
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #2 Solutions

1. Recall the notion of a relation R on a set S as defined in class. We further define the following
concepts:

• A relation R is called reflective if xRx is true for all x ∈ S.

• A relation R is called symmetric if whenever xRy is true, then yRx is true as well.

• A relation R is called transitive if whenever both xRy and yRz is true, then xRz is true.

For each of the following relations, determine which of the above three properties it satisfies. No proofs
are needed here, but if you claim that a relation does not satisfy one of these properties, you must
give an (explicit) counter-example.

(a) S = R and R is given by <

Solution: The reflexive property fails as, for instance, 1 < 1 is false. The symmetric property is
false as 1 < 2 holds while 2 < 1 is false. The transitive property is true.

(b) S = R and R is given by ≤

Solution: The reflexive property holds since it is always true that a ≤ a. The symmetric property
is false as 1 ≤ 2 holds while 2 ≤ 1 is false. The transitive property is true.

(c) S = Z and R is given by | (that is “divides” as in class)

Solution: The reflexive property holds since it is always true that a|a as a · 1 = a. The symmetric
property is false as 1|2 holds while 2|1 is false. The transitive property is true.

(d) Let
S = {(a, b) ∈ Z2 | b 6= 0}

and R is defined as follows:

(a, b)R(c, d) if and only if ad = bc.

Solution: All three properties hold. Reflective holds since (a, a)R(a, a) as a · a = a · a. Symmetric
holds as

(a, b)R(c, d) =⇒ ad = bc =⇒ cb = da =⇒ (c, d)R(a, b).

Lastly, transitive holds since if (a, b)R(c, d) and (c, d)R(e, f), then ad = bc and cf = de. Hence,
bcf = bde and thus adf = bde. Since d 6= 0, we get af = be which means precisely that (a, b)R(e, f).

2. (Definitions) Give complete and mathematically accurate definitions of the terms upper bound and
least upper bound (of a subset of R).

3. (True/False) In each case, state whether the assertion is true or false. If the assertion is true then it
is enough to say so. If the assertion is false then give a counterexample.

(a) If θ ∈ Q, then sup{cos(nθ) : n ∈ Z} = 1.

Solution: True. Clearly, 1 is an upper bound since cos(x) ≤ 1 for all x. Moreover cos(0 · θ) =
cos(0) = 1 and hence no smaller bound is possible.

(b) The least upper bound of a nonempty subset of Q which is bounded above never belongs to Q.

Solution: False. Take E = [0, 1]. Then sup(E) = 1 which is in Q.



(c) If a subset X of R has a least upper bound ` then ` ∈ X.

Solution: False. Take X = [0, 1). Then sup(E) = 1 which is not in X.

(d) If a subset X of R has a least upper bound ` then ` 6∈ X.

Solution: False. Take X = [0, 1]. Then sup(E) = 1 which is in X.

(e) If a subset of R has an upper bound then the upper bound is unique.

Solution: False. Take X = [0, 1). Then X has an upper bound of both 1 and 2 (to just mention
a few).

4. For a, b ∈ R, let E denote the open interval (a, b). Prove that supE = b.

Solution: By definition, E is bounded above by b. Now let β denote some upper bound of E. Assume
β < b. Then γ = β+b

2 is in E (as γ < b). However, since β < γ, this contradicts the fact that β is an
upper bound of E. Thus, b ≤ β, and we have proven that b is the least upper bound of E.

5. Rudin – Chapter 1, exercise 4
Is this exercise still true if E is no longer assumed to be non-empty? Is it possible in this exercise for
α to equal β? If so, when does this occur?

Solution: Since E is non-empty, let x ∈ E. Then since α is a lower bound of E, we have α ≤ x. Since
β is an upper bound, x ≤ β. Putting these two inequalities together gives α ≤ β.

If E is empty then the statement is not true. Indeed, 1 is a lower bound of the empty set (vacuously)
while 0 is an upper bound of the empty set.

In this exercise, if α = β, then for any element x ∈ E, we have

α ≤ x ≤ β = α.

Thus, α = x = β, and E is just a set with 1 element.

6. Rudin – Chapter 1, exercise 5

Solution: To claim inf(A) = − sup(−A), we need to check that − sup(−A) is a lower bound of A, and
that it is the greatest lower bound. To check the first statement, we know that for any x ∈ A, we have
−x ∈ −A, and thus −x ≤ sup(−A). Hence, x ≥ − sup(−A) as desired. To check the second statement,
assume that β is some lower bound of A. Then −β is an upper bound of −A. Hence, sup(−A) ≤ −β.
This implies that β ≤ − sup(−A). Thus, − sup(−A) is the greatest lower bound of A.

7. Rudin – Chapter 1, exercise 8

Solution: Assume C is an ordered field. Then by Prop 1.18(d), we have i2 > 0. Thus −1 > 0 and
hence 0 > 1. But, again by Prop 1.18(d), we know that 1 > 0. This is a contradiction and hence C
cannot be an order field.

8. Prove Proposition 1.15 in Rudin.

Solution: (a) Since x 6= 0, xy = xz implies x−1(xy) = x−1(xz). By M3, (x−1x)y = (x−1x)z. By M5,
1y = 1z. By M4, y = z.

(b) Take z = 1 in (a).

(c) Take z = x−1 in (a).

(d) Since x−1x = 1, by (c) we have x = (x−1)−1.


