1. Recall the notion of a relation \mathcal{R} on a set S as defined in class. We further define the following concepts:

- A relation \mathcal{R} is called reflective if $x \mathcal{R} x$ is true for all $x \in S$.
- A relation \mathcal{R} is called symmetric if whenever $x \mathcal{R} y$ is true, then $y \mathcal{R} x$ is true as well.
- A relation \mathcal{R} is called transitive if whenever both $x \mathcal{R} y$ and $y \mathcal{R} z$ is true, then $x \mathcal{R} z$ is true.

For each of the following relations, determine which of the above three properties it satisfies. No proofs are needed here, but if you claim that a relation does not satisfy one of these properties, you must give an (explicit) counter-example.
(a) $S=\mathbb{R}$ and \mathcal{R} is given by $<$

Solution: The reflexive property fails as, for instance, $1<1$ is false. The symmetric property is false as $1<2$ holds while $2<1$ is false. The transitive property is true.
(b) $S=\mathbb{R}$ and \mathcal{R} is given by \leq

Solution: The reflexive property holds since it is always true that $a \leq a$. The symmetric property is false as $1 \leq 2$ holds while $2 \leq 1$ is false. The transitive property is true.
(c) $S=\mathbb{Z}$ and \mathcal{R} is given by \mid (that is "divides" as in class)

Solution: The reflexive property holds since it is always true that $a \mid a$ as $a \cdot 1=a$. The symmetric property is false as $1 \mid 2$ holds while $2 \mid 1$ is false. The transitive property is true.
(d) Let

$$
S=\left\{(a, b) \in \mathbb{Z}^{2} \mid b \neq 0\right\}
$$

and \mathcal{R} is defined as follows:

$$
(a, b) \mathcal{R}(c, d) \text { if and only if } a d=b c
$$

Solution: All three properties hold. Reflective holds since $(a, a) \mathcal{R}(a, a)$ as $a \cdot a=a \cdot a$. Symmetric holds as

$$
(a, b) \mathcal{R}(c, d) \Longrightarrow a d=b c \Longrightarrow c b=d a \Longrightarrow(c, d) \mathcal{R}(a, b)
$$

Lastly, transitive holds since if $(a, b) \mathcal{R}(c, d)$ and $(c, d) \mathcal{R}(e, f)$, then $a d=b c$ and $c f=d e$. Hence, $b c f=b d e$ and thus $a d f=b d e$. Since $d \neq 0$, we get $a f=b e$ which means precisely that $(a, b) \mathcal{R}(e, f)$.
2. (Definitions) Give complete and mathematically accurate definitions of the terms upper bound and least upper bound (of a subset of \mathbb{R}).
3. (True/False) In each case, state whether the assertion is true or false. If the assertion is true then it is enough to say so. If the assertion is false then give a counterexample.
(a) If $\theta \in \mathbb{Q}$, then $\sup \{\cos (n \theta): n \in \mathbb{Z}\}=1$.

Solution: True. Clearly, 1 is an upper bound since $\cos (x) \leq 1$ for all x. Moreover $\cos (0 \cdot \theta)=$ $\cos (0)=1$ and hence no smaller bound is possible.
(b) The least upper bound of a nonempty subset of \mathbb{Q} which is bounded above never belongs to \mathbb{Q}.

Solution: False. Take $E=[0,1]$. Then $\sup (E)=1$ which is in \mathbb{Q}.
(c) If a subset X of \mathbb{R} has a least upper bound ℓ then $\ell \in X$.

Solution: False. Take $X=[0,1)$. Then $\sup (E)=1$ which is not in X.
(d) If a subset X of \mathbb{R} has a least upper bound ℓ then $\ell \notin X$.

Solution: False. Take $X=[0,1]$. Then $\sup (E)=1$ which is in X.
(e) If a subset of \mathbb{R} has an upper bound then the upper bound is unique.

Solution: False. Take $X=[0,1$). Then X has an upper bound of both 1 and 2 (to just mention a few).
4. For $a, b \in \mathbb{R}$, let E denote the open interval (a, b). Prove that $\sup E=b$.

Solution: By definition, E is bounded above by b. Now let β denote some upper bound of E. Assume $\beta<b$. Then $\gamma=\frac{\beta+b}{2}$ is in $E($ as $\gamma<b)$. However, since $\beta<\gamma$, this contradicts the fact that β is an upper bound of E. Thus, $b \leq \beta$, and we have proven that b is the least upper bound of E.
5. Rudin - Chapter 1, exercise 4

Is this exercise still true if E is no longer assumed to be non-empty? Is it possible in this exercise for α to equal β ? If so, when does this occur?

Solution: Since E is non-empty, let $x \in E$. Then since α is a lower bound of E, we have $\alpha \leq x$. Since β is an upper bound, $x \leq \beta$. Putting these two inequalities together gives $\alpha \leq \beta$.
If E is empty then the statement is not true. Indeed, 1 is a lower bound of the empty set (vacuously) while 0 is an upper bound of the empty set.
In this exercise, if $\alpha=\beta$, then for any element $x \in E$, we have

$$
\alpha \leq x \leq \beta=\alpha
$$

Thus, $\alpha=x=\beta$, and E is just a set with 1 element.
6. Rudin - Chapter 1, exercise 5

Solution: To claim $\inf (A)=-\sup (-A)$, we need to check that $-\sup (-A)$ is a lower bound of A, and that it is the greatest lower bound. To check the first statement, we know that for any $x \in A$, we have $-x \in-A$, and thus $-x \leq \sup (-A)$. Hence, $x \geq-\sup (-A)$ as desired. To check the second statement, assume that β is some lower bound of A. Then $-\beta$ is an upper bound of $-A$. Hence, $\sup (-A) \leq-\beta$. This implies that $\beta \leq-\sup (-A)$. Thus, $-\sup (-A)$ is the greatest lower bound of A.
7. Rudin - Chapter 1, exercise 8

Solution: Assume \mathbb{C} is an ordered field. Then by Prop 1.18(d), we have $i^{2}>0$. Thus $-1>0$ and hence $0>1$. But, again by Prop $1.18(\mathrm{~d})$, we know that $1>0$. This is a contradiction and hence \mathbb{C} cannot be an order field.
8. Prove Proposition 1.15 in Rudin.

Solution: (a) Since $x \neq 0, x y=x z$ implies $x^{-1}(x y)=x^{-1}(x z)$. By M3, $\left(x^{-1} x\right) y=\left(x^{-1} x\right) z$. By M5, $1 y=1 z$. By M4, $y=z$.
(b) Take $z=1$ in (a).
(c) Take $z=x^{-1}$ in (a).
(d) Since $x^{-1} x=1$, by (c) we have $x=\left(x^{-1}\right)^{-1}$.

