Introduction to Analysis — MA 511 — Fall 2018 — R.. Pollack
HW #10

Questions from Rudin:
Chapter 5: 1, 12

Solution: #1: We will prove that f'(x) is identically zero and thus f(x) is constant. To see this, we need to
prove that

t—x t—2x

To this end, fix £ > 0 and set § = &. Then for ¢ such that |z — ¢| < § = ¢, we have

’f(t)—f(w) —0’ _ Q- f@) (= 2)?

< =|t—z| <e.
t—x [t — x| |t — x|

Thus, f'(z) =0 for all z and f is a constant function.

Solution: #12: We have

At = = 0, we have

and thus,

Now f/(z) is clearly differentiable for 2 # 0 with

() = {61: x>0

—6x <0

At = = 0, we have
1/ me
£7(0) = lim . :};%3|I|:0

z—0

and thus,

—6x <0

F(2) = {6$ x>0

Lastly, f/(0) does not exist since
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does not exist as the left hand limit is -6 while the right hand limit is 6.

Additional questions:



1. Let X be a metric space and let p be a limit point of X. Prove the following basic properties of limits.
(a) Let f: X — R be the constant function defined by f(z) = ¢ for all € X. Prove lim f(z) = c.
T—p

(b) Let f,g: X — R. If lim f(z) exists and lim g(x) exists, then lim f(x) + g(z) exists and
T—p

T—p T—p
lim f(w) +g(z) = lim f(z) + lim g(z).
(c) Let f,g: X — R. If lim f(x) exists and lim g(x) exists, then lim f(z) + g(x) exists and
T—p T—p T—p

lim f(z) - g(z) = lim f(z) - lim g(z).

T—p

Solution: (a) Fix ¢ > 0 and take 6 = 1 (any value will work). Then if 0 < d(z,p) < ¢, we have
|f(z) = fp)|=lc—c=0<e.

Solution: (b) Fix € > 0. Then there exists §; > 0 such that if 0 < d(z, p) < §, we have | f(z)—Ly| < e/2
where Ly = ligl f(x). Likewise, there exists do > 0 such that if 0 < d(x,p) < d, we have |g(z) — L,)| <
T—p

¢/2 where Ly = ligl g(x). Set § = min{d1,d2}. Then if 0 < d(x,p) < J, we have |f(x) — Ls| < ¢/2 and
a—p
lg(z) — Lg| < €/2. Thus

[f(x) +g(x) = Ly = Lol < |f(2) = Ly| +9(x) = Lg| = /2 +-¢/2 + e.
Hence 3llgg}f(ﬂc) +g(@)=Lf+Ly= ilg})f(x) + aljl_rg}g(:n)

2. Let f,g: [a,b] = R be differentiable functions and such that

e f(a)=g(a),
o f'(z) > ¢'(x) for all z € (a,b).

Prove that f(z) > g(z) for z > a.

Solution: Let h(xz) = f(z) — g(z). Then h'(z) = f'(x) — ¢'(x) is positive for all = in (a,b). Thus for
any « > a, by the Mean Value Theorem applied to the interval [a, ], there is some ¢ € (a, x) such that
h(z) —h
G E)
r—a
Since both h'(¢) and = — a are positive, we have h(xz) > h(a). But h(a) = f(a) — g(a) = 0. Thus,
h(z) > 0 which means exactly that f(z) > g(x).

3. Consider the exponential function y = e*. Prove the following inequalities:
(a) >0 = e* >1+z

Solution: Applying question 1, take f(z) = e” and g(z) = 1 4+ z. Note f(0) = ¢g(0) = 1. Then
f'(x) = e® and ¢'(z) = 1. Since e is an increasing function, we have e* > 1 for > 0. Thus,
f'(x) > ¢'(z) for > 0. Hence f(z) > g(x) for x > 0 which means that e* > 1+ z for « > 0 as
desired.

