1. Let $z=a+b i$ be a complex number which for the moment we will think of as a vector in \mathbb{R}^{2} given by (a, b). Let $\theta(z)$ denote the angle between the positive x-axis and z satisfying $0 \leq \theta(z)<2 \pi$. (We call $\theta(z)$ the argument of z.) Also, let $|z|=\sqrt{a^{2}+b^{2}}$ which we call the length of z.
For $x \in \mathbb{R}$, we define

$$
e^{i x}=\cos (x)+i \sin (x) \in \mathbb{C}
$$

(a) Prove that if $z \in \mathbb{C}$, then $z=r e^{i \theta}$ where $r=|z|$ and $\theta=\theta(z)$.

Solution: We have

$$
|z| e^{i \theta}=|z|(\cos (\theta(z))+i \sin (\theta(z)))=|z| \cos (\theta(z))+|z| \sin (\theta(z)) i
$$

But, by basic trigonometry, for $z \in \mathbb{C}$, we also have

$$
z=|z| \cos (\theta(z))+|z| \sin (\theta(z)) i
$$

and thus $z=|z| e^{i \theta(z)}$.
(b) Prove that

$$
r e^{i \theta} \cdot s e^{i \psi}=r s e^{i(\theta+\psi)}
$$

(In words this means that when you multiply complex numbers, you multiply the lengths and add the arguments.)

Solution:

$$
\begin{aligned}
r e^{i \theta} \cdot s e^{i \psi} & =r s(\cos (\theta)+i \sin (\theta))(\cos (\psi)+i \sin (\psi)) \\
& =r s((\cos (\theta) \cos (\psi)-\sin (\theta) \sin (\psi))+i(\cos (\theta) \sin (\psi)+\cos (\psi) \sin (\theta)) \\
& =r s(\cos (\theta+\psi)+i \sin (\theta+\psi)) \\
& =r s e^{i(\theta+\psi)}
\end{aligned}
$$

(c) Verify that $e^{i \pi}=-1$.

Solution: We have $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1$.
2. The equation $z^{n}=1$ has n solutions in \mathbb{C}. Write out these solutions explicitly for $n=3,4,6$, and 8 . Here "explicitly" means that the solutions should be written in the form $x+i y$ with x and y written in terms of rational numbers or square roots of rational numbers - no sines and cosines are allowed in your final answer.
(Hint: The last exercise will help here.)
Solution: Since $\left(e^{2 \pi i a / n}\right)^{n}=1$ for all a, we can explicitly see the n solutions to $z^{n}=1$ as

$$
z=1, e^{2 \pi i / n}, e^{2 \pi i 2 / n}, \ldots, e^{2 \pi i a / n}, \ldots, e^{2 \pi i(n-1) / n}
$$

For $n=3$, the three solutions are 1 ,

$$
e^{2 \pi i / 3}=\cos (2 \pi / 3)+\sin (2 \pi / 3) i=-\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

and

$$
e^{4 \pi i / 3}=\cos (4 \pi / 3)+\sin (4 \pi / 3) i=-\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

For $n=4$, the four solutions are 1 ,

$$
\begin{gathered}
e^{2 \pi i / 4}=\cos (\pi / 2)+\sin (\pi / 2) i=i \\
e^{2 \pi i 2 / 4}=e^{\pi i}=-1
\end{gathered}
$$

and

$$
e^{2 \pi i 3 / 4}=\cos (3 \pi / 2)+\sin (3 \pi / 2) i=-i
$$

For $n=6$, the six solutions are the three listed for $n=3$, together with

$$
\begin{gathered}
e^{2 \pi i / 6}=\cos (\pi / 3)+\sin (\pi / 3) i=\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
e^{2 \pi i 3 / 6}=-1
\end{gathered}
$$

and

$$
e^{2 \pi i 5 / 6}=\cos (5 \pi / 3)+\sin (5 \pi / 3) i=\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

For $n=8$, the eight solutions are the four listed for $n=4$, together with

$$
\begin{gathered}
e^{2 \pi i / 8}=\cos (\pi / 4)+\sin (\pi / 4) i=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \\
e^{2 \pi i 3 / 8}=\cos (3 \pi / 4)+\sin (3 \pi / 4) i=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \\
e^{2 \pi i 5 / 8}=\cos (5 \pi / 4)+\sin (5 \pi / 4) i=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i,
\end{gathered}
$$

and

$$
e^{2 \pi i 7 / 8}=\cos (7 \pi / 4)+\sin (7 \pi / 4) i=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i
$$

3. Rudin, Chapter 1: 10
4. For every $x \in \mathbb{R}$, prove that there exists a $\alpha \in \mathbb{R}$ such that $\alpha^{3}=x$.

