]

Corollary 7.12. Lp(E,α, T ), g
+(T ) and g−(T ) are all non-zero functions.
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Corollary 7.13. Let E/Q be an elliptic curve and p a prime so that ap = 0.
Then Lp(E,α, T ) and Lp(E,α, T ) have only finitely many common zeroes.

Proof. Any common zero of Lp(E,α, T ) and Lp(E,α, T ) is a zero of both G+(T )
and G−(T ). By Theorem 7.11, there are only finitely many zeroes of Lp(E,α, T )
in the form ζn − 1. Further, by Theorem 7.1 and Corollary 7.12, there are only
finitely many zeroes of G+(T ) and G−(T ) not in the form ζn−1. This completes
the argument.

7.2.3 Functional equations for g+(T ) and g−(T )

The functional equation for Lp(E,α, χu) reads

Lp(E,α, χu) = εN · u− logγ〈N〉 · Lp(E,α, χu−1)

where εN is the negative of then sign of fE (i.e. wN (fE) = −εNfE). For ease
of notation, let c = − logγ〈N〉. In terms of Lp(E,α, T ) we have

Lp(E,α, T ) = εN · (1 + T )c · Lp
(
E,α,

1

1 + T
− 1

)
.

Both g+ and g− satisfy a functional equation of this type.

Theorem 7.14. With g+ and g− as in Theorem 7.1,

g+(T ) = εN · (1 + T )c · g+
(

1

1 + T
− 1

)
and

g−(T ) = εN · (1 + T )c · g−
(

1

1 + T
− 1

)
.

Proof. From Lemma 6.4, we know that

Φ+
(

1

1 + T
− 1

)
= Φ+(T ) and Φ−

(
1

1 + T
− 1

)
= Φ−(T ).

So expressing the functional equation for Lp(f, α, T ) in terms of g+ and g−

yields,

Φ+(T ) ·
(
g+(T )− εN (1 + T )cg+

(
1

1 + T
− 1

))

= Φ−(T ) ·
(
g−(T )− εN (1 + T )cg−

(
1

1 + T
− 1

))
· α.

But the non-zero coefficients of the LHS have valuations in Z while on the
RHS each has valuation n

2 with n an odd integer. This forces both sides to be
identically zero and the functional equations for g+ and g− follow.
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8 Consequences of main result for elliptic curves

Let Q∞/Q be the cyclotomic Zp extension and let Qn be the unique subex-
tension with degree pn. In this section we will discuss the analytic behavior
of E(Qn) and X(E/Qn)p∞ as n grows: i.e the behavior as predicted by the
Birch and Swinnerton-Dyer conjecture. This behavior will be described by the
Iwasawa invariants of the p-adic L-function of E.

8.1 Iwasawa invariants of p-adic L-functions

Let p be an ordinary prime and hence Lp(E, T ) ∈ Zp[[T ]] ⊗Qp (conjecturally
in Zp[[T ]]). By the p-adic Weierstrass preparation theorem, we can uniquely
write,

Lp(E, T ) = pµ · P (T ) · U(T )

where µ is an integer, P (T ) is a distinguished polynomial of degree λ and U(T )
is a unit power series. The values of µ and λ are the Iwasawa invariants of
Lp(E, T ).

If p is supersingular, however, it does not make sense to discuss the µ and λ
invariants of Lp(E,α, T ). Instead, we can discuss the µ and λ invariants of g±

from Theorem 7.1. Precisely, write

g±(T ) = pµ
± · P±(T ) · U±(T )

where µ± is a non-negative integer (this uses Theorem 7.8), P± is a distinguished
polynomial of degrees λ± and U± are unit power series.

In all of these cases, the λ-invariant can be further refined. Let P (T ) be
a distinguished polynomial. Decompose P as a product PMW · PX where PMW

vanishes (with correct multiplicity) at all of the p-cyclotomic zeroes of P (i.e.
the zeroes of the form ζn − 1). Let λMW be the degree of PMW and let λX be
the degree of PX so that λ = λMW + λX.

In the following sections, we will give bounds for the analytic rank of E(Q∞)
and asymptotic formulas for the analytic size of X(E/Qn)p in terms of these
µ and λ invariants.

8.2 Growth of the Mordell-Weil group in the cyclotomic

direction

Let E be an elliptic curve overQ and let p be any prime number (not necessarily
supersingular for E).

Definition 8.1. The (p-adic) analytic rank of E(Qn) is defined by

ran(E(Qn)) =
∑

ζ

ordζ−1(Lp(E,α, T ))

where the sum is taken over all pn-th roots of unity and ordζ−1(·) represents
the order of vanishing at ζ − 1.
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Remark 8.2. This should conjecturally agree with the (complex) analytic rank
of E(Qn) defined by the order of vanishing of the complex L-series L(E/Qn, s)
at 1 as long as E has good reduction at p.

The following lemma says that in the supersingular case the above definition
is independent of α.

Lemma 8.3. Let E/Q be an elliptic curve and p a supersingular prime for E
with ap = 0. Then,

∑

ζ

ordζ−1(Lp(E,α, T )) =
∑

ζ

ordζ−1(Lp(E,α, T )).

Proof. Let f (n) represent the n-th derivative of f . Then L
(n)
p (E,α, T ) and

L
(n)
p (E,α, T ) are conjugate power series say by σ ∈ Gal(Qp/Qp). Note that σ

is independent of n. Hence

ordζ−1(Lp(E,α, T )) = ordζσ−1(Lp(E,α, T ))

from which the result follows.

The stronger result that these sums should match up term-by-term is prefer-
able and expected from Birch and Swinnerton-Dyer type considerations. The
following lemma will prove this when p ≡ 3 (mod 4).

Lemma 8.4. Let E/Q be an elliptic curve and p ≡ 3 (mod 4) a supersingular
prime for E. If ζ is a pn-th root of unity then

ordζ−1 Lp(E,α, T ) = ordζ−1 Lp(E,α, T ).

Proof. Let ζ be a pn-th root of unity and choose σ ∈ Gal(Qp/Qp) such that
ζσ = ζ−1. Since p ≡ 3 (mod 4) and α is a square root of −p, we have ασ =

−α (consider the representation of α as a Gauss sum). Therefore, L
(n)
p (E,α, T )

and L
(n)
p (E,α, T ) are conjugate power series by σ. Hence,

ordζ−1−1 Lp(E,α, T ) = ordζ−1 Lp(E,α, T ).

Finally, from the functional equation for Lp(E,α, T ) we have

ordζ−1 Lp(E,α, T ) = ordζ−1−1 Lp(E,α, T )

which yields the result.

By a theorem of Rohrlich (Theorem 7.11), it is known that E(Q∞) has finite
analytic rank. (This is now known algebraically via Kato’s Euler system even
in the supersingular case - see [19].)

In the ordinary case, it is clear that ran(E(Q∞)) is bounded by the λ-
invariant of the p-adic L-function (in fact it is equal to λMW ). In the supersin-
gular case, we will give bounds for this analytic rank in terms of the λ-invariants
of g+ and g−.
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Corollary 8.5. For p ≡ 3 (mod 4) a supersingular prime of E such that ap = 0,

ran(E(Q∞)) ≤ λ+
MW

+ λ−
MW

.

