Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #3

1. Let z = a + bi be a complex number which for the moment we will think of as a vector in \mathbb{R}^2 given by (a, b). Let $\theta(z)$ denote the angle between the positive x-axis and z satisfying $0 \le \theta(z) < 2\pi$. (We call $\theta(z)$ the argument of z.) Also, let $|z| = \sqrt{a^2 + b^2}$ which we call the *length* of z.

For $x \in \mathbb{R}$, we define

$$e^{ix} = \cos(x) + i\sin(x) \in \mathbb{C}.$$

(a) Prove that if $z \in \mathbb{C}$, then $z = re^{i\theta}$ where r = |z| and $\theta = \theta(z)$.

Solution: We have

$$|z|e^{i\theta} = |z|(\cos(\theta(z)) + i\sin(\theta(z))) = |z|\cos(\theta(z)) + |z|\sin(\theta(z))i.$$

But, by basic trigonometry, for $z \in \mathbb{C}$, we also have

$$z = |z|\cos(\theta(z)) + |z|\sin(\theta(z))i$$

and thus $z = |z|e^{i\theta(z)}$.

(b) Prove that

$$re^{i\theta} \cdot se^{i\psi} = rse^{i(\theta + \psi)}$$

(In words this means that when you multiply complex numbers, you multiply the lengths and add the arguments.)

Solution:

$$re^{i\theta} \cdot se^{i\psi} = rs(\cos(\theta) + i\sin(\theta))(\cos(\psi) + i\sin(\psi))$$

= $rs((\cos(\theta)\cos(\psi) - \sin(\theta)\sin(\psi)) + i(\cos(\theta)\sin(\psi) + \cos(\psi)\sin(\theta))$
= $rs(\cos(\theta + \psi) + i\sin(\theta + \psi))$
= $rse^{i(\theta + \psi)}$

(c) Verify that $e^{i\pi} = -1$.

Solution: We have $e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$.

2. The equation $z^n = 1$ has n solutions in \mathbb{C} . Write out these solutions explicitly for n = 3, 4, 6, and 8. Here "explicitly" means that the solutions should be written in the form x + iy with x and y written in terms of rational numbers or square roots of rational numbers – no sines and cosines are allowed in your final answer.

(Hint: The last exercise will help here.)

Solution: Since $(e^{2\pi i a/n})^n = 1$ for all a, we can explicitly see the n solutions to $z^n = 1$ as

$$z = 1, e^{2\pi i/n}, e^{2\pi i 2/n}, \dots, e^{2\pi i a/n}, \dots, e^{2\pi i (n-1)/n},$$

For n = 3, the three solutions are 1,

$$e^{2\pi i/3} = \cos(2\pi/3) + \sin(2\pi/3)i = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

and

$$e^{4\pi i/3} = \cos(4\pi/3) + \sin(4\pi/3)i = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

For n = 4, the four solutions are 1,

$$e^{2\pi i/4} = \cos(\pi/2) + \sin(\pi/2)i = i,$$

 $e^{2\pi i/4} = e^{\pi i} = -1,$

and

$$e^{2\pi i 3/4} = \cos(3\pi/2) + \sin(3\pi/2)i = -i$$

For n = 6, the six solutions are the three listed for n = 3, together with

$$e^{2\pi i/6} = \cos(\pi/3) + \sin(\pi/3)i = \frac{1}{2} + \frac{\sqrt{3}}{2}i,$$

 $e^{2\pi i3/6} = -1$

and

$$e^{2\pi i5/6} = \cos(5\pi/3) + \sin(5\pi/3)i = \frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

For n = 8, the eight solutions are the four listed for n = 4, together with

$$e^{2\pi i/8} = \cos(\pi/4) + \sin(\pi/4)i = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i,$$
$$e^{2\pi i3/8} = \cos(3\pi/4) + \sin(3\pi/4)i = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i,$$
$$e^{2\pi i5/8} = \cos(5\pi/4) + \sin(5\pi/4)i = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i,$$
$$e^{2\pi i7/8} = \cos(7\pi/4) + \sin(7\pi/4)i = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i,$$

and

$$e^{2\pi i7/8} = \cos(7\pi/4) + \sin(7\pi/4)i = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

- 3. Rudin, Chapter 1: 10
- 4. For every $x \in \mathbb{R}$, prove that there exists a $\alpha \in \mathbb{R}$ such that $\alpha^3 = x$.