Solution: Compare to Rudin Theorem 1.21.
5. Prove that \mathbb{C} satisfies the following field axioms: A4,A5,M3,M4,M5.

Solution: A4: The additive identity is $(0,0)$. Indeed, $(a, b)+(0,0)=(a+0, b+0)=(a, b)$ as 0 is the additive identity of \mathbb{R}.
A5: For each $(a, b) \in \mathbb{C}$, note that $(a, b)+(-a,-b)=(a+-a, b+-b)=0$ (by A5 for \mathbb{R}). Thus, the additive inverse $-(a, b)$ is given by $(-a,-b)$.
M3: We have

$$
\begin{aligned}
((a, b) \cdot(c, d)) \cdot(e, f) & =(a c-b d, a d+b c) \cdot(e, f) \\
& =((a c-b d) e-(a d+b c) f,(a c-b d) f+(a d+b c) e) \\
& =(a c e-b d e-a d f-b c f, a c f-b d f+a d e+b c e)
\end{aligned}
$$

while

$$
\begin{aligned}
(a, b) \cdot((c, d) \cdot(e, f)) & =(a, b) \cdot(c e-d f, c f+d e) \\
& =(a(c e-d f)-b(c f+d e), a(c f+d e)+b(c e-d f)) \\
& =(a c e-a d f-b c f-b d e, a c f+a d e+b c e-b d f)
\end{aligned}
$$

Comparing these two expressions we get

$$
((a, b) \cdot(c, d)) \cdot(e, f)=(a, b) \cdot((c, d) \cdot(e, f))
$$

as desired. Note that A3 and M3 for \mathbb{R} are being used implicitly here as we have not included the proper parentheses everywhere.
M4: The multiplicative identity is $(1,0)$. Indeed, $(a, b) \cdot(1,0)=(a \cdot 1-b \cdot 0, a \cdot 0+b \cdot 1)=(a, b)$. Here we are using M4 for \mathbb{R} along with $0 x=0$ for all $x \in \mathbb{R}$.
M5: For each non-zero $(a, b) \in \mathbb{C}$, note that

$$
(a, b) \cdot\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)=\left(\frac{a^{2}+b^{2}}{a^{2}+b^{2}}, \frac{a(-b)+b a}{a^{2}+b^{2}}\right)=(1,0) .
$$

Thus, the multiplicative inverse $(a, b)^{-1}$ is given by $\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)$. Note that we are using that (a, b) is non-zero to know that $a^{2}+b^{2}$ is non-zero.
6. Let A and B be two sets both contained in a larger set X. We define the union $A \cup B$ to be the subset of X consisting of elements that are in A or in B. We define the intersection $A \cap B$ to be the subset of X consisting of elements that are in both A and in B. Further, we define the complement A^{c} to be the subset of elements of X which are not in A. Prove each of the following.
(a) $(A \cap B)^{c}=A^{c} \cup B^{c}$.

Solution: In each of these exercises we will check that $x \in X$ is in the left hand side if and only if it is in the right hand side. This will prove the equality of the two sets.
We have $x \in(A \cap B)^{c}$ if and only if x is not in $A \cap B$ which is true if and only if x is not in A or x is not in B which is true if and only if $x \in A^{c}$ or $x \in B^{c}$ which is true if and only if x is in $A^{c} \cup B^{c}$.
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Solution: We have $x \in(A \cup B)^{c}$ if and only if x is not in $A \cup B$ which is true if and only if x is not in A and x is not in B which is true if and only if $x \in A^{c}$ and $x \in B^{c}$ which is true if and only if x is in $A^{c} \cap B^{c}$.
(c) $\left(A^{c}\right)^{c}=A$.

Solution: We have $x \in\left(A^{c}\right)^{c}$ if and only if x is not in A^{c} which is true if and only if $x \in A$.
7. Let S be a set and let \sim be a relation on S. Assume that \sim is reflexive, symmetric, and transitive. (Such a relation is called an equivalence relation.) For an element $x \in S$, we define the equivalence class of x, denoted by $[x]$, by

$$
[x]=\{y \in S: y \sim x \text { holds }\} .
$$

Prove each of the following:
(a) $x \in[x]$;

Solution: Clear since $x \sim x$.
(b) if $x \sim y$ holds, then $[x]=[y]$;

Solution: Let $z \in[x]$. This means that $z \sim x$. Since $x \sim y$, by transitivity we get $z \sim y$ and $z \in[y]$. Thus, $[x] \subseteq[y]$. To prove the reverse inclusion, take $z \in[y]$. Thus, $z \sim y$. Since $x \sim y$, by symmetry, $y \sim x$, and then by transitivity we get $z \sim x$. Hence, $z \in[x]$ and we have shown $[y] \subseteq[x]$. Therefore, $[x]=[y]$.
(c) if $[x] \cap[y]$ is non-empty, then $x \sim y$ holds.