Proof. It will suffice to prove the following claim.

ordζn−1 Lp(E,α, T ) ≤





ordζn−1 g
−(T ) 2 | n

ordζn−1 g
+(T ) 2 - n

Let m = ordζn−1 Lp(E,α, T ) and we shall prove this by induction on m. For
m = 1,

Lp(f, α, T ) = g+(T ) · Φ+(T ) + g−(T ) · Φ−(T ) · α
implies

Lp(E,α, ζ2k−1 − 1) = g+(ζ2k−1 − 1) · Φ+(ζ2k−1 − 1) and

Lp(E,α, ζ2k − 1) = g−(ζ2k − 1) · Φ−(ζ2k − 1) · α.
Since Φ+(ζ2k−1 − 1) and Φ−(ζ2k − 1) are both non-zero, Lp(E,α, T ) vanishing
at some root of unity implies that g+(T ) or g−(T ) will vanish at that root of
unity.

Now for m > 1, from Lemma 8.4 we have that both L
(m)
p (E,α, T ) and

L
(m)
p (E,α, T ) vanish to order m at ζn− 1. Assume for now that n is odd. Then

G+(T ) = L
(m)
p (E,α, T ) + L

(m)
p (E,α, T ) vanishes at least to order m at ζn − 1.

Since G+(T ) = g+(T ) · Φ+ and Φ+ is non-zero at ζn − 1, we have that g+(T )
also vanishes at least to order m at ζn − 1. The case of n even follows in the
same manner.

Remark 8.6. Unlike in the ordinary case, equality is not always achieved in
the above corollary. For example, if E(Q∞) = E(Q) = Z then ran = λ+

MW
=

λ−
MW

= 1.

The following corollary makes use of Kato’s Euler system and Theorem 7.8.

Corollary 8.7. Suppose that E does not admit complex multiplication and p is

an odd prime with ap = 0 such that p - L(E,1)ΩE
. Then E(Q∞) is finite.

Proof. We have that

Lα(0) =

(
1− 1

α

)2
L(E, 1)

ΩE

and hence

Φ+(0) · g+(0) + Φ−(0) · g−(0) · α =

(
p− 1

p
+

2

p
· α
)
L(E, 1)

ΩE
. (10)

Note that Φ+(0) = Φ−(0) = 1/p. Hence, both g+(0) and g−(0) are units (since
p is odd). This forces the Iwasawa invariants of g+ and g− to be zero and in
particular λ±MW = 0. Therefore, L(E,χ, 1) 6= 0 for all χ of p-power order and
conductor. Then from Kato’s Euler system (see [19, Theorem 8.1]), we have
that E(Q∞) is finite.
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Remark 8.8. The above corollary is false for p = 2. If E = X0(19) then
L(E, 1)

ΩE
=

1

3
. However, E(Q(

√
2)) is infinite and Q(

√
2) is the first step of the

cyclotomic Z2-extension.

8.3 Growth of the Tate-Shafarevich group in the cyclo-

tomic direction

Let E be an elliptic curve over Q with supersingular reduction at p. As in
the previous section, let Q∞ be the cyclotomic Zp extension of Q with Qn

the unique subextension with degree pn over Q. In this section, we will derive
asymptotic formulas for the p-part of the analytic size of X(E/Qn) (that is, the
size of X(E/Qn)p∞ as predicted by the Birch and Swinnerton-Dyer conjecture).

In [9], Kurihara has derived formulas in the supersingular case for the al-

gebraic size of the p-part of X(E/Qn) when p does not divide L(E,1)
ΩE

and the
Tamagawa numbers of E (plus a few more technical hypotheses). In this situa-
tion, the analytic formulas derived below coincide with his algebraic formulas.

We will follow the same method used in section 3.3. By picking n so large
that E(Qn+1) = E(Qn), Tam(E/Qn+1) = Tam(E/Qn) and L(E,χ, 1) 6= 0 for
χ of conductor pn, we have that

#X
an(E/Qn+1)

#X
an(E/Qn)

=

(
∏

χ

L(E/Q, χ, 1)

ΩE/Q

)
· cn (11)

where the product is taken over all χ corresponding to Qn+1 but not to Qn and

ordp(cn) = pn−1(p− 1) · n+ 1

2
− r

where r is the rank of E over Q∞. Recall that the number #X
an(E/Qn) is

defined to be the size that the Birch and Swinnerton-Dyer conjecture predicts
for the Tate-Shafarevich group (see section 3.3).

To compute the valuation of the product in (11) we will use the p-adic L-
functions of E and Theorem 7.1. Compare the following lemma to [9, Prop
2.1].

Lemma 8.9. Let E/Q be an elliptic curve and p a prime such that ap = 0. Let
χ be a character of Z×p that factors thru 1 + qZp and sends γ to a pn-th root
of unity. Denote by τ(χ) the corresponding Gauss sum. Then for p odd and n
large enough,

ordp

(
τ(χ) · L(E,χ

−1, 1)

ΩE

)
=





pn−1 − pn−2 + · · ·+ p− 1 + λ−

pn−1(p− 1)
+ µ− 2 | n

pn−1 − pn−2 + · · ·+ p2 − p+ λ+

pn−1(p− 1)
+ µ+ 2 - n.

For p = 2, the Iwasawa invariants of g+ and g− are interchanged.
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Proof. We argue for p and n odd. From the interpolation property (Proposition
4.14) we have that,

Lp(E,α, ζn − 1) =
1

αn+1
· p

n+1

τ(χ)
· L(E,χ

−1, 1)

ΩE
.

Hence,

τ(χ) · L(E,χ
−1, 1)

ΩE
= ±αn+1 · Lp(E,α, ζn − 1) (12)

as τ(χ) · τ(χ) = ±pn+1. To compute the valuation of the RHS we use Theorem
7.1. We have that,

Lp(E,α, ζn − 1) = Φ+(ζn − 1) · g+(ζn − 1) (13)

As usual, write g+ = pµ
+ · P+ · U+. Since P+ is a distinguished polynomial, if

λ+ · ordp(ζn − 1) < 1 then the leading term of P+ dominates and

ordp(g
+(ζn − 1)) = µ+ +

λ+

pn−1(p− 1)
. (14)

To compute the valuation of Φ+(ζn − 1), we compute the valuations of Φ2k(ζn)
for all k. Note that

Φk(T ) =
T p

k − 1

T pk−1 − 1
= 1 + T p

k−1

+ · · ·+ T (p−1)p
k−1

.

If 2k < n then

Φ2k(ζn) =
(ζn)

p2k − 1

(ζn)p
2k−1 − 1

=
ζn−2k − 1

ζn−2k+1 − 1

and hence

ordp(Φ2k(ζn)) =
p2k − p2k−1
pn−1(p− 1)

.

For 2k > n,

Φ2k(ζn) = 1 + (ζn)
p2k−1

+ · · ·+ (ζn)
p2k−1(p−1) = p

since 2k − 1 ≥ n. Hence,

ordp

(
Φ2k(ζn)

p

)
= 0.

Since Φ+(T ) = 1
p ·
∏∞
k=1

Φ2k(T+1)
p ,

ordp(Φ
+(ζn − 1)) =

pn−1 − pn−2 + · · ·+ p2 − p
pn−1(p− 1)

− n+ 1

2
.

Finally from (12),(13) and (14) we have that

ordp(τ(χ) · L(E,χ−1, 1)) =
pn−1 − pn−2 + · · ·+ p2 − p+ λ+

pn−1(p− 1)
+ µ+.
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The following proposition describes the change in size of the p-part of the
(analytic) Tate-Shafarevich group in each step of the cyclotomic Zp-extension.

Proposition 8.10. Let

fan

n = ordp

(
#X

an(E/Qn)

#X
an(E/Qn−1)

)
.