2

(b) >0 = ez>1+x+%

Solution: Applying question 1, take f(z) = €* and g(z) = 1 + x + 2%/2. Note f(0) = g(0) = 1.
Then f/'(z) = €® and ¢’(z) = 1 4+ x. By the previous part, we know e > 1+ z for > 0. Thus,
f'(x) > ¢'(x) for z > 0. Hence f(z) > g(z) for z > 0 which means that e* > 1 + z + 22/2 for
x > 0 as desired.



2 (ES

(¢) >0 = eI>1+x+%+€

Solution: Applying question 1, take f(z) = e* and g(z) = 1+z+22/2+23/6. Note f(0) = g(0)

1. Then f'(z) = € and ¢'(x) = 1 + = + 22/2. By the previous part, we know e > 1+ x + 2%/2
for x > 0. Thus, f'(z) > ¢'(z) for x > 0. Hence f(x) > g(z) for > 0 which means that

e* >1+x+122/2+ 23/6 for z > 0 as desired.

2 3 n
T X X xT
Solution: Arguing inductively, assume that we know e* > 1+ z + "”2—? + ’g—? 4o (:1:11)' Then

taking f(z) = e* and g(z) = 1+ 2+ & + & + -+ £

nl’
1

note f(0) = g(0) = 1. Also, we have

fl(z) =e® and ¢'(z) = 1+ 2+ “”2—? + g—? + -+ (i% Note f(0) = ¢(0) = 1. By assumption,

e
() > ¢'(x) for > 0. Thus by question 1, f(x) > g(x) for z > 0 as desired.

You may assume the basic properties of exponentials like €* > 1 for z > 0 and (e*)’ = €.

(Hint: Use question 1)

. Let
~ Jatsin(l/z) x#0
o-{; i

Prove that f(z) is differentiable, f'(z) is differentiable, but f”(z) is not continuous at 2 = 0.

Solution: Away from 0, f(z) is clearly differentiable (chain rule, product rule, etc.) with f’(z)
—x? cos(1/z) + 43 sin(1/z). At 0, f(z) is also differentiable with

£(0) = lim xtsin(1/z)

— 3 q —
lim . = z”sin(1/z) = 0.

Thus,

oo —a?cos(l/x) + 4adsin(1/z) x#0
-,

Clearly, f'(x) is differentiable away from 0 with f”(z) = sin(l/x) — 2z cos(1/z) — 4xsin(1/x)
1222 sin(1/z). At 0, f(z) is also differentiable with

f”(O) — lim —x2 cos(1/x) + 43 sin(1/z)

= lim — 1 42? sin(1/z) = 0.
lim . lim xcos(1/x) + 4a* sin(1/x) =0

Thus,

wi ) sin(l/z) — 2z cos(1/x) — 4w sin(1/z) + 122%sin(1/z) x #0
@) =49, et

+

Lastly, f”(x) is not continuous at z = 0 as lir%sin(l/x) — 2z cos(1/z) — 4z sin(1/x) + 122%sin(1/x)
z—

does not exist (since lin}J —2zcos(1/x) — dasin(1/z) + 122%sin(1/2) = 0 and lin}) sin(1/x) does not
r— r—

exist.

. Let f :[a,b] — R be differentiable. We know from class that if f(x) has a local min/max at p in (a,d),

then f’(p) = 0. Is the converse of this statement true? That is, if f'(p) = 0 with p in (a,b), does
have a local min/max at p? Prove this or give a counter-example.

f

Solution: This is not true. Take for example f(z) = x3. Then f’(0) = 0 but 0 is neither a local max

nor a local min as f(z) > 0 for x > 0 and f(z) < 0 for z < 0.



6. Let f : [a,b] — R be differentiable. We know from class that if f'(z) > 0 for all x then f is strictly
increasing. Is the converse of this statement true? That is, if f is strictly increasing, is f'(x) > 0 for
all x?7 Prove this or give a counter-example.

Solution: This is not true. Again take f(x) = x3. Then f(x) is strictly increasing, but f’(0) = 0.