Solution: Let z be in $[x] \cap[y]$. Thus $z \sim x$ and $z \sim y$. By symmetry, we have $x \sim z$ and by transitivity, we have $x \sim y$.

We note for the next exercise that we use the notation S / \sim to denote the collection of equivalence classes of S under \sim. That is, the elements of S / \sim are subsets of S of the form $[x]$.
8. Let S denote the collection of ordered pairs (a, b) with $a, b \in \mathbb{Z}$ and $b \neq 0$. Recall the equivalence relation \sim on the last problem set given by

$$
(a, b) \sim(c, d) \text { if and only if } a d=b c
$$

We define \mathbb{Q} to be S / \sim - that is, \mathbb{Q} is the collection of equivalence classes of ordered pairs (a, b) under \sim.
(a) Verify that $(1,2) \sim(2,4) \sim(3,6)$. (This is meant to represent the fact that $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}$.)

Solution: Clear. For instance, $2 \cdot 2=1 \cdot 4$.
(b) Write down 3 elements in the equivalence class $[(5,12)]$.

Solution: $\quad(5,12),(-5,-12),(10,24)$
(c) We define addition on \mathbb{Q} as follows:

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]
$$

(This is meant to represent that $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.)
However, it is not clear that this formula is well-defined. For instance, applying the formula we get $[(1,2)]+[(1,2)]=[(4,4)]$. However, $[(1,2)]$ can be written as $[(a, b)]$ for many other choices of $[(a, b)]$ (e.g. $(2,4))$. Will changing this representative of equivalence class change the value of the above addition? Let's try one example: $[(2,4)]+[(1,2)]=[(8,8)]$. Fortunately, $(4,4) \sim(8,8)$ so the resulting equivalence class is the same.
Check this now in general. Prove that

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \text { and }(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \text { implies }(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

Solution: We are given that $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$. We compute
$(a d+b c)\left(b^{\prime} d^{\prime}\right)-(b d)\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)=a b^{\prime} d d^{\prime}+b b^{\prime} c d^{\prime}-a^{\prime} b d d^{\prime}-b b^{\prime} c^{\prime} d=a^{\prime} b d d^{\prime}+b b^{\prime} c^{\prime} d^{\prime}-a^{\prime} b d d^{\prime}-b b^{\prime} c^{\prime} d=0$.
Thus, $(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$.
(d) We define multiplication on \mathbb{Q} as follows:

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)]
$$

(This is meant to represent that $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$.)

Verify that this operation is well-defined. That is, prove that

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \text { and }(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \text { implies }(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

Solution: We are given that $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$. We compute

$$
a c b^{\prime} d^{\prime}-a^{\prime} c^{\prime} b d=a^{\prime} b c d^{\prime}-a^{\prime} b c d^{\prime}=0
$$

and $(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$.
(e) In fact one can prove that \mathbb{Q} is a field under + and \cdot (assuming basic properties of arithmetic on $\mathbb{Z})$. I'll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.

Solution:

A2: We have

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]=[(d a+c b, d b)]=[(c b+d a, d b)]=[(c, d)]+[(a, b)]
$$

Here we are using A2 and M2 for \mathbb{Z}.
A4: The additive identity is $[(0,1)]$ since

$$
[(a, b)]+[(0,1)]=[(a \cdot 1+b \cdot 0, b \cdot 1)]=[(a, b)]
$$

Here we are using A4 and M4 for \mathbb{Z}.
A5: For each $[(a, b)] \in \mathbb{Q}$, note that

$$
[(a, b)]+[(-a, b)]=\left[\left(a b+b(-a), b^{2}\right)\right]=\left[\left(0, b^{2}\right)\right]=[(0,1)]
$$

as $\left(0, b^{2}\right) \sim(0,1)$. Thus, the additive inverse $-[(a, b)]$ is given by $[(-a, b)]$.
M4: The multiplicative identity is $[(1,1)]$ since

$$
[(a, b)] \cdot[(1,1)]=[(a \cdot 1, b \cdot 1)]=[(a, b)]
$$

Here we are using M4 for \mathbb{Z}.
A5: For each non-zero $[(a, b)] \in \mathbb{Q}$, note that

$$
[(a, b)] \cdot[(b, a)]=[(a b, a b)]=[(1,1)]
$$

as $(a b, a b) \sim(1,1)$. Thus, the multiplicative inverse $[(a, b)]^{-1}$ is given by $[(b, a)]$. Further note that this makes sense as $a \neq 0$.

