
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #10

Questions from Rudin:
Chapter 5: 1, 12

Solution: #1: We will prove that f ′(x) is identically zero and thus f(x) is constant. To see this, we need to

prove that

f ′(x) = lim
t→x

f(t)− f(x)

t− x
= 0.

To this end, fix ε > 0 and set δ = ε. Then for t such that |x− t| < δ = ε, we have∣∣∣∣f(t)− f(x)

t− x
− 0

∣∣∣∣ =
|f(t)− f(x)|
|t− x|

≤ (t− x)2

|t− x|
= |t− x| < ε.

Thus, f ′(x) = 0 for all x and f is a constant function.

Solution: #12: We have

f(x) =

{
x3 x ≥ 0

−x3 x < 0
.

Thus, f(x) is clearly differentiable for x 6= 0 with

f ′(x) =

{
3x2 x > 0

−3x2 x < 0
.

At x = 0, we have

f ′(0) = lim
x→0

|x|3

x
= lim

x→0

x2|x|
x

= lim
x→0

x|x| = 0

and thus,

f ′(x) =

{
3x2 x ≥ 0

−3x2 x < 0
.

Now f ′(x) is clearly differentiable for x 6= 0 with

f ′′(x) =

{
6x x > 0

−6x x < 0
.

At x = 0, we have

f ′′(0) = lim
x→0

3x2 |x|x
x

= lim
x→0

3|x| = 0

and thus,

f ′′(x) =

{
6x x ≥ 0

−6x x < 0
.

Lastly, f ′′′(0) does not exist since

lim
x→0

f ′′(x)

x
= lim

x→0

6x |x|x
x

= lim
x→0

6
|x|
x

does not exist as the left hand limit is -6 while the right hand limit is 6.

Additional questions:



1. Let X be a metric space and let p be a limit point of X. Prove the following basic properties of limits.

(a) Let f : X → R be the constant function defined by f(x) = c for all x ∈ X. Prove lim
x→p

f(x) = c.

(b) Let f, g : X → R. If lim
x→p

f(x) exists and lim
x→p

g(x) exists, then lim
x→p

f(x) + g(x) exists and

lim
x→p

f(x) + g(x) = lim
x→p

f(x) + lim
x→p

g(x).

(c) Let f, g : X → R. If lim
x→p

f(x) exists and lim
x→p

g(x) exists, then lim
x→p

f(x) + g(x) exists and

lim
x→p

f(x) · g(x) = lim
x→p

f(x) · lim
x→p

g(x).

Solution: (a) Fix ε > 0 and take δ = 1 (any value will work). Then if 0 < d(x, p) < δ, we have
|f(x)− f(p)| = |c− c| = 0 < ε.

Solution: (b) Fix ε > 0. Then there exists δ1 > 0 such that if 0 < d(x, p) < δ, we have |f(x)−Lf | < ε/2
where Lf = lim

x→p
f(x). Likewise, there exists δ2 > 0 such that if 0 < d(x, p) < δ, we have |g(x)−Lg)| <

ε/2 where Lg = lim
x→p

g(x). Set δ = min{δ1, δ2}. Then if 0 < d(x, p) < δ, we have |f(x)−Lf | < ε/2 and

|g(x)− Lg| < ε/2. Thus

|f(x) + g(x)− Lf − Lg| ≤ |f(x)− Lf |+ |g(x)− Lg| = ε/2 + ε/2 + ε.

Hence lim
x→p

f(x) + g(x) = Lf + Lg = lim
x→p

f(x) + lim
x→p

g(x).

2. Let f, g : [a, b]→ R be differentiable functions and such that

• f(a) = g(a),

• f ′(x) > g′(x) for all x ∈ (a, b).

Prove that f(x) > g(x) for x > a.

Solution: Let h(x) = f(x) − g(x). Then h′(x) = f ′(x) − g′(x) is positive for all x in (a, b). Thus for
any x > a, by the Mean Value Theorem applied to the interval [a, x], there is some c ∈ (a, x) such that

h′(c) =
h(x)− h(a)

x− a
.

Since both h′(c) and x − a are positive, we have h(x) > h(a). But h(a) = f(a) − g(a) = 0. Thus,
h(x) > 0 which means exactly that f(x) > g(x).

3. Consider the exponential function y = ex. Prove the following inequalities:

(a) x > 0 =⇒ ex > 1 + x

Solution: Applying question 1, take f(x) = ex and g(x) = 1 + x. Note f(0) = g(0) = 1. Then
f ′(x) = ex and g′(x) = 1. Since ex is an increasing function, we have ex > 1 for x > 0. Thus,
f ′(x) > g′(x) for x > 0. Hence f(x) > g(x) for x > 0 which means that ex > 1 + x for x > 0 as
desired.

