Questions from Rudin:

Chapter 5: 1, 12

Additional questions:

1. Let X be a metric space and let p be a limit point of X. Prove the following basic properties of limits.
(a) Let $f: X \rightarrow \mathbb{R}$ be the constant function defined by $f(x)=c$ for all $x \in X$. Prove $\lim _{x \rightarrow p} f(x)=c$.
(b) Let $f, g: X \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow p} f(x)$ exists and $\lim _{x \rightarrow p} g(x)$ exists, then $\lim _{x \rightarrow p} f(x)+g(x)$ exists and

$$
\lim _{x \rightarrow p} f(x)+g(x)=\lim _{x \rightarrow p} f(x)+\lim _{x \rightarrow p} g(x) .
$$

(c) Let $f, g: X \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow p} f(x)$ exists and $\lim _{x \rightarrow p} g(x)$ exists, then $\lim _{x \rightarrow p} f(x)+g(x)$ exists and

$$
\lim _{x \rightarrow p} f(x) \cdot g(x)=\lim _{x \rightarrow p} f(x) \cdot \lim _{x \rightarrow p} g(x)
$$

2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable functions and such that

- $f(a)=g(a)$,
- $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(a, b)$.

Prove that $f(x)>g(x)$ for $x>a$.
(Hint: Apply the mean value theorem to $h(x)=f(x)-g(x)$.)
3. Consider the exponential function $y=e^{x}$. Prove the following inequalities:
(a) $x>0 \Longrightarrow e^{x}>1+x$
(b) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2}$
(c) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$
(d) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$

You may assume the basic properties of exponentials like $e^{x}>1$ for $x>0$ and $\left(e^{x}\right)^{\prime}=e^{x}$.
(Hint: Use question 1)
4. Let

$$
f(x)= \begin{cases}x^{4} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Prove that $f(x)$ is differentiable, $f^{\prime}(x)$ is differentiable, but $f^{\prime \prime}(x)$ is not continuous at $x=0$.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. We know from class that if $f(x)$ has a local min/max at p in (a, b), then $f^{\prime}(p)=0$. Is the converse of this statement true? That is, if $f^{\prime}(p)=0$ with p in (a, b), does f have a local min/max at p ? Prove this or give a counter-example.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. We know from class that if $f^{\prime}(x)>0$ for all x then f is strictly increasing. Is the converse of this statement true? That is, if f is strictly increasing, is $f^{\prime}(x)>0$ for all x ? Prove this or give a counter-example.

