Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #3

1. Let z = a + bi be a complex number which for the moment we will think of as a vector in \mathbb{R}^2 given by (a, b). Let $\theta(z)$ denote the angle between the positive x-axis and z satisfying $0 \le \theta(z) < 2\pi$. (We call $\theta(z)$ the argument of z.) Also, let $|z| = \sqrt{a^2 + b^2}$ which we call the *length* of z.

For $x \in \mathbb{R}$, we define

$$e^{ix} = \cos(x) + i\sin(x) \in \mathbb{C}.$$

- (a) Prove that if $z \in \mathbb{C}$, then $z = re^{i\theta}$ where r = |z| and $\theta = \theta(z)$.
- (b) Prove that

$$re^{i\theta} \cdot se^{i\psi} = rse^{i(\theta+\psi)}$$

(In words this means that when you multiply complex numbers, you multiply the lengths and add the arguments.)

- (c) Verify that $e^{i\pi} = -1$.
- 2. The equation $z^n = 1$ has n solutions in \mathbb{C} . Write out these solutions explicitly for n = 3, 4, 6, and 8. Here "explicitly" means that the solutions should be written in the form x + iy with x and y written in terms of rational numbers or square roots of rational numbers – no sines and cosines are allowed in your final answer.

(Hint: The last exercise will help here.)

- 3. Rudin, Chapter 1: 10
- 4. For every $x \in \mathbb{R}$, prove that there exists a $y \in \mathbb{R}$ such that $y^3 = x$.
- 5. Prove that C satisfies the following field axioms: A4,A5,M3,M4,M5.
- 6. Let A and B be two sets both contained in a larger set X. We define the union $A \cup B$ to be the subset of X consisting of elements that are in A or in B. We define the intersection $A \cap B$ to be the subset of X consisting of elements that are in both A and in B. Further, we define the complement A^c to be the subset of elements of X which are not in A. Prove each of the following.
 - (a) $(A \cap B)^c = A^c \cup B^c$.
 - (b) $(A \cup B)^c = A^c \cap B^c$.
 - (c) $(A^c)^c = A$.
- 7. Let S be a set and let \sim be a relation on S. Assume that \sim is reflexive, symmetric, and transitive. (Such a relation is called an equivalence relation.) For an element $x \in S$, we define the *equivalence* class of x, denoted by [x], by

$$[x] = \{ y \in S : y \sim x \text{ holds} \}.$$

Prove each of the following:

(a)
$$x \in [x]$$

- (b) if $x \sim y$ holds, then [x] = [y];
- (c) if $[x] \cap [y]$ is non-empty, then $x \sim y$ holds.

We note for the next exercise that we use the notation S/\sim to denote the collection of equivalence classes of S under \sim . That is, the *elements* of S/\sim are *subsets* of S of the form [x].

8. Let S denote the collection of ordered pairs (a, b) with $a, b \in \mathbb{Z}$ and $b \neq 0$. Recall the equivalence relation \sim on the last problem set given by

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$.

We define \mathbb{Q} to be S/\sim – that is, \mathbb{Q} is the collection of equivalence classes of ordered pairs (a, b) under \sim .

- (a) Verify that $(1,2) \sim (2,4) \sim (3,6)$. (This is meant to represent the fact that $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$.)
- (b) Write down 3 elements in the equivalence class [(5, 12)].
- (c) We *define* addition on \mathbb{Q} as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc, bd)].$$

(This is meant to represent that $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$.)

However, it is not clear that this formula is *well-defined*. For instance, applying the formula we get [(1,2)] + [(1,2)] = [(4,4)]. However, [(1,2)] can be written as [(a,b)] for many other choices of [(a,b)] (e.g. (2,4)). Will changing this representative of equivalence class change the value of the above addition? Let's try one example: [(2,4)] + [(1,2)] = [(8,8)]. Fortunately, $(4,4) \sim (8,8)$ so the resulting equivalence class is the same.

Check this now in general. Prove that

$$(a,b) \sim (a',b')$$
 and $(c,d) \sim (c',d')$ implies $(ad+bc,bd) \sim (a'd'+b'c',b'd')$.

(d) We *define* multiplication on \mathbb{Q} as follows:

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)].$$

(This is meant to represent that $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.) Verify that this operation is well-defined. That is, prove that

$$(a,b) \sim (a',b')$$
 and $(c,d) \sim (c',d')$ implies $(ac,bd) \sim (a'c',b'd')$.

(e) In fact one can prove that \mathbb{Q} is a field under + and \cdot (assuming basic properties of arithmetic on \mathbb{Z}). I'll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.