MA124 Midterm 1 Solutions
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To solve this, take ¢t = 1 — 23, then —% = 22dx. The integral becomes
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First solve the indefinite integral using the substitution ¢ = sin(z) with dt = cos(z)dz.
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as sin(%) = 1 and sin(0) = 0.
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3. / e % dz.
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First solve the indefinite integral using integration by parts with u = 22 and dv = e %dz.

/x267“"dz = —z%e " + Q/xefxd:z:.
Apply integration by parts to the last integral with « = z and dv = e~ *dx.

/xQefzdsc = %7 — 2ze™T — 277,

Evaluating at 0 and 1 we get
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4. Any decreasing function which is concave up will do. Indeed, the trapezoid rule always gives an overestimate for a
concave up function. Similarly, the midpoint rule always gives an underestimate for a concave up function. (Draw
some pictures to convince yourself of this!) Lastly, the right endpoint rule always gives an underestimate for a

decreasing function.

5. Given that [> 9% =1n(3 , show that In(3) < 1.4.
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There are many possible solutions to this question. Here is one: since f(x) = - is concave up, the trapezoid rule

will always give an overestimate. So, applying the trapezoid rule with n = 1 gives:

In(3) = 3‘“<A‘”-(f(1)+f(3))—2.(1+1) —4/3=13<14

as desired.



6. Determine if the following improper integrals are convergent or divergent:

The first integral can be computed directly
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Therefore, it is divergent.

The second integral is impossible to compute directly, so we must use the comparison principle.
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For x > 1, we have 0 < e™® < 1 and so 0 < — < = This implies that
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Therefore, / —dz is convergent, and thus by comparison, the original integral / —-dz is convergent.
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Use the substitution s = Inz with ds = %T The limits change from 1 and e to 0 and 1.
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Apply integration by parts with © = Ins and dv = ds

/lns ds =slns—s.
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