```
Introduction to Analysis - MA 511 - Fall 2018 - R. Pollack
    HW #4 (expanded)
```


Questions from Rudin:

Chapter 2 - 1, 4,9,10,11
(Hint: for 4 see Theorem 2.12.)

Additional questions:

1. For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}, define

$$
d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

Prove this function (the "taxi-cab" metric) is indeed a metric.
2. Recall that if E is a subset of a metric space, then \bar{E} denotes the closure of E and E° denotes the interior of E. If $E=\mathbb{Q}$ thought of as a subset of \mathbb{R} with the standard metric, determine \bar{E} and E°. Justify your answers.
3. Let A and B be subsets of a metric space. Prove that

$$
\overline{A \cup B}=\bar{A} \cup \bar{B}
$$

that is, the closure of $A \cup B$ equals the closure of A union the closure of B.
(Hint: Theorem 2.27c will be helpful here.)
4. Let A_{1}, A_{2}, \ldots be subsets of a metric space. Is it true that

$$
\overline{\bigcup_{i=1}^{\infty} A_{i}}=\bigcup_{i=1}^{\infty} \overline{A_{i}} ?
$$

If so, prove it. If not, give a counter-example, and point out what part of your proof of $\# 3$ breaks down.