Then

fan

n =

{
pn−1 − pn−2 + · · ·+ p− 1 + (λ− − r) + pn−1(p− 1) · µ− 2 | n
pn−1 − pn−2 + · · ·+ p2 − p+ (λ+ − r) + pn−1(p− 1) · µ+ 2 - n

for p odd and for p = 2 the roles of g+ and g− are reversed.

Proof. This follows from Lemma 8.9, (11) and the fact that

ordp

(
∏

χ

τ(χ)

)
= pn−1(p− 1) · n+ 1

2

where the product is taken over characters ofQn+1 not corresponding toQn.

Remark 8.11. When p is ordinary,

fann = (λan − r) + pn−1(p− 1) · µan

as described in section 3.3. Here λan − r is conjecturally equal to λan
X
.

However, λ+ − r will not in general be equal to λ+
X

since λ+
MW

contains
information about the rank on every other level of the tower. It need not even
be λ+

X
− λ−

MW
as P+

MW
need not be relatively prime to P−

MW
.

We will now combine the above formulas to give an asymptotic formula for
ordp(#X

an(E/Qn)).

Proposition 8.12. Let

eann = ordp(#X
an(E/Qn)).

Then for n large enough,

en =





pn−1 + pn−3 + · · ·+ p+
n

2
· (λ− + λ+ − 2r − 1)+

n
2∑

k=1

(
p2k−1(p− 1) · µ− + p2k−2(p− 1) · µ+

)
+ ν 2 | n

pn−1 + pn−3 + · · ·+ p2 +
n− 1

2
· (λ− + λ+ − 2r − 1)+

n−1
2∑

k=1

p2k−1(p− 1) · µ− +

n+1
2∑

k=1

p2k−2(p− 1) · µ+ + ν′ 2 - n

where ν and ν ′ are non-negative constants independent of n.
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Proof. This is just a consequence of Proposition 8.10.

In the ordinary case, when E[p] is irreducible Greenberg has conjectured
that the µ-invariant vanishes (see [4, Conjecture 1.11]). The fact that E[p] is
always irreducible when p is supersingular along with some numerical data (see
section 9) leads us to extend his conjecture to the supersingular case.

Conjecture 8.13. Let E/Q be an elliptic curve and p a prime such that ap = 0.
Then µ+ = µ− = 0.

The above formulas simplify greatly if this conjecture is true. In this case,
following Y. Ihara’s suggestion in [9], we can reformulate the above equations
using rational invariants µ and λ.

Proposition 8.14. Assume µ+ = µ− = 0. Then

en = [µpn + λn+ ν] with µ =
p

p2 − 1
, λ =

λ+ + λ− − 1

2
− r

and where ν is some constant independent of n.

We will now put ourselves in the setting of [9] and assume that p is odd and

does not divide L(E,1)
ΩE

. In this case, µ+, µ−, λ+ and λ− all vanish and the above
analytic formulas compare nicely with the algebraic formulas of Kurihara.

Proposition 8.15. Assume that p is odd, E does not admit complex multipli-
cation and

p -
L(E, 1)

ΩE
.

Then for all n ≥ 1,

#X
an(E/Qn)p∞ =




pn−1 + pn−3 + · · ·+ p− n

2
2 | n

pn−1 + pn−3 + · · ·+ p2 − n− 1

2
2 - n.

Proof. As in Corollary 8.7, we have that µ± = λ± = 0. Also from Corollary
8.7, we know that E(Q∞) is finite and hence r = 0. Note that the condition
“n large enough” in Lemma 8.9 reduces to n ≥ 1 when λ+ = λ− = 0 and we
can take ν = ν ′ = 0. Therefore, the formulas of Proposition 8.12 reduce to the
formulas we are seeking.

Remark 8.16. Again when p = 2 the above proposition is false. Indeed, in
this case, ord2(g

+(0)) = 0 and ord2(g
−(0)) = 2. Hence, one of µ− or λ− is

necessarily positive.
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9 Tables of Iwasawa invariants for supersingular

curves

We conclude with tables of values of µ±,λ±
X

and λ±
MW

for various elliptic curves
and supersingular primes p with ap = 0. The first series of tables lists these
invariants for all strong Weil curves of conductor less than 1000. These curves
are indexed by William Stein’s notation (which differs slightly from Cremona’s
notation for conductor less than 450 but is ordered more systematically).

In the column labeled “roots” the general entry (r : s) represents r roots of
slope s. A small dot next to such an entry signifies that these are p-cyclotomic
roots. The question marks appearing sporadically are unfortunate and hopefully
will be removed soon (after many more hours of computer calculations). For
these cases, a fine enough Riemann sum has not yet been calculated to ensure
the accuracy of the λ±-invariant.

If the Iwasawa invariants of a curve and a prime are all zero they are not
included in the table. If the curve is rank 1 over Q and the only non-zero
invariant at p is λ±

MW
= 1 then this data is also not included in the table.

Furthermore, the root at 0 for any rank 1 curve over Q is not included in the
“roots” column except for curves of rank 2.

The second set of tables lists data for a fixed prime and a base curve twisted
by various quadratic characters. The tables are in the same format as described
above. Currently we have included the strong Weil curves 14A with p = 5,
17A with p = 3, 19A with p = 2, 27A with p = 2 and 5, 32A with p = 3
and 40A with p = 3. Data for the twists by quadratic characters with positive
discriminant less than 200 is listed for all of these curves. For some of them,
the twists by characters with negative discriminant up to -200 are also listed.
Again, when the invariants are zero or are simply non-zero because of the sign
of the functional equation the data is not listed.
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9.1 Curves with conductor less than 1000

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

19A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

27A 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

35A 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

37B 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

43A 1 7 0 1 - 2 1 (2: 12 )

51A 0 2 0 0 - 14 1 (1:1)· (14: 114 )

77A 1 2 1 1 (1:1) 2 1 (2: 12 )

77C 0 2 0 2 (2: 12 )
· 2 1 (1:1)· (2:1)

91A 1 3 0 1 - 0 7 (6: 16 )
·

91B 1 2 5 11 (1:1) (2: 12 )
· 0 1 -

(4: 12 ) (8:
1
8 )
·

101A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

106A 1 7 2 1 (2: 12 ) 0 1 -

121A 1 2 0 1 - 0 2 (1:1)·

123A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

129A 1 2 0 3 (2: 12 )
· 0 2 (1:1)·

131A 1 2 1 1 (1:1) 0 1 -

141A 1 2 1 1 (1:1) 0 1 -

143A 1 2 0 1 - 0 2 (1:1)·

145A 1 3 0 1 - 0 7 (6: 16 )
·

153D 1 2 0 1 - 10 6 (1:1)· (4: 14 )
·

(10: 15 )

154C 0 3 2 0 (2: 12 ) 2 0 (2: 12 )

155A 1 2 3 3 (1:1) (2: 12 )
· 0 1 -

(2: 12 )

163A 1 2 5 3 (1:1) (2: 12 )
· 0 1 -

(4: 14 )

?163A 1 3 2 3 (2: 32 ) (2:
1
2 )
· 0 1 -

171D 1 2 1 1 (1:1) 0 5 (4: 14 )
·

175A 1 2 0 1 - 4 2 (1:1)· (4: 12 )

185C 1 2 0 1 - 0 2 (1:1)·

187B 0 2 4 0 (4: 14 ) 4 1 (1:1)· (4: 12 )
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

