Questions from Rudin:

Chapter 5: 1, 12
Solution: \#1: We will prove that $f^{\prime}(x)$ is identically zero and thus $f(x)$ is constant. To see this, we need to prove that

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=0
$$

To this end, fix $\varepsilon>0$ and set $\delta=\varepsilon$. Then for t such that $|x-t|<\delta=\varepsilon$, we have

$$
\left|\frac{f(t)-f(x)}{t-x}-0\right|=\frac{|f(t)-f(x)|}{|t-x|} \leq \frac{(t-x)^{2}}{|t-x|}=|t-x|<\varepsilon
$$

Thus, $f^{\prime}(x)=0$ for all x and f is a constant function.
Solution: \#12: We have

$$
f(x)= \begin{cases}x^{3} & x \geq 0 \\ -x^{3} & x<0\end{cases}
$$

Thus, $f(x)$ is clearly differentiable for $x \neq 0$ with

$$
f^{\prime}(x)= \begin{cases}3 x^{2} & x>0 \\ -3 x^{2} & x<0\end{cases}
$$

At $x=0$, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{|x|^{3}}{x}=\lim _{x \rightarrow 0} \frac{x^{2}|x|}{x}=\lim _{x \rightarrow 0} x|x|=0
$$

and thus,

$$
f^{\prime}(x)= \begin{cases}3 x^{2} & x \geq 0 \\ -3 x^{2} & x<0\end{cases}
$$

Now $f^{\prime}(x)$ is clearly differentiable for $x \neq 0$ with

$$
f^{\prime \prime}(x)= \begin{cases}6 x & x>0 \\ -6 x & x<0\end{cases}
$$

At $x=0$, we have

$$
f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{3 x^{2} \frac{|x|}{x}}{x}=\lim _{x \rightarrow 0} 3|x|=0
$$

and thus,

$$
f^{\prime \prime}(x)= \begin{cases}6 x & x \geq 0 \\ -6 x & x<0\end{cases}
$$

Lastly, $f^{\prime \prime \prime}(0)$ does not exist since

$$
\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{x}=\lim _{x \rightarrow 0} \frac{6 x \frac{|x|}{x}}{x}=\lim _{x \rightarrow 0} 6 \frac{|x|}{x}
$$

does not exist as the left hand limit is -6 while the right hand limit is 6 .

Additional questions:

1. Let X be a metric space and let p be a limit point of X. Prove the following basic properties of limits.
(a) Let $f: X \rightarrow \mathbb{R}$ be the constant function defined by $f(x)=c$ for all $x \in X$. Prove $\lim _{x \rightarrow p} f(x)=c$.
(b) Let $f, g: X \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow p} f(x)$ exists and $\lim _{x \rightarrow p} g(x)$ exists, then $\lim _{x \rightarrow p} f(x)+g(x)$ exists and

$$
\lim _{x \rightarrow p} f(x)+g(x)=\lim _{x \rightarrow p} f(x)+\lim _{x \rightarrow p} g(x)
$$

(c) Let $f, g: X \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow p} f(x)$ exists and $\lim _{x \rightarrow p} g(x)$ exists, then $\lim _{x \rightarrow p} f(x)+g(x)$ exists and

$$
\lim _{x \rightarrow p} f(x) \cdot g(x)=\lim _{x \rightarrow p} f(x) \cdot \lim _{x \rightarrow p} g(x)
$$

Solution: (a) Fix $\varepsilon>0$ and take $\delta=1$ (any value will work). Then if $0<d(x, p)<\delta$, we have $|f(x)-f(p)|=|c-c|=0<\varepsilon$.

Solution: (b) Fix $\varepsilon>0$. Then there exists $\delta_{1}>0$ such that if $0<d(x, p)<\delta$, we have $\left|f(x)-L_{f}\right|<\varepsilon / 2$ where $L_{f}=\lim _{x \rightarrow p} f(x)$. Likewise, there exists $\delta_{2}>0$ such that if $0<d(x, p)<\delta$, we have $\left.\mid g(x)-L_{g}\right) \mid<$ $\varepsilon / 2$ where $L_{g}=\lim _{x \rightarrow p} g(x)$. Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then if $0<d(x, p)<\delta$, we have $\left|f(x)-L_{f}\right|<\varepsilon / 2$ and $\left|g(x)-L_{g}\right|<\varepsilon / 2$. Thus

$$
\left|f(x)+g(x)-L_{f}-L_{g}\right| \leq\left|f(x)-L_{f}\right|+\left|g(x)-L_{g}\right|=\varepsilon / 2+\varepsilon / 2+\varepsilon
$$

Hence $\lim _{x \rightarrow p} f(x)+g(x)=L_{f}+L_{g}=\lim _{x \rightarrow p} f(x)+\lim _{x \rightarrow p} g(x)$.
2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable functions and such that

- $f(a)=g(a)$,
- $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(a, b)$.

