
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #3

1. Let z = a+ bi be a complex number which for the moment we will think of as a vector in R2 given by
(a, b). Let θ(z) denote the angle between the positive x-axis and z satisfying 0 ≤ θ(z) < 2π. (We call
θ(z) the argument of z.) Also, let |z| =

√
a2 + b2 which we call the length of z.

For x ∈ R, we define
eix = cos(x) + i sin(x) ∈ C.

(a) Prove that if z ∈ C, then z = reiθ where r = |z| and θ = θ(z).

(b) Prove that
reiθ · seiψ = rsei(θ+ψ).

(In words this means that when you multiply complex numbers, you multiply the lengths and add
the arguments.)

(c) Verify that eiπ = −1.

2. The equation zn = 1 has n solutions in C. Write out these solutions explicitly for n = 3, 4, 6, and 8.
Here “explicitly” means that the solutions should be written in the form x+ iy with x and y written
in terms of rational numbers or square roots of rational numbers – no sines and cosines are allowed in
your final answer.

(Hint: The last exercise will help here.)

3. Rudin, Chapter 1: 10

4. For every x ∈ R, prove that there exists a y ∈ R such that y3 = x.

5. Prove that C satisfies the following field axioms: A4,A5,M3,M4,M5.

6. Let A and B be two sets both contained in a larger set X. We define the union A∪B to be the subset
of X consisting of elements that are in A or in B. We define the intersection A ∩ B to be the subset
of X consisting of elements that are in both A and in B. Further, we define the complement Ac to be
the subset of elements of X which are not in A. Prove each of the following.

(a) (A ∩B)c = Ac ∪Bc.
(b) (A ∪B)c = Ac ∩Bc.
(c) (Ac)c = A.

7. Let S be a set and let ∼ be a relation on S. Assume that ∼ is reflexive, symmetric, and transitive.
(Such a relation is called an equivalence relation.) For an element x ∈ S, we define the equivalence
class of x, denoted by [x], by

[x] = {y ∈ S : y ∼ x holds}.

Prove each of the following:

(a) x ∈ [x];

(b) if x ∼ y holds, then [x] = [y];

(c) if [x] ∩ [y] is non-empty, then x ∼ y holds.

We note for the next exercise that we use the notation S/ ∼ to denote the collection of equivalence
classes of S under ∼. That is, the elements of S/ ∼ are subsets of S of the form [x].



8. Let S denote the collection of ordered pairs (a, b) with a, b ∈ Z and b 6= 0. Recall the equivalence
relation ∼ on the last problem set given by

(a, b) ∼ (c, d) if and only if ad = bc.

We define Q to be S/ ∼ – that is, Q is the collection of equivalence classes of ordered pairs (a, b) under
∼.

(a) Verify that (1, 2) ∼ (2, 4) ∼ (3, 6). (This is meant to represent the fact that 1
2 = 2

4 = 3
6 .)

(b) Write down 3 elements in the equivalence class [(5, 12)].

(c) We define addition on Q as follows:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

(This is meant to represent that a
b + c

d = ad+bc
bd .)

However, it is not clear that this formula is well-defined. For instance, applying the formula we
get [(1, 2)] + [(1, 2)] = [(4, 4)]. However, [(1, 2)] can be written as [(a, b)] for many other choices
of [(a, b)] (e.g. (2, 4)). Will changing this representative of equivalence class change the value of
the above addition? Let’s try one example: [(2, 4)] + [(1, 2)] = [(8, 8)]. Fortunately, (4, 4) ∼ (8, 8)
so the resulting equivalence class is the same.

Check this now in general. Prove that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) implies (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′).

(d) We define multiplication on Q as follows:

[(a, b)] · [(c, d)] = [(ac, bd)].

(This is meant to represent that a
b ·

c
d = ac

bd .)

Verify that this operation is well-defined. That is, prove that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) implies (ac, bd) ∼ (a′c′, b′d′).

(e) In fact one can prove that Q is a field under + and · (assuming basic properties of arithmetic on
Z). I’ll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.