189B 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

189D 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

?197A 1 5 2 5 (2:1) (4: 14 )
· 0 1 -

201B 1 7 2 1 (2: 12 ) 0 1 -

205C 1 11 0 1 - 4 1 (4: 14 )

207A 1 5 0 1 - 2 1 (2: 12 )

209A 1 2 0 1 - 0 2 (1:1)·

215A 1 2 2 1 (2: 12 ) 0 2 (1:1)·

219C 1 2 1 1 (1:1) 0 1 -

225A 1 2 0 1 - 0 2 (1:1)·

225A 1 11 0 1 - 2 1 (2: 12 )

225B 0 2 1 0 (1:1) 2 0 (2: 32 )

238A 1 3 2 3 (2: 12 )
· (2: 12 ) 0 1 -

243A 1 2 7 1 (1:1) (6: 16 ) 0 1 -

243B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

245B 1 2 1 1 (1:1) 6 1 (6: 13 )

248C 1 3 0 1 - 4 1 (4: 14 )

254A 1 3 0 1 - 2 1 (2: 12 )

254B 0 3 0 2 (2: 12 )
· 4 0 (4: 14 )

256A 1 3 0 1 - 0 7 (6: 16 )
·

256B 1 7 2 1 (2: 12 ) 0 1 -

259A 0 3 0 2 (2: 12 )
· 6 0 (6: 16 )

267A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

267B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

269A 1 2 1 1 (1:1) 1 2 (1:1)· (1:1)

272A 1 5 0 1 - 2 1 (2: 12 )

?272D 1 11 0 1 - 4 1 (4: 14 )

274A 1 5 0 5 (4: 14 )
· 0 1 -

290A 1 3 4 1 (4: 14 ) 0 1 -

291A 1 5 2 1 (2: 12 ) 0 1 -

298A 1 3 0 3 (2: 12 )
· 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

?298B 1 11 0 1 - 2 1 (2: 12 )

303A 1 2 0 1 - 0 2 (1:1)·

306B 1 5 2 1 (2: 12 ) 0 1 -

307A 0 2 0 0 - 6 1 (1:1)· (6: 16 )

314A 1 3 6 1 (6: 16 ) 0 1 -

315B 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

320A 1 3 0 3 (2: 12 )
· 0 1 -

323A 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

325A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

325E 1 2 3 1 (2:2) (1:1) 0 1 -

326A 1 3 4 1 (4: 14 ) 0 1 -

333D 1 2 1 1 (1:1) 0 1 -

333D 1 5 2 1 (2:1) 0 1 -

335A 1 2 0 1 - 0 2 (1:1)·

339B 1 2 1 1 (1:1) 0 1 -

?342D 1 11 0 1 - 2 1 (2: 12 )

345A 0 2 1 0 (1:1) 2 0 (2: 32 )

345E 1 2 0 1 - 0 2 (1:1)·

348B 1 5 0 1 - 2 1 (2: 12 )

354A 1 5 2 1 (2: 12 ) 0 1 -

355A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

357A 0 2 2 0 (2: 12 ) 16 1 (1:1)· (16: 18 )

357B 1 2 1 1 (1:1) 16 1 (16: 18 )

361A 1 2 0 1 - 2 2 (1:1)· (2: 12 )

361A 1 3 2 3 (2: 12 )
· (2: 12 ) 0 1 -

361B 0 2 1 0 (1:1) 3 1 (1:1)· (1:1)

(2: 12 )

368A 1 3 2 1 (2: 12 ) 0 1 -

369B 1 2 4 1 (4: 14 ) 0 2 (1:1)·

370A 1 3 0 1 - 2 1 (2: 12 )

371B 0 3 2 0 (2: 12 ) 2 0 (2: 12 )

374A 1 3 0 1 - 2 1 (2: 12 )
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

377A 1 3 0 3 (2: 12 )
· 0 1 -

380B 1 3 0 1 - 2 1 (2:1)

381B 1 2 1 1 (1:1) 0 1 -

385A 1 3 2 1 (2: 12 ) 0 1 -

387C 0 2 4 0 (4: 14 ) 2 1 (1:1)· (2:1)

392E 1 3 2 1 (2: 12 ) 0 1 -

399A 1 5 0 1 - 4 1 (4: 14 )

399B 1 5 0 1 - 2 1 (2: 12 )

400A 1 3 0 1 - 2 1 (2: 12 )

405A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

405D 0 2 0 0 - 2 1 (1:1)· (2: 12 )

406A 1 3 4 1 (4: 14 ) 0 1 -

410B 1 3 0 1 - 2 1 (2:1)

410D 0 3 2 0 (2: 12 ) 4 0 (4: 14 )

422A 1 3 4 1 (4: 14 ) 2 1 (2: 12 )

423E 1 2 0 1 - 6 2 (1:1)· (6: 12 )

423F 1 7 2 1 (2: 12 ) 0 1 -

427A 1 5 2 1 (2: 12 ) 0 1 -

427B 0 2 0 0 - 8 1 (1:1)· (8: 18 )

429A 1 5 0 1 - 2 1 (2: 12 )

429A 1 7 2 1 (2: 12 ) 0 1 -

?434A 1 3 0 1 - 4 1 (2: 52 ) (2:
1
2 )

435A 0 2 0 0 - 6 1 (1:1)· (6: 16 )

435B 0 2 0 0 - 6 1 (1:1)· (6: 16 )

437B 1 2 1 1 (1:1) 3 2 (1:1)· (1:1)

(2: 12 )

438A 1 5 2 1 (2:1) 0 1 -

438C 1 5 0 1 - 2 1 (2: 12 )

440B 0 3 0 2 (2: 12 )
· 2 0 (2: 12 )

440D 1 3 0 1 - 2 1 (2: 12 )

441A 1 2 0 1 - 0 2 (1:1)·

441B 0 2 1 0 (1:1) 2 0 (2: 32 )
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

442E 1 3 0 3 (2: 12 )
· 2 1 (2: 12 )

443A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

446A 1 5 0 1 - 2 1 (2: 12 )

448A 1 3 0 1 - 6 1 (2:1) (4: 14 )

448G 1 3 2 1 (2: 12 ) 0 1 -

448H 1 5 0 1 - 2 1 (2: 12 )

451A 1 2 1 1 (1:1) 2 1 (2: 12 )

455A 1 3 0 1 - 6 1 (2: 12 ) (4:
1
4 )

455B 1 3 0 3 (2: 12 )
· 0 1 -

459C 0 2 0 0 - 6 1 (1:1)· (6: 16 )

459F 0 2 0 0 - 6 1 (1:1)· (6: 16 )

?459H 1 11 0 1 - 2 1 (2: 12 )

467A 1 2 1 11 (1:1) (2: 12 )
· 0 1 -

(8: 18 )
·

473A 1 7 0 1 - 2 1 (2: 12 )

475A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

477A 1 5 2 1 (2: 12 ) 0 1 -

481A 1 3 0 1 - 4 1 (4: 14 )

485A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

485B 1 2 1 3 (1:1) (2: 12 )
· 1 2 (1:1)· (1:1)

485B 1 3 0 3 (2: 12 )
· 0 1 -

486A 1 5 2 1 (2: 12 ) 0 1 -

?494A 1 11 0 1 - 2 1 (2: 12 )

496A 1 3 0 3 (2: 12 )
· 0 7 (6: 16 )

·

497A 1 5 4 1 (4: 14 ) 4 1 (4: 14 )

505A 1 3 0 3 (2: 12 )
· 0 1 -

506D 1 3 2 1 (2: 12 ) 0 1 -

513A 1 5 0 1 - 6 1 (6: 16 )