(b) x > 0 =⇒ ex > 1 + x+
x2

2

Solution: Applying question 1, take f(x) = ex and g(x) = 1 + x + x2/2. Note f(0) = g(0) = 1.
Then f ′(x) = ex and g′(x) = 1 + x. By the previous part, we know ex > 1 + x for x > 0. Thus,
f ′(x) > g′(x) for x > 0. Hence f(x) > g(x) for x > 0 which means that ex > 1 + x + x2/2 for
x > 0 as desired.



(c) x > 0 =⇒ ex > 1 + x+
x2

2
+
x3

6

Solution: Applying question 1, take f(x) = ex and g(x) = 1+x+x2/2+x3/6. Note f(0) = g(0) =
1. Then f ′(x) = ex and g′(x) = 1 + x+ x2/2. By the previous part, we know ex > 1 + x+ x2/2
for x > 0. Thus, f ′(x) > g′(x) for x > 0. Hence f(x) > g(x) for x > 0 which means that
ex > 1 + x+ x2/2 + x3/6 for x > 0 as desired.

(d) x > 0 =⇒ ex > 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

Solution: Arguing inductively, assume that we know ex > 1 + x + x2

2! + x3

3! + · · · + xn−1

(n−1)! . Then

taking f(x) = ex and g(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n! , note f(0) = g(0) = 1. Also, we have

f ′(x) = ex and g′(x) = 1 + x + x2

2! + x3

3! + · · · + xn−1

(n−1)! . Note f(0) = g(0) = 1. By assumption,

f ′(x) > g′(x) for x > 0. Thus by question 1, f(x) > g(x) for x > 0 as desired.

You may assume the basic properties of exponentials like ex > 1 for x > 0 and (ex)′ = ex.

(Hint: Use question 1)

4. Let

f(x) =

{
x4 sin(1/x) x 6= 0

0 x = 0
.

Prove that f(x) is differentiable, f ′(x) is differentiable, but f ′′(x) is not continuous at x = 0.

Solution: Away from 0, f(x) is clearly differentiable (chain rule, product rule, etc.) with f ′(x) =
−x2 cos(1/x) + 4x3 sin(1/x). At 0, f(x) is also differentiable with

f ′(0) = lim
x→0

x4 sin(1/x)

x
= x3 sin(1/x) = 0.

Thus,

f ′(x) =

{
−x2 cos(1/x) + 4x3 sin(1/x) x 6= 0

0 x = 0
.

Clearly, f ′(x) is differentiable away from 0 with f ′′(x) = sin(1/x) − 2x cos(1/x) − 4x sin(1/x) +
12x2 sin(1/x). At 0, f(x) is also differentiable with

f ′′(0) = lim
x→0

−x2 cos(1/x) + 4x3 sin(1/x)

x
= lim

x→0
−x cos(1/x) + 4x2 sin(1/x) = 0.

Thus,

f ′′(x) =

{
sin(1/x)− 2x cos(1/x)− 4x sin(1/x) + 12x2 sin(1/x) x 6= 0

0 x = 0
.

Lastly, f ′′(x) is not continuous at x = 0 as lim
x→0

sin(1/x) − 2x cos(1/x) − 4x sin(1/x) + 12x2 sin(1/x)

does not exist (since lim
x→0
−2x cos(1/x) − 4x sin(1/x) + 12x2 sin(1/x) = 0 and lim

x→0
sin(1/x) does not

exist.

5. Let f : [a, b]→ R be differentiable. We know from class that if f(x) has a local min/max at p in (a, b),
then f ′(p) = 0. Is the converse of this statement true? That is, if f ′(p) = 0 with p in (a, b), does f
have a local min/max at p? Prove this or give a counter-example.

Solution: This is not true. Take for example f(x) = x3. Then f ′(0) = 0 but 0 is neither a local max
nor a local min as f(x) > 0 for x > 0 and f(x) < 0 for x < 0.



6. Let f : [a, b] → R be differentiable. We know from class that if f ′(x) > 0 for all x then f is strictly
increasing. Is the converse of this statement true? That is, if f is strictly increasing, is f ′(x) > 0 for
all x? Prove this or give a counter-example.

Solution: This is not true. Again take f(x) = x3. Then f(x) is strictly increasing, but f ′(0) = 0.


