Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #2

- 1. Recall the notion of a **relation** \mathcal{R} on a set S as defined in class. We further define the following concepts:
 - A relation \mathcal{R} is called **reflective** if $x\mathcal{R}x$ is true for all $x \in S$.
 - A relation \mathcal{R} is called **symmetric** if whenever $x\mathcal{R}y$ is true, then $y\mathcal{R}x$ is true as well.
 - A relation \mathcal{R} is called **transitive** if whenever both $x\mathcal{R}y$ and $y\mathcal{R}z$ is true, then $x\mathcal{R}z$ is true.

For each of the following relations, determine which of the above three properties it satisfies. No proofs are needed here, but if you claim that a relation does **not** satisfy one of these properties, you must give an (explicit) counter-example.

- (a) $S = \mathbb{R}$ and \mathcal{R} is given by <
- (b) $S = \mathbb{R}$ and \mathcal{R} is given by \leq
- (c) $S = \mathbb{Z}$ and \mathcal{R} is given by | (that is "divides" as in class)
- (d) Let

$$S = \{(a,b) \in \mathbb{Z}^2 \mid b \neq 0\}$$

and \mathcal{R} is defined as follows:

$$(a, b)\mathcal{R}(c, d)$$
 if and only if $ad = bc$.

- 2. (Definitions) Give complete and mathematically accurate definitions of the terms upper bound and least upper bound (of a subset of \mathbb{R}).
- 3. (True/False) In each case, state whether the assertion is true or false. If the assertion is true then it is enough to say so. If the assertion is false then give a counterexample.
 - (a) If $\theta \in \mathbb{Q}$, then $\sup\{\cos(n\theta) : n \in \mathbb{Z}\} = 1$.
 - (b) The least upper bound of a nonempty subset of \mathbb{Q} which is bounded above never belongs to \mathbb{Q} .
 - (c) If a subset X of \mathbb{R} has a least upper bound ℓ then $\ell \in X$.
 - (d) If a subset X of \mathbb{R} has a least upper bound ℓ then $\ell \notin X$.
 - (e) If a subset of $\mathbb R$ has an upper bound then the upper bound is unique.
- 4. For $a, b \in \mathbb{R}$, let E denote the open interval (a, b). Prove that sup E = b.
- 5. Rudin Chapter 1, exercise 4 Is this exercise still true if E is no longer assumed to be non-empty? Is it possible in this exercise for α to equal β ? If so, when does this occur?
- 6. Rudin Chapter 1, exercise 5
- 7. Rudin Chapter 1, exercise 8
- 8. Prove Proposition 1.15 in Rudin.