514A 1 3 0 1 - 2 1 (2: 12 )

517B 0 2 4 0 (4: 14 ) 4 1 (1:1)· (4: 12 )

522G 0 11 2 0 (2: 12 ) 0 0 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

528A 1 5 0 5 (4: 14 )
· 0 1 -

528G 1 5 2 1 (2: 12 ) 0 1 -

537B 0 2 1 0 (1:1) 2 0 (2: 32 )

537C 0 2 1 0 (1:1) 2 0 (2: 32 )

539A 0 2 4 0 (4: 14 ) 4 1 (1:1)· (4: 12 )

539B 0 2 4 0 (4: 14 ) 4 1 (1:1)· (4: 12 )

542A 0 7 2 0 (2: 12 ) 0 0 -

542B 1 5 0 5 (4: 14 )
· 0 1 -

544A 1 3 0 3 (2: 12 )
· 0 1 -

550G 1 7 2 1 (2: 12 ) 0 1 -

?552E 1 11 0 1 - 2 1 (2: 12 )

555A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

555B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

560D 1 3 6 1 (6: 16 ) 0 1 -

561A 0 2 1 0 (1:1) 2 0 (2: 32 )

561B 1 2 0 1 - 0 2 (1:1)·

566A 1 3 0 1 - 2 1 (2:1)

571A 0 2 2 0 (2:1) 4 1 (1:1)· (2:1)

(2: 12 )

575A 1 3 4 3 (2: 12 )
· (4: 14 ) 0 1 -

575B 1 3 6 1 (6: 16 ) 0 1 -

?576H 1 11 0 1 - 2 1 (2: 12 )

580B 1 3 4 3 (2: 12 )
· (4: 14 ) 2 1 (2: 32 )

?582A 1 5 0 1 - 4 1 (2:1) (2: 12 )

585B 0 2 1 0 (1:1) 2 0 (2: 32 )

585D 1 2 0 1 - 0 2 (1:1)·

588B 1 5 2 1 (2: 12 ) 0 1 -

590C 1 3 0 3 (2: 12 )
· 0 1 -

591A 1 2 0 1 - 0 2 (1:1)·

591A 1 5 2 1 (2: 12 ) 0 1 -

598A 1 3 0 1 - 2 1 (2: 12 )

598A 1 5 0 1 - 2 1 (2: 12 )
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

608A 1 3 0 1 - 4 1 (4: 14 )

608D 1 3 0 1 - 2 1 (2: 12 )

608F 1 5 2 1 (2: 12 ) 0 1 -

?610B 1 7 2 1 (2:1) 0 1 -

615A 1 7 0 1 - 2 1 (2: 12 )

615B 1 2 4 1 (4: 14 ) 0 2 (1:1)·

616A 1 5 0 1 - 2 1 (2: 12 )

616E 1 3 0 1 - 2 1 (2: 12 )

622A 1 3 0 1 - 2 1 (2: 12 )

624A 1 5 0 1 - 2 1 (2: 12 )

626A 1 3 0 3 (2: 12 )
· 0 1 -

627A 0 2 0 0 - 2 1 (1:1)· (2: 12 )

627B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

629A 1 3 0 1 - 4 1 (4: 12 )

629C 1 2 1 3 (1:1) (2: 12 )
· 4 5 (4: 14 )

· (4: 14 )

?629C 1 5 0 1 - 2 1 (2:1)

629D 1 3 0 1 - 2 1 (2:1)

635A 1 2 1 1 (1:1) 0 1 -

637A 1 3 0 1 - 0 7 (6: 16 )
·

637B 0 2 18 0 (2: 12 ) (16:
1
16 ) 2 1 (2: 32 ) (1:1)

·

640A 1 3 0 1 - 4 1 (4: 14 )

640B 1 3 0 3 (2: 12 )
· 0 1 -

640H 1 7 0 1 - 2 1 (2: 12 )

644B 1 5 0 5 (4: 14 )
· 0 1 -

645E 1 2 3 1 (1:1) (2: 12 ) 2 1 (2:2)

651D 1 11 0 11 (10: 110 )
· 0 1 -

651E 0 2 0 0 - 2 1 (1:1)· (2: 12 )

656A 1 3 0 3 (2: 12 )
· 0 1 -

657C 1 2 2 1 (2: 12 ) 0 2 (1:1)·

?657C 1 11 0 1 - 2 1 (2: 12 )

658E 1 3 2 1 (2: 12 ) 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

665B 1 3 8 3 (2: 12 )
· (8: 18 ) 0 1 -

670C 1 3 0 3 (2: 12 )
· 0 1 -

674B 1 3 2 3 (2: 12 )
· (2: 12 ) 0 1 -

675A 1 2 1 1 (1:1) 6 1 (6: 16 )

675A 1 11 2 1 (2: 12 ) 0 1 -

675C 0 2 0 0 - 4 1 (1:1)· (4: 14 )

675E 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

676A 0 3 2 0 (2: 12 ) 2 0 (2: 12 )

677A 1 5 2 1 (2: 12 ) 0 1 -

680A 1 3 0 1 - 2 1 (2: 12 )

?680A 1 11 0 1 - 2 1 (2: 12 )

681A 1 2 0 3 (2: 12 )
· 0 2 (1:1)·

?681A 1 5 0 1 - 2 1 (2:1)

681D 0 2 3 0 (1:1) (2: 12 ) 2 0 (2:2)

681E 1 2 2 1 (2:2) 0 2 (1:1)·

682A 1 5 2 1 (2: 12 ) 0 1 -

685A 1 3 0 3 (2: 12 )
· 0 1 -

688A 1 3 0 1 - 2 1 (2: 12 )

688C 1 7 6 1 (6: 16 ) 0 1 -

690E 1 7 0 1 - 4 1 (4: 14 )

690G 0 7 2 0 (2: 12 ) 0 0 -

693B 1 2 1 1 (1:1) 2 1 (2: 12 )

693C 0 2 2 0 (2: 12 ) 2 1 (1:1)· (2:1)

703A 0 2 1 0 (1:1) 5 1 (1:1)· (1:1)

(4: 14 )

703B 1 3 0 1 - 2 1 (2: 32 )

705A 1 2 0 1 - 0 2 (1:1)·

705C 0 2 1 0 (1:1) 2 0 (2: 32 )

706B 1 3 0 1 - 2 1 (2: 32 )

706C 1 3 0 1 - 2 1 (2: 12 )

?711A 1 5 0 1 - 4 1 (4: 12 )

714F 1 11 2 1 (2: 12 ) 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

715A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

720H 1 7 0 1 - 2 1 (2: 12 )

722A 1 5 2 1 (2:1) 0 1 -

722F 1 5 0 1 - 6 1 (6: 16 )

723A 1 7 0 1 - 2 1 (2: 12 )

723B 1 2 3 1 (3:1) 0 1 -

726A 1 7 0 1 - 2 1 (2: 12 )

734A 0 5 2 0 (2: 12 ) 2 0 (2: 12 )

735C 1 2 0 1 - 0 2 (1:1)·

735D 0 2 1 0 (1:1) 2 0 (2: 32 )

741C 0 11 0 0 - 0 0 -

741E 1 2 1 1 (1:1) 3 2 (2: 32 ) (1:1)
·

(1:1)

742A 1 3 0 3 (2: 12 )
· 0 1 -

752A 1 3 0 1 - 2 1 (2: 12 )

752A 1 5 2 1 (2: 12 ) 0 1 -

753B 0 2 1 0 (1:1) 3 1 (1:1)· (1:1)

