
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #3

1. Let z = a+ bi be a complex number which for the moment we will think of as a vector in R2 given by
(a, b). Let θ(z) denote the angle between the positive x-axis and z satisfying 0 ≤ θ(z) < 2π. (We call
θ(z) the argument of z.) Also, let |z| =

√
a2 + b2 which we call the length of z.

For x ∈ R, we define
eix = cos(x) + i sin(x) ∈ C.

(a) Prove that if z ∈ C, then z = reiθ where r = |z| and θ = θ(z).

Solution: We have

|z|eiθ = |z|(cos(θ(z)) + i sin(θ(z))) = |z| cos(θ(z)) + |z| sin(θ(z))i.

But, by basic trigonometry, for z ∈ C, we also have

z = |z| cos(θ(z)) + |z| sin(θ(z))i

and thus z = |z|eiθ(z).

(b) Prove that
reiθ · seiψ = rsei(θ+ψ).

(In words this means that when you multiply complex numbers, you multiply the lengths and add
the arguments.)

Solution:

reiθ · seiψ = rs(cos(θ) + i sin(θ))(cos(ψ) + i sin(ψ))

= rs((cos(θ) cos(ψ)− sin(θ) sin(ψ)) + i(cos(θ) sin(ψ) + cos(ψ) sin(θ))

= rs(cos(θ + ψ) + i sin(θ + ψ))

= rsei(θ+ψ)

(c) Verify that eiπ = −1.

Solution: We have eiπ = cos(π) + i sin(π) = −1.

2. The equation zn = 1 has n solutions in C. Write out these solutions explicitly for n = 3, 4, 6, and 8.
Here “explicitly” means that the solutions should be written in the form x+ iy with x and y written
in terms of rational numbers or square roots of rational numbers – no sines and cosines are allowed in
your final answer.

(Hint: The last exercise will help here.)

Solution: Since
(
e2πia/n

)n
= 1 for all a, we can explicitly see the n solutions to zn = 1 as

z = 1, e2πi/n, e2πi2/n, . . . , e2πia/n, . . . , e2πi(n−1)/n.

For n = 3, the three solutions are 1,

e2πi/3 = cos(2π/3) + sin(2π/3)i = −1

2
+

√
3

2
i



and

e4πi/3 = cos(4π/3) + sin(4π/3)i = −1

2
−
√

3

2
i.

For n = 4, the four solutions are 1,

e2πi/4 = cos(π/2) + sin(π/2)i = i,

e2πi2/4 = eπi = −1,

and
e2πi3/4 = cos(3π/2) + sin(3π/2)i = −i.

For n = 6, the six solutions are the three listed for n = 3, together with

e2πi/6 = cos(π/3) + sin(π/3)i =
1

2
+

√
3

2
i,

e2πi3/6 = −1

and

e2πi5/6 = cos(5π/3) + sin(5π/3)i =
1

2
−
√

3

2
i.

For n = 8, the eight solutions are the four listed for n = 4, together with

e2πi/8 = cos(π/4) + sin(π/4)i =

√
2

2
+

√
2

2
i,

e2πi3/8 = cos(3π/4) + sin(3π/4)i = −
√

2

2
+

√
2

2
i,

e2πi5/8 = cos(5π/4) + sin(5π/4)i = −
√

2

2
−
√

2

2
i,

and

e2πi7/8 = cos(7π/4) + sin(7π/4)i =

√
2

2
−
√

2

2
i.

3. Rudin, Chapter 1: 10

4. For every x ∈ R, prove that there exists a α ∈ R such that α3 = x.

Solution: Compare to Rudin Theorem 1.21.

5. Prove that C satisfies the following field axioms: A4,A5,M3,M4,M5.

Solution: A4: The additive identity is (0, 0). Indeed, (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b) as 0 is the
additive identity of R.