Solution: Compare to Rudin Theorem 1.21.

5. Prove that C satisfies the following field axioms: A4,A5,M3,M4,M5.

Solution: A4: The additive identity is (0,0). Indeed, (a,b) + (0,0) = (a+0,b+0) = (a,b) as 0 is the additive identity of \mathbb{R} .

A5: For each $(a,b) \in \mathbb{C}$, note that (a,b) + (-a,-b) = (a+-a,b+-b) = 0 (by A5 for \mathbb{R}). Thus, the additive inverse -(a, b) is given by (-a, -b).

M3: We have

$$((a,b) \cdot (c,d)) \cdot (e,f) = (ac - bd, ad + bc) \cdot (e,f)$$

= $((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e)$
= $(ace - bde - adf - bcf, acf - bdf + ade + bce)$

while

$$\begin{aligned} (a,b) \cdot ((c,d) \cdot (e,f)) &= (a,b) \cdot (ce - df,cf + de) \\ &= (a(ce - df) - b(cf + de), a(cf + de) + b(ce - df)) \\ &= (ace - adf - bcf - bde, acf + ade + bce - bdf) \end{aligned}$$

Comparing these two expressions we get

$$((a,b)\cdot(c,d))\cdot(e,f) = (a,b)\cdot((c,d)\cdot(e,f))$$

as desired. Note that A3 and M3 for \mathbb{R} are being used implicitly here as we have not included the proper parentheses everywhere.

M4: The multiplicative identity is (1,0). Indeed, $(a,b) \cdot (1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1) = (a,b)$. Here we are using M4 for \mathbb{R} along with 0x = 0 for all $x \in \mathbb{R}$.

M5: For each non-zero $(a, b) \in \mathbb{C}$, note that

$$(a,b) \cdot \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{a(-b) + ba}{a^2 + b^2}\right) = (1,0)$$

Thus, the multiplicative inverse $(a, b)^{-1}$ is given by $\left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$. Note that we are using that (a, b) is non-zero to know that $a^2 + b^2$ is non-zero.

- 6. Let A and B be two sets both contained in a larger set X. We define the union $A \cup B$ to be the subset of X consisting of elements that are in A or in B. We define the intersection $A \cap B$ to be the subset of X consisting of elements that are in both A and in B. Further, we define the complement A^c to be the subset of elements of X which are not in A. Prove each of the following.
 - (a) $(A \cap B)^c = A^c \cup B^c$.

Solution: In each of these exercises we will check that $x \in X$ is in the left hand side if and only if it is in the right hand side. This will prove the equality of the two sets.

We have $x \in (A \cap B)^c$ if and only if x is not in $A \cap B$ which is true if and only if x is not in A or x is not in B which is true if and only if $x \in A^c$ or $x \in B^c$ which is true if and only if x is in $A^c \cup B^c$.

(b) $(A \cup B)^c = A^c \cap B^c$.

Solution: We have $x \in (A \cup B)^c$ if and only if x is not in $A \cup B$ which is true if and only if x is not in A and x is not in B which is true if and only if $x \in A^c$ and $x \in B^c$ which is true if and only if x is in $A^c \cap B^c$.

(c) $(A^c)^c = A$.

Solution: We have $x \in (A^c)^c$ if and only if x is not in A^c which is true if and only if $x \in A$.

7. Let S be a set and let \sim be a relation on S. Assume that \sim is reflexive, symmetric, and transitive. (Such a relation is called an equivalence relation.) For an element $x \in S$, we define the *equivalence* class of x, denoted by [x], by

$$[x] = \{ y \in S : y \sim x \text{ holds} \}.$$

Prove each of the following:

(a) $x \in [x];$

Solution: Clear since $x \sim x$.

(b) if $x \sim y$ holds, then [x] = [y];

Solution: Let $z \in [x]$. This means that $z \sim x$. Since $x \sim y$, by transitivity we get $z \sim y$ and $z \in [y]$. Thus, $[x] \subseteq [y]$. To prove the reverse inclusion, take $z \in [y]$. Thus, $z \sim y$. Since $x \sim y$, by symmetry, $y \sim x$, and then by transitivity we get $z \sim x$. Hence, $z \in [x]$ and we have shown $[y] \subseteq [x]$. Therefore, [x] = [y].

(c) if $[x] \cap [y]$ is non-empty, then $x \sim y$ holds.