(2: 12 )

753C 1 2 0 1 - 2 2 (1:1)· (2:1)

754C 1 11 2 1 (2: 12 ) 0 1 -

755A 1 2 1 1 (1:1) 0 1 -

759B 1 7 0 1 - 2 1 (2: 12 )

760E 1 3 0 3 (2: 12 )
· 0 1 -

775A 1 2 6 1 (6: 16 ) 0 2 (1:1)·

776A 1 11 2 1 (2: 12 ) 0 1 -

777C 0 2 1 0 (1:1) 4 0 (4: 34 )

?777D 1 11 0 1 - 2 1 (2:1)

777G 1 2 0 1 - 2 2 (2:2) (1:1)·

781A 0 2 0 0 - 4 1 (1:1)· (4: 14 )

781B 1 2 1 1 (1:1) 0 1 -

782A 1 7 0 1 - 2 1 (2: 12 )

784H 1 3 0 1 - 4 1 (4: 12 )

784H 1 5 2 1 (2: 12 ) 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

784J 1 5 0 1 - 2 1 (2: 12 )

791C 1 3 0 1 - 2 1 (2: 12 )

792A 1 5 2 1 (2: 12 ) 0 1 -

793A 1 3 6 3 (2: 12 )
· (6: 16 ) 0 1 -

?794A 1 11 1 1 (1:2) 1 1 (1:1)

795B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

795C 0 2 0 0 - 2 1 (1:1)· (2: 12 )

800H 1 3 0 3 (2: 12 )
· 0 1 -

801A 0 2 1 0 (1:1) 4 0 (2:1) (2: 12 )

801C 1 2 0 1 - 2 2 (1:1)· (2: 12 )

807A 0 2 1 0 (1:1) 3 1 (1:1)· (1:1)

(2: 12 )

811A 1 2 1 1 (1:1) 0 1 -

811A 1 3 0 3 (2: 12 )
· 0 1 -

811A 1 7 0 1 - 2 1 (2: 12 )

813B 1 2 1 1 (1:1) 0 1 -

813B 1 11 0 11 (10: 110 )
· 0 1 -

814B 1 3 6 3 (2: 12 )
· (4: 14 ) 0 1 -

(2: 12 )

815A 1 2 8 1 (2:1) (6: 16 ) 0 2 (1:1)·

816H 1 7 0 1 - 2 1 (2: 12 )

?817A 1 2 2 1 (1:5) (1:1) 1 1 (1:7)

817B 1 2 2 1 (2:1) 0 2 (1:1)·

819E 0 2 18 0 (18: 118 ) 2 1 (1:1)· (2:1)

825A 1 2 0 1 - 0 2 (1:1)·

825C 1 2 0 1 - 0 2 (1:1)·

827A 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

827A 1 5 0 5 (4: 14 )
· 2 1 (2: 12 )

827A 1 7 0 1 - 2 1 (2: 12 )

829A 1 2 1 1 (1:1) 2 5 (2: 12 ) (4:
1
4 )
·

834A 0 7 2 0 (2: 12 ) 0 0 -

843A 1 5 0 1 - 4 1 (4: 14 )

846B 1 5 2 1 (2: 12 ) 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

847A 0 2 3 0 (3:1) 4 0 (2:2) (2: 12 )

847B 1 2 2 1 (2: 12 ) 2 2 (1:1)· (2:1)

850C 1 7 2 1 (2: 12 ) 0 1 -

851A 1 5 0 5 (4: 14 )
· 0 1 -

?856A 1 5 0 1 - 2 1 (2:1)

856C 1 7 0 1 - 2 1 (2: 12 )

862C 0 3 0 2 (2: 12 )
· 0 6 (6: 16 )

·

866A 1 11 2 1 (2: 12 ) 0 1 -

867A 1 2 3 1 (1:1) (2: 12 ) 18 1 (18: 19 )

880A 1 3 0 1 - 2 1 (2: 12 )

885C 1 2 1 3 (1:1) (2: 12 )
· 0 1 -

885C 1 7 0 1 - 2 1 (2: 12 )

886A 1 3 0 1 - 0 7 (6: 16 )
·

886D 1 3 0 1 - 4 1 (4: 14 )

886D 1 5 2 1 (2: 12 ) 0 1 -

886E 1 3 0 1 - 4 1 (4: 12 )

888C 1 7 2 1 (2: 12 ) 0 1 -

890A 1 3 0 3 (2: 12 )
· 0 1 -

891B 0 2 0 0 - 4 1 (1:1)· (4: 14 )

891F 0 2 0 0 - 0 5 (1:1)· (4: 14 )
·

892B 1 5 2 5 (2: 12 ) (4:
1
4 )
· 0 1 -

894E 1 5 6 1 (6: 16 ) 0 1 -

896B 1 3 0 3 (2: 12 )
· 2 1 (2: 12 )

896B 1 5 0 5 (4: 14 )
· 0 1 -

896D 1 3 4 3 (2: 12 )
· (4: 14 ) 0 1 -

896D 1 5 0 1 - 2 1 (2: 12 )

897C 1 7 2 1 (2: 12 ) 0 1 -

?899A 1 11 0 1 - 2 1 (2: 12 )

901C 0 2 0 0 - 10 1 (1:1)· (10: 110 )

901D 0 3 4 0 (4: 14 ) 4 0 (4: 14 )

903A 1 2 4 1 (4: 14 ) 2 2 (1:1)· (2:1)

903B 0 2 5 0 (1:1) (4: 14 ) 4 0 (2: 32 ) (2:
1
2 )

904A 1 3 0 3 (2: 12 )
· 2 1 (2: 12 )
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

904A 1 5 0 1 - 2 1 (2: 12 )

?905A 1 11 0 1 - 2 1 (2: 12 )

909A 0 2 2 0 (2: 12 ) 4 1 (1:1)· (4: 12 )

?909C 1 2 1 1 (1:1) 3 2 (2:2) (1:1)·

(1:1)

910F 1 3 4 1 (4: 14 ) 0 1 -

912G 1 7 0 1 - 4 1 (4: 14 )

914A 1 3 0 1 - 2 1 (2: 12 )

914A 1 7 0 1 - 2 1 (2: 12 )

916A 0 3 0 2 (2: 12 )
· 2 0 (2: 12 )

918A 1 11 2 1 (2: 12 ) 0 1 -

921B 1 2 0 1 - 0 2 (1:1)·

921B 1 5 0 1 - 2 1 (2: 12 )

923A 0 2 0 0 - 8 1 (1:1)· (8: 18 )

925A 1 2 1 1 (1:1) 2 1 (2: 12 )

925B 1 2 1 1 (1:1) 5 2 (1:1)· (1:1)

(4: 12 )

928A 1 7 0 1 - 2 1 (2: 12 )

931B 0 2 0 0 - 2 1 (1:1)· (2: 12 )

933A 1 2 9 3 (1:1) (2: 12 )
· 3 2 (1:1)· (3:1)

(8: 18 )

933B 1 2 11 1 (1:1) (10: 110 ) 4 1 (4: 12 )

935A 1 2 0 1 - 0 2 (1:1)·

935B 0 2 1 0 (1:1) 2 0 (2: 32 )

939A 1 2 1 1 (1:1) 0 1 -

?942C 1 11 0 1 - 2 1 (2: 12 )

954D 1 5 0 1 - 2 1 (2: 12 )

954E 1 5 0 1 - 2 1 (2: 12 )