A5: For each (a, b) ∈ C, note that (a, b) + (−a,−b) = (a + −a, b + −b) = 0 (by A5 for R). Thus, the
additive inverse −(a, b) is given by (−a,−b).
M3: We have

((a, b) · (c, d)) · (e, f) = (ac− bd, ad+ bc) · (e, f)

= ((ac− bd)e− (ad+ bc)f, (ac− bd)f + (ad+ bc)e)

= (ace− bde− adf − bcf, acf − bdf + ade+ bce)



while

(a, b) · ((c, d) · (e, f)) = (a, b) · (ce− df, cf + de)

= (a(ce− df)− b(cf + de), a(cf + de) + b(ce− df))

= (ace− adf − bcf − bde, acf + ade+ bce− bdf)

Comparing these two expressions we get

((a, b) · (c, d)) · (e, f) = (a, b) · ((c, d) · (e, f))

as desired. Note that A3 and M3 for R are being used implicitly here as we have not included the
proper parentheses everywhere.

M4: The multiplicative identity is (1, 0). Indeed, (a, b) · (1, 0) = (a · 1− b · 0, a · 0 + b · 1) = (a, b). Here
we are using M4 for R along with 0x = 0 for all x ∈ R.

M5: For each non-zero (a, b) ∈ C, note that

(a, b) ·
(

a

a2 + b2
,
−b

a2 + b2

)
=

(
a2 + b2

a2 + b2
,
a(−b) + ba

a2 + b2

)
= (1, 0).

Thus, the multiplicative inverse (a, b)−1 is given by
(

a
a2+b2 ,

−b
a2+b2

)
. Note that we are using that (a, b)

is non-zero to know that a2 + b2 is non-zero.

6. Let A and B be two sets both contained in a larger set X. We define the union A∪B to be the subset
of X consisting of elements that are in A or in B. We define the intersection A ∩ B to be the subset
of X consisting of elements that are in both A and in B. Further, we define the complement Ac to be
the subset of elements of X which are not in A. Prove each of the following.

(a) (A ∩B)c = Ac ∪Bc.

Solution: In each of these exercises we will check that x ∈ X is in the left hand side if and only
if it is in the right hand side. This will prove the equality of the two sets.

We have x ∈ (A ∩ B)c if and only if x is not in A ∩ B which is true if and only if x is not in A
or x is not in B which is true if and only if x ∈ Ac or x ∈ Bc which is true if and only if x is in
Ac ∪Bc.

(b) (A ∪B)c = Ac ∩Bc.

Solution: We have x ∈ (A ∪ B)c if and only if x is not in A ∪ B which is true if and only if x
is not in A and x is not in B which is true if and only if x ∈ Ac and x ∈ Bc which is true if and
only if x is in Ac ∩Bc.

(c) (Ac)c = A.

Solution: We have x ∈ (Ac)c if and only if x is not in Ac which is true if and only if x ∈ A.

7. Let S be a set and let ∼ be a relation on S. Assume that ∼ is reflexive, symmetric, and transitive.
(Such a relation is called an equivalence relation.) For an element x ∈ S, we define the equivalence
class of x, denoted by [x], by

[x] = {y ∈ S : y ∼ x holds}.

Prove each of the following:

(a) x ∈ [x];

Solution: Clear since x ∼ x.



(b) if x ∼ y holds, then [x] = [y];

Solution: Let z ∈ [x]. This means that z ∼ x. Since x ∼ y, by transitivity we get z ∼ y and
z ∈ [y]. Thus, [x] ⊆ [y]. To prove the reverse inclusion, take z ∈ [y]. Thus, z ∼ y. Since x ∼ y,
by symmetry, y ∼ x, and then by transitivity we get z ∼ x. Hence, z ∈ [x] and we have shown
[y] ⊆ [x]. Therefore, [x] = [y].

(c) if [x] ∩ [y] is non-empty, then x ∼ y holds.

