```
Introduction to Analysis - MA 511 - Fall 2018 - R. Pollack
    HW #3
```

1. Let $z=a+b i$ be a complex number which for the moment we will think of as a vector in \mathbb{R}^{2} given by (a, b). Let $\theta(z)$ denote the angle between the positive x-axis and z satisfying $0 \leq \theta(z)<2 \pi$. (We call $\theta(z)$ the argument of z.) Also, let $|z|=\sqrt{a^{2}+b^{2}}$ which we call the length of z.
For $x \in \mathbb{R}$, we define

$$
e^{i x}=\cos (x)+i \sin (x) \in \mathbb{C}
$$

(a) Prove that if $z \in \mathbb{C}$, then $z=r e^{i \theta}$ where $r=|z|$ and $\theta=\theta(z)$.
(b) Prove that

$$
r e^{i \theta} \cdot s e^{i \psi}=r s e^{i(\theta+\psi)}
$$

(In words this means that when you multiply complex numbers, you multiply the lengths and add the arguments.)
(c) Verify that $e^{i \pi}=-1$.
2. The equation $z^{n}=1$ has n solutions in \mathbb{C}. Write out these solutions explicitly for $n=3,4,6$, and 8 . Here "explicitly" means that the solutions should be written in the form $x+i y$ with x and y written in terms of rational numbers or square roots of rational numbers - no sines and cosines are allowed in your final answer.
(Hint: The last exercise will help here.)
3. Rudin, Chapter 1: 10
4. For every $x \in \mathbb{R}$, prove that there exists a $y \in \mathbb{R}$ such that $y^{3}=x$.
5. Prove that \mathbb{C} satisfies the following field axioms: A4,A5,M3,M4,M5.
6. Let A and B be two sets both contained in a larger set X. We define the union $A \cup B$ to be the subset of X consisting of elements that are in A or in B. We define the intersection $A \cap B$ to be the subset of X consisting of elements that are in both A and in B. Further, we define the complement A^{c} to be the subset of elements of X which are not in A. Prove each of the following.
(a) $(A \cap B)^{c}=A^{c} \cup B^{c}$.
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$.
(c) $\left(A^{c}\right)^{c}=A$.
7. Let S be a set and let \sim be a relation on S. Assume that \sim is reflexive, symmetric, and transitive. (Such a relation is called an equivalence relation.) For an element $x \in S$, we define the equivalence class of x, denoted by $[x]$, by

$$
[x]=\{y \in S: y \sim x \text { holds }\} .
$$

Prove each of the following:
(a) $x \in[x]$;
(b) if $x \sim y$ holds, then $[x]=[y]$;
(c) if $[x] \cap[y]$ is non-empty, then $x \sim y$ holds.

We note for the next exercise that we use the notation S / \sim to denote the collection of equivalence classes of S under \sim. That is, the elements of S / \sim are subsets of S of the form $[x]$.
8. Let S denote the collection of ordered pairs (a, b) with $a, b \in \mathbb{Z}$ and $b \neq 0$. Recall the equivalence relation \sim on the last problem set given by

$$
(a, b) \sim(c, d) \text { if and only if } a d=b c
$$

We define \mathbb{Q} to be $S / \sim-$ that is, \mathbb{Q} is the collection of equivalence classes of ordered pairs (a, b) under \sim.
(a) Verify that $(1,2) \sim(2,4) \sim(3,6)$. (This is meant to represent the fact that $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}$.)
(b) Write down 3 elements in the equivalence class $[(5,12)]$.
(c) We define addition on \mathbb{Q} as follows:

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]
$$

(This is meant to represent that $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.)
However, it is not clear that this formula is well-defined. For instance, applying the formula we get $[(1,2)]+[(1,2)]=[(4,4)]$. However, $[(1,2)]$ can be written as $[(a, b)]$ for many other choices of $[(a, b)]$ (e.g. $(2,4))$. Will changing this representative of equivalence class change the value of the above addition? Let's try one example: $[(2,4)]+[(1,2)]=[(8,8)]$. Fortunately, $(4,4) \sim(8,8)$ so the resulting equivalence class is the same.
Check this now in general. Prove that

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \text { and }(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \text { implies }(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

(d) We define multiplication on \mathbb{Q} as follows:

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)]
$$

(This is meant to represent that $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$.)
Verify that this operation is well-defined. That is, prove that

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \text { and }(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \text { implies }(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

(e) In fact one can prove that \mathbb{Q} is a field under + and \cdot (assuming basic properties of arithmetic on \mathbb{Z}). I'll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.

