```
Introduction to Analysis - MA 511 - Fall 2018 - R. Pollack
    HW #1
```

1. Prove that \mathbb{Q} is closed under addition and multiplication. That is, show that if $x, y \in \mathbb{Q}$, then $x+y \in \mathbb{Q}$ and $x y \in \mathbb{Q}$.
2. What error occurs in the below "proof" to cause such a ridiculous conclusion? Let $x=y$. Then

$$
\begin{aligned}
x^{2} & =x y \\
x^{2}-y^{2} & =x y-y^{2} \\
(x+y)(x-y) & =y(x-y) \\
x+y & =y \\
2 y & =y \\
2 & =1
\end{aligned}
$$

3. Let \mathbb{I} denote the set of irrational numbers (that is the set of real numbers which are not in \mathbb{Q}).
(a) Is \mathbb{I} closed under addition? If so, prove it. If not, give a counter-example.
(b) Is \mathbb{I} closed under multiplication? If so, prove it. If not, give a counter-example.
(c) Rudin: Chapter 1, exercise 1.
4. Consider the following relation on \mathbb{R}^{2}. We say

$$
(x, y)<\left(x^{\prime}, y^{\prime}\right) \text { if } x<x^{\prime} \text { or if both } x=x^{\prime} \text { and } y<y^{\prime} .
$$

Under this relation, which of the following are true? Explain.
(a) $(1,2)<(2,3)$
(b) $(1,2)<(3,1)$
(c) $(1,2)<(1,1)$
(d) $(1,2)<(1,3)$

Does this relation give an order on \mathbb{R}^{2} (in the sense of Rudin, definition 1.5)?