Prove that $f(x)>g(x)$ for $x>a$.
Solution: Let $h(x)=f(x)-g(x)$. Then $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$ is positive for all x in (a, b). Thus for any $x>a$, by the Mean Value Theorem applied to the interval $[a, x]$, there is some $c \in(a, x)$ such that

$$
h^{\prime}(c)=\frac{h(x)-h(a)}{x-a}
$$

Since both $h^{\prime}(c)$ and $x-a$ are positive, we have $h(x)>h(a)$. But $h(a)=f(a)-g(a)=0$. Thus, $h(x)>0$ which means exactly that $f(x)>g(x)$.
3. Consider the exponential function $y=e^{x}$. Prove the following inequalities:
(a) $x>0 \Longrightarrow e^{x}>1+x$

Solution: Applying question 1, take $f(x)=e^{x}$ and $g(x)=1+x$. Note $f(0)=g(0)=1$. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=1$. Since e^{x} is an increasing function, we have $e^{x}>1$ for $x>0$. Thus, $f^{\prime}(x)>g^{\prime}(x)$ for $x>0$. Hence $f(x)>g(x)$ for $x>0$ which means that $e^{x}>1+x$ for $x>0$ as desired.
(b) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2}$

Solution: Applying question 1, take $f(x)=e^{x}$ and $g(x)=1+x+x^{2} / 2$. Note $f(0)=g(0)=1$. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=1+x$. By the previous part, we know $e^{x}>1+x$ for $x>0$. Thus, $f^{\prime}(x)>g^{\prime}(x)$ for $x>0$. Hence $f(x)>g(x)$ for $x>0$ which means that $e^{x}>1+x+x^{2} / 2$ for $x>0$ as desired.
(c) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$

Solution: Applying question 1, take $f(x)=e^{x}$ and $g(x)=1+x+x^{2} / 2+x^{3} / 6$. Note $f(0)=g(0)=$ 1. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=1+x+x^{2} / 2$. By the previous part, we know $e^{x}>1+x+x^{2} / 2$ for $x>0$. Thus, $f^{\prime}(x)>g^{\prime}(x)$ for $x>0$. Hence $f(x)>g(x)$ for $x>0$ which means that $e^{x}>1+x+x^{2} / 2+x^{3} / 6$ for $x>0$ as desired.
(d) $x>0 \Longrightarrow e^{x}>1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$

Solution: Arguing inductively, assume that we know $e^{x}>1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n-1}}{(n-1)!}$. Then taking $f(x)=e^{x}$ and $g(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$, note $f(0)=g(0)=1$. Also, we have $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n-1}}{(n-1)!}$. Note $f(0)=g(0)=1$. By assumption, $f^{\prime}(x)>g^{\prime}(x)$ for $x>0$. Thus by question $1, f(x)>g(x)$ for $x>0$ as desired.

You may assume the basic properties of exponentials like $e^{x}>1$ for $x>0$ and $\left(e^{x}\right)^{\prime}=e^{x}$.
(Hint: Use question 1)
4. Let

$$
f(x)= \begin{cases}x^{4} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Prove that $f(x)$ is differentiable, $f^{\prime}(x)$ is differentiable, but $f^{\prime \prime}(x)$ is not continuous at $x=0$.
Solution: Away from $0, f(x)$ is clearly differentiable (chain rule, product rule, etc.) with $f^{\prime}(x)=$ $-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x)$. At $0, f(x)$ is also differentiable with

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{4} \sin (1 / x)}{x}=x^{3} \sin (1 / x)=0
$$

Thus,

$$
f^{\prime}(x)= \begin{cases}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Clearly, $f^{\prime}(x)$ is differentiable away from 0 with $f^{\prime \prime}(x)=\sin (1 / x)-2 x \cos (1 / x)-4 x \sin (1 / x)+$ $12 x^{2} \sin (1 / x)$. At $0, f(x)$ is also differentiable with

$$
f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x)}{x}=\lim _{x \rightarrow 0}-x \cos (1 / x)+4 x^{2} \sin (1 / x)=0
$$

Thus,

$$
f^{\prime \prime}(x)= \begin{cases}\sin (1 / x)-2 x \cos (1 / x)-4 x \sin (1 / x)+12 x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Lastly, $f^{\prime \prime}(x)$ is not continuous at $x=0$ as $\lim _{x \rightarrow 0} \sin (1 / x)-2 x \cos (1 / x)-4 x \sin (1 / x)+12 x^{2} \sin (1 / x)$ does not exist (since $\lim _{x \rightarrow 0}-2 x \cos (1 / x)-4 x \sin (1 / x)+12 x^{2} \sin (1 / x)=0$ and $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. We know from class that if $f(x)$ has a local min $/ \max$ at p in (a, b), then $f^{\prime}(p)=0$. Is the converse of this statement true? That is, if $f^{\prime}(p)=0$ with p in (a, b), does f have a local min/max at p ? Prove this or give a counter-example.

Solution: This is not true. Take for example $f(x)=x^{3}$. Then $f^{\prime}(0)=0$ but 0 is neither a local max nor a local min as $f(x)>0$ for $x>0$ and $f(x)<0$ for $x<0$.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. We know from class that if $f^{\prime}(x)>0$ for all x then f is strictly increasing. Is the converse of this statement true? That is, if f is strictly increasing, is $f^{\prime}(x)>0$ for all x ? Prove this or give a counter-example.

Solution: This is not true. Again take $f(x)=x^{3}$. Then $f(x)$ is strictly increasing, but $f^{\prime}(0)=0$.