960B 1 7 2 1 (2: 12 ) 0 1 -

966E 1 5 0 1 - 2 1 (2: 12 )

968B 0 3 2 0 (2: 12 ) 2 0 (2: 12 )

968D 1 3 0 3 (2: 12 )
· 0 1 -
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Conductor less than 1000 (continued)

Curve r p λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

972C 1 5 0 1 - 2 1 (2: 12 )

972D 1 5 0 5 (4: 14 )
· 0 1 -

973B 1 2 1 1 (1:1) 0 1 -

973B 1 5 2 1 (2:1) 0 1 -

975F 1 2 0 1 - 0 2 (1:1)·

975J 1 2 0 1 - 0 2 (1:1)·

976C 1 3 0 1 - 2 1 (2: 12 )

979A 0 2 0 0 - 8 1 (1:1)· (8: 18 )

985A 0 3 0 2 (2: 12 )
· 2 0 (2: 12 )

986F 1 3 0 1 - 2 7 (2:1) (6: 16 )
·

990E 1 7 2 1 (2: 12 ) 0 1 -

994A 1 5 2 1 (2: 12 ) 2 1 (2: 12 )

995B 1 2 1 1 (1:1) 0 1 -

?997B 1 2 1 1 (1:6) 3 2 (3:2) (1:1)·
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9.2 Twists of 14A with p = 5

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

17 1 0 5 (4: 14 )
· 0 1 -

37 1 0 1 - 2 1 (2: 12 )

41 1 0 1 - 4 1 (4: 14 )

53 1 4 1 (4: 14 ) 0 1 -

89 1 2 1 (2: 12 ) 0 1 -

129 1 0 1 - 2 1 (2: 12 )

-11 1 0 1 - 2 1 (2: 12 )

?-23 2 4 2 (2:∞)· (4: 12 ) 2 2 (2:∞)· (2: 32 )

-43 1 0 1 - 2 1 (2: 12 )

-51 1 0 1 - 2 1 (2: 12 )

-103 1 2 1 (2: 12 ) 2 1 (2: 12 )

-159 1 0 1 - 2 1 (2: 12 )
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9.3 Twists of 17A with p = 3

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

29 1 6 1 (6: 16 ) 0 1 -

37 1 0 3 (2: 12 )
· 0 1 -

40 1 0 1 - 2 1 (2: 12 )

41 1 2 1 (2: 12 ) 0 1 -

44 1 0 1 - 2 1 (2: 12 )

56 1 4 1 (4: 14 ) 0 1 -

65 1 2 1 (2: 12 ) 0 1 -

76 2 0 2 (2:∞)· 0 2 (2:∞)·

104 2 2 2 (2:∞)· (2: 12 ) 2 2 (2:∞)· (2:1)

109 1 0 3 (2: 12 )
· 0 1 -

113 1 4 1 (4: 14 ) 0 1 -

124 1 6 1 (6: 16 ) 0 1 -

133 1 0 1 - 2 1 (2: 12 )

145 2 0 2 (2:∞)· 4 2 (2:∞)· (4: 14 )

157 2 6 2 (2:∞)· (6: 16 ) 0 2 (2:∞)·

?173 1 0 1 - 6 1 (2:2) (4: 14 )

184 1 2 1 (2: 12 ) 0 1 -

185 2 2 2 (2:∞)· (2:1) 0 2 (2:∞)·

193 1 6 1 (6: 16 ) 6 1 (6: 16 )

197 1 0 3 (2: 12 )
· 0 1 -
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Twists of 17A with p = 3 (continued)

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

-8 1 0 1 - 2 1 (2:1)

-19 1 0 3 (2: 12 )
· 0 1 -

-47 1 0 1 - 2 1 (2: 32 )

-52 1 0 1 - 4 1 (4: 14 )

-55 1 0 1 - 2 1 (2: 12 )

-56 2 0 2 (2:∞)· 0 2 (2:∞)·

?-59 1 0 1 - 4 1 (4:1)

-95 2 0 2 (2:∞)· 0 2 (2:∞)·

-104 1 2 1 (2: 12 ) 0 1 -

-115 1 2 1 (2: 12 ) 0 1 -

-139 0 2 0 (2:1) 2 0 (2:1)

-151 1 2 1 (2: 32 ) 4 1 (4: 12 )

-152 1 0 3 (2: 12 )
· 0 1 -

-155 1 0 1 - 2 1 (2: 12 )

-164 2 0 4 (2:∞)· (2: 12 )
· 0 2 (2:∞)·

-167 0 2 2 (4: 12 )
· 8 0 (2: 12 ) (6:

1
6 )

-179 1 4 3 (2: 12 )
· (4: 14 ) 0 1 -

-184 2 0 2 (2:∞)· 2 2 (2:∞)· (2:1)

-199 0 2 0 (2:1) 2 0 (2:1)
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9.4 Twists of 19A with p = 2

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

1 0 0 0 - 2 1 (1:1)· (2: 12 )

5 0 0 0 - 2 1 (1:1)· (2: 12 )

13 1 1 1 (1:1) 4 1 (4: 34 )

17 0 0 0 - 2 1 (1:1)· (2: 12 )

21 1 1 1 (1:1) 4 1 (4: 14 )

29 1 1 1 (1:1) 4 1 (4: 14 )

33 1 1 1 (1:1) 4 1 (4: 14 )

37 1 1 1 (1:1) 4 1 (4: 14 )

41 1 1 3 (1:1) (2: 12 )
· 6 1 (6: 16 )

53 1 1 1 (1:1) 4 1 (4: 14 )

61 0 0 0 - 2 1 (1:1)· (2: 12 )

?65 1 1 1 (1:1) 3 2 (2: 52 ) (1:1)
·

(1:1)

?69 1 3 3 (1:1) (2: 12 )
· 7 2 (2:2) (2:1)·

(2: 12 ) (4: 14 )

73 0 0 0 - 2 1 (1:1)· (2: 12 )

77 0 0 0 - 2 1 (1:1)· (2: 12 )

85 0 0 0 - 2 1 (1:1)· (2: 12 )

89 1 3 1 (3:1) 6 1 (6: 16 )

93 0 18 0 (4: 14 ) (14:
1
14 ) 20 1 (1:1)· (2:1)

(18: 118 )

?97 1 15 1 (2: 32 ) (1:1) 18 1 (2:2) (16: 116 )

(12: 112 )

101 0 2 0 (2:1) 4 1 (1:1)· (4: 34 )

105 1 1 1 (1:1) 4 1 (4: 14 )

109 1 1 1 (1:1) 4 1 (4: 14 )

113 1 7 1 (1:1) (6: 12 ) 10 1 (10: 110 )

129 1 1 1 (1:1) 4 1 (4: 14 )

137 0 0 0 - 2 1 (1:1)· (2: 12 )

141 1 1 1 (1:1) 4 1 (4: 14 )

145 1 1 1 (1:1) 4 1 (4: 14 )

149 0 0 0 - 2 1 (1:1)· (2: 12 )
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Twists of 19A with p = 2 (continued)

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

?157 2 0 2 (2:∞)· 2 3 (2:∞)· (2: 52 )

(1:1)·

161 0 4 0 (4:1) 6 1 (2: 32 ) (1:1)
·

(4: 12 )

165 1 1 1 (1:1) 4 1 (4: 14 )

?173 1 1 1 (1:1) 3 2 (2: 52 ) (1:1)
·

(1:1)

177 0 4 0 (4: 12 ) 6 1 (1:1)· (2:1)

(4: 14 )

