Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #4 (expanded)

Questions from Rudin:

Chapter 2 – 1,4,9,10,11 (Hint: for 4 see Theorem 2.12.)

Additional questions:

1. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , define

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|.$$

Prove this function (the "taxi-cab" metric) is indeed a metric.

- 2. Recall that if E is a subset of a metric space, then \overline{E} denotes the closure of E and E° denotes the interior of E. If $E = \mathbb{Q}$ thought of as a subset of \mathbb{R} with the standard metric, determine \overline{E} and E° . Justify your answers.
- 3. Let A and B be subsets of a metric space. Prove that

$$\overline{A \cup B} = \overline{A} \cup \overline{B},$$

that is, the closure of $A \cup B$ equals the closure of A union the closure of B. (Hint: Theorem 2.27c will be helpful here.)

4. Let A_1, A_2, \ldots be subsets of a metric space. Is it true that

$$\overline{\bigcup_{i=1}^{\infty} A_i} = \bigcup_{i=1}^{\infty} \overline{A_i}?$$

If so, prove it. If not, give a counter-example, and point out what part of your proof of #3 breaks down.