Solution: Let z be in $[x] \cap [y]$. Thus $z \sim x$ and $z \sim y$. By symmetry, we have $x \sim z$ and by transitivity, we have $x \sim y$.

We note for the next exercise that we use the notation S/\sim to denote the collection of equivalence classes of S under \sim . That is, the *elements* of S/\sim are *subsets* of S of the form [x].

8. Let S denote the collection of ordered pairs (a, b) with $a, b \in \mathbb{Z}$ and $b \neq 0$. Recall the equivalence relation \sim on the last problem set given by

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$.

We define \mathbb{Q} to be S/\sim – that is, \mathbb{Q} is the collection of equivalence classes of ordered pairs (a, b) under \sim .

- (a) Verify that $(1,2) \sim (2,4) \sim (3,6)$. (This is meant to represent the fact that $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$.) Solution: Clear. For instance, $2 \cdot 2 = 1 \cdot 4$.
- (b) Write down 3 elements in the equivalence class [(5, 12)].

Solution: (5,12), (-5,-12), (10,24)

(c) We *define* addition on \mathbb{Q} as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc, bd)].$$

(This is meant to represent that $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$.)

However, it is not clear that this formula is *well-defined*. For instance, applying the formula we get [(1,2)] + [(1,2)] = [(4,4)]. However, [(1,2)] can be written as [(a,b)] for many other choices of [(a,b)] (e.g. (2,4)). Will changing this representative of equivalence class change the value of the above addition? Let's try one example: [(2,4)] + [(1,2)] = [(8,8)]. Fortunately, $(4,4) \sim (8,8)$ so the resulting equivalence class is the same.

Check this now in general. Prove that

$$(a,b) \sim (a',b')$$
 and $(c,d) \sim (c',d')$ implies $(ad+bc,bd) \sim (a'd'+b'c',b'd')$.

Solution: We are given that ab' = a'b and cd' = c'd. We compute

$$(ad+bc)(b'd') - (bd)(a'd'+b'c') = ab'dd' + bb'cd' - a'bdd' - bb'c'd = a'bdd' + bb'c'd' - a'bdd' - bb'c'd = 0.$$

Thus, $(ad+bc,bd) \sim (a'd'+b'c',b'd')$.

(d) We *define* multiplication on \mathbb{Q} as follows:

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)].$$

(This is meant to represent that $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.)

Verify that this operation is well-defined. That is, prove that

$$(a,b) \sim (a',b')$$
 and $(c,d) \sim (c',d')$ implies $(ac,bd) \sim (a'c',b'd')$.

Solution: We are given that ab' = a'b and cd' = c'd. We compute

$$acb'd' - a'c'bd = a'bcd' - a'bcd' = 0$$

and $(ac, bd) \sim (a'c', b'd')$.

(e) In fact one can prove that Q is a field under + and · (assuming basic properties of arithmetic on Z). I'll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.

Solution: A2: We have

$$[(a,b)] + [(c,d)] = [(ad + bc, bd)] = [(da + cb, db)] = [(cb + da, db)] = [(c,d)] + [(a,b)].$$

Here we are using A2 and M2 for \mathbb{Z} .

A4: The additive identity is [(0, 1)] since

$$[(a,b)] + [(0,1)] = [(a \cdot 1 + b \cdot 0, b \cdot 1)] = [(a,b)].$$

Here we are using A4 and M4 for \mathbb{Z} .

A5: For each $[(a, b)] \in \mathbb{Q}$, note that

$$[(a,b)] + [(-a,b)] = [(ab + b(-a), b^2)] = [(0,b^2)] = [(0,1)]$$

as $(0, b^2) \sim (0, 1)$. Thus, the additive inverse -[(a, b)] is given by [(-a, b)]. M4: The multiplicative identity is [(1, 1)] since

$$[(a,b)] \cdot [(1,1)] = [(a \cdot 1, b \cdot 1)] = [(a,b)].$$

Here we are using M4 for \mathbb{Z} .

A5: For each non-zero $[(a, b)] \in \mathbb{Q}$, note that

$$[(a,b)] \cdot [(b,a)] = [(ab,ab)] = [(1,1)]$$

as $(ab, ab) \sim (1, 1)$. Thus, the multiplicative inverse $[(a, b)]^{-1}$ is given by [(b, a)]. Further note that this makes sense as $a \neq 0$.