Solution: Let z be in [x] ∩ [y]. Thus z ∼ x and z ∼ y. By symmetry, we have x ∼ z and by
transitivity, we have x ∼ y.

We note for the next exercise that we use the notation S/ ∼ to denote the collection of equivalence
classes of S under ∼. That is, the elements of S/ ∼ are subsets of S of the form [x].

8. Let S denote the collection of ordered pairs (a, b) with a, b ∈ Z and b 6= 0. Recall the equivalence
relation ∼ on the last problem set given by

(a, b) ∼ (c, d) if and only if ad = bc.

We define Q to be S/ ∼ – that is, Q is the collection of equivalence classes of ordered pairs (a, b) under
∼.

(a) Verify that (1, 2) ∼ (2, 4) ∼ (3, 6). (This is meant to represent the fact that 1
2 = 2

4 = 3
6 .)

Solution: Clear. For instance, 2 · 2 = 1 · 4.

(b) Write down 3 elements in the equivalence class [(5, 12)].

Solution: (5,12),(-5,-12),(10,24)

(c) We define addition on Q as follows:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

(This is meant to represent that a
b + c

d = ad+bc
bd .)

However, it is not clear that this formula is well-defined. For instance, applying the formula we
get [(1, 2)] + [(1, 2)] = [(4, 4)]. However, [(1, 2)] can be written as [(a, b)] for many other choices
of [(a, b)] (e.g. (2, 4)). Will changing this representative of equivalence class change the value of
the above addition? Let’s try one example: [(2, 4)] + [(1, 2)] = [(8, 8)]. Fortunately, (4, 4) ∼ (8, 8)
so the resulting equivalence class is the same.

Check this now in general. Prove that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) implies (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′).

Solution: We are given that ab′ = a′b and cd′ = c′d. We compute

(ad+bc)(b′d′)−(bd)(a′d′+b′c′) = ab′dd′+bb′cd′−a′bdd′−bb′c′d = a′bdd′+bb′c′d′−a′bdd′−bb′c′d = 0.

Thus, (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′).

(d) We define multiplication on Q as follows:

[(a, b)] · [(c, d)] = [(ac, bd)].

(This is meant to represent that a
b ·

c
d = ac

bd .)



Verify that this operation is well-defined. That is, prove that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) implies (ac, bd) ∼ (a′c′, b′d′).

Solution: We are given that ab′ = a′b and cd′ = c′d. We compute

acb′d′ − a′c′bd = a′bcd′ − a′bcd′ = 0

and (ac, bd) ∼ (a′c′, b′d′).

(e) In fact one can prove that Q is a field under + and · (assuming basic properties of arithmetic on
Z). I’ll ask you to do part of this: verify the following field axioms: A2,A4,A5,M4,M5.

Solution:

A2: We have

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] = [(da+ cb, db)] = [(cb+ da, db)] = [(c, d)] + [(a, b)].

Here we are using A2 and M2 for Z.

A4: The additive identity is [(0, 1)] since

[(a, b)] + [(0, 1)] = [(a · 1 + b · 0, b · 1)] = [(a, b)].

Here we are using A4 and M4 for Z.

A5: For each [(a, b)] ∈ Q, note that

[(a, b)] + [(−a, b)] = [(ab+ b(−a), b2)] = [(0, b2)] = [(0, 1)]

as (0, b2) ∼ (0, 1). Thus, the additive inverse −[(a, b)] is given by [(−a, b)].
M4: The multiplicative identity is [(1, 1)] since

[(a, b)] · [(1, 1)] = [(a · 1, b · 1)] = [(a, b)].

Here we are using M4 for Z.

A5: For each non-zero [(a, b)] ∈ Q, note that

[(a, b)] · [(b, a)] = [(ab, ab)] = [(1, 1)]

as (ab, ab) ∼ (1, 1). Thus, the multiplicative inverse [(a, b)]−1 is given by [(b, a)]. Further note
that this makes sense as a 6= 0.


