
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #4

Questions from Rudin:
Chapter 2 – 1,4,9,10,11

1) To see that the empty set is contained in an arbitrary set A, we need to check that every element of the
empty set is in A. Done! The empty set has no elements.

4) The set of irrational numbers I is uncountable. Indeed, if I were countable, then I∪Q would be countable
as the union of countable sets is countable (Theorem 2.12). But I ∪Q = R and R is uncountable.

9a) Let x ∈ E◦. We need to find an open ball centered at x which is entirely contained in E◦. By definition
of E◦, there exists some r > 0 such that Nr(x) ⊆ E. We claim that Nr(x) ⊆ E◦. To see this, let y ∈ Nr(x)
and set h = d(x, y). We will check that Nr−h(y) ⊆ Nr(x). Indeed, if z ∈ Ns(y), then

d(x, z) ≤ d(x, y) + d(y, z) < h + r − h = r,

and thus z ∈ Nr(x). Therefore, Nr−h(y) ⊆ Nr(x) and since Nr(x) ⊆ E, we deduce that y is an interior
point of E, that is y ∈ E◦. Since y was arbitrary, we get that Nr(x) ⊆ E◦ and that E◦ is open.

9b) This is essentially the definition. We have that E is open if and only if every point of E is an interior
point which is true if and only if E = E◦.

9c) Let g ∈ G. Since G is open, there exists r > 0 such that Nr(g) ⊆ G ⊆ E. Thus, g is an interior point of
E and G ⊆ E◦.

9d) Since E◦ ⊆ E, we have (E◦)c ⊇ Ec. Then by Theorem 2.27c, (E◦)c ⊇ Ec as (E◦)c is closed (being the
complement of an open set).

To check the reverse inclusion, take x ∈ (E◦)c. So x 6∈ E◦. Thus