181 1 1 1 (1:1) 3 2 (1:1)· (1:1)

(2: 12 )

185 1 1 1 (1:1) 4 1 (4: 14 )

?193 1 31 1 (1:2) (4:1) 34 1 (34: 134 )

(26: 126 )

197 0 2 0 (2:1) 4 1 (1:1)· (2:1)

(2: 12 )
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9.5 Twists of 27A with p = 2

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

1 0 0 0 - 0 5 (1:1)· (4: 14 )
·

5 1 1 1 (1:1) 6 1 (6: 16 )

13 0 0 0 - 4 1 (1:1)· (4: 14 )

17 1 7 1 (1:1) (6: 16 ) 12 1 (12: 112 )

29 1 1 1 (1:1) 5 2 (1:1)· (1:1)

(4: 14 )

37 0 0 0 - 4 1 (1:1)· (4: 14 )

41 1 3 1 (2: 32 ) (1:1) 7 2 (1:1)· (1:1)

(6: 16 )

53 1 1 1 (1:1) 1 6 (1:1)· (1:1)

(4: 14 )
·

61 0 0 0 - 4 1 (1:1)· (4: 14 )

65 1 1 1 (1:1) 6 1 (6: 16 )

73 0 0 0 - 4 1 (1:1)· (4: 14 )

77 1 1 1 (1:1) 6 1 (6: 16 )

85 2 8 2 (2:∞)· (2:1) 12 3 (2:∞)· (1:1)·

(6: 16 ) (12: 112 )

89 1 3 1 (1:1) (2: 12 ) 8 1 (8: 18 )

97 0 0 0 - 4 1 (1:1)· (4: 14 )

101 1 1 1 (1:1) 5 2 (1:1)· (1:1)

(4: 12 )

109 2 0 2 (2:∞)· 4 3 (2:∞)· (1:1)·

(4: 34 )

113 1 7 1 (1:1) (6: 16 ) 12 1 (12: 112 )

133 0 0 0 - 4 1 (1:1)· (4: 14 )

137 1 3 1 (1:1) (2: 12 ) 8 1 (8: 18 )

145 0 4 0 (4: 12 ) 8 1 (1:1)· (2:1)

(6: 16 )

149 1 1 1 (1:1) 6 1 (2: 32 ) (4:
1
4 )

157 0 2 0 (2:1) 6 1 (1:1)· (6: 12 )
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Twists of 27A with p = 2 (continued)

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

161 1 3 1 (1:1) (2: 12 ) 8 1 (8: 18 )

?173 1 1 1 (1:1) 5 2 (1:1)· (1:1)

(4: 34 )

181 0 0 0 - 4 1 (1:1)· (4: 14 )

185 1 1 1 (1:1) 6 1 (6: 16 )

193 0 0 0 - 4 1 (1:1)· (4: 14 )

197 1 1 1 (1:1) 6 1 (6: 16 )
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9.6 Twists of 27A with p = 5

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

53 1 0 1 - 2 1 (2: 12 )

77 1 2 1 (2:1) 0 1 -

89 1 2 1 (2: 12 ) 0 1 -

101 1 2 1 (2: 12 ) 0 1 -

?104 1 0 1 - 2 1 (2:1)

109 2 0 2 (2:∞)· 2 2 (2:∞)· (2: 12 )

113 1 0 1 - 2 1 (2: 12 )

?149 1 0 1 - 2 1 (2: 32 )

152 1 0 1 - 2 1 (2: 12 )

172 2 0 2 (2:∞)· 0 2 (2:∞)·

197 1 0 1 - 4 1 (4: 14 )

-11 1 2 1 (2: 12 ) 0 1 -

-31 2 0 2 (2:∞)· 0 2 (2:∞)·

-68 1 0 1 - 2 1 (2: 12 )

-104 1 2 1 (2: 12 ) 0 1 -

-107 1 2 1 (2: 12 ) 0 1 -
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9.7 Twists of 32A with p = 3

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

13 1 2 1 (2: 12 ) 0 1 -

37 1 0 3 (2: 12 )
· 0 1 -

41 2 2 2 (2:∞)· (1:2) 0 2 (2:∞)·

(1:1)

53 1 0 3 (2: 12 )
· 0 1 -

61 1 1 1 - 2 1 (2: 12 )

65 2 0 2 (2:∞)· 0 2 (2:∞)·

77 1 0 1 - 2 1 (2: 12 )

85 1 0 1 - 2 1 (2:1)

101 1 2 1 (2: 32 ) 0 1 -

133 1 0 1 - 2 1 (2: 12 )

137 2 0 2 (2:∞)· 2 2 (2:∞)· (2: 12 )

145 2 0 2 (2:∞)· 0 2 (2:∞)·

149 1 2 1 (2: 12 ) 12 1 (12: 112 )

161 2 0 2 (2:∞)· 0 2 (2:∞)·

181 1 0 1 (2: 12 )
· 0 1 -

197 1 0 1 (2: 12 )
· 2 1 (2: 12 )

-23 1 1 0 - 2 1 (2:1)

-43 0 8 0 (2: 12 ) (6:
1
6 ) 2 0 (2:1)

-47 1 2 1 (2:1) 2 1 (2: 32 )

-71 1 0 1 - 2 1 (2: 12 )

-103 1 0 1 - 6 1 (6: 16 )

-107 0 2 0 (2:1) 6 0 (2: 12 ) (4:
1
4 )

-127 1 2 3 (2: 12 )
· (2: 12 ) 4 1 (4: 12 )

-131 0 2 0 (2:1) 2 0 (2:1)

-143 1 0 1 - 2 1 (2: 12 )

-163 0 2 0 (2:1) 2 0 (2:1)

-167 1 4 1 (4: 14 ) 2 1 (2: 12 )

-191 1 2 1 (2:1) 0 1 -

-199 1 0 1 - 6 1 (6: 16 )
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9.8 Twists of 40A with p = 3

D r λ+
X

λ+
MW

roots λ−
X

λ−
MW

roots

17 1 0 1 - 6 1 (2: 12 ) (4:
1
4 )

61 1 0 1 - 2 1 (2: 12 )

73 1 0 1 - 2 1 (2: 12 )

97 1 0 1 - 2 1 (2:1)

101 1 4 1 (4: 12 ) 2 1 (2:1)

109 1 0 1 - 2 1 (2: 12 )

113 1 4 1 (4: 14 ) 0 1 -

133 2 0 2 (2:∞)· 0 2 (2:∞)·

137 1 4 1 (4: 12 ) 0 1 -

149 1 4 1 (4: 12 ) 0 1 -

157 0 2 0 (2:1) 2 0 (2:1)

181 1 4 1 (2: 12 )
· (2: 12 ) 0 1 -

193 1 2 1 (2: 32 ) 0 1 -

?-43 1 0 1 - 2 1 (2:2)

-79 1 4 1 (4: 14 ) 0 1 -

-83 1 6 1 (6: 13 ) 0 1 -

-91 2 0 2 (2:∞)· 0 2 (2:∞)·

-107 1 6 1 (6: 16 ) 0 1 -

-119 1 6 1 (2: 12 )
· (4: 12 ) 0 1 -

-127 0 2 0 (2:1) 4 0 (4: 12 )

-151 1 2 1 (2: 12 ) 0 1 -

-163 1 4 1 (2: 12 )
· (2: 12 ) 6 1 (6: 13 )

-187 1 0 1 - 2 1 (2: 12 )

-191 1 4 1 (4: 12 ) 0 1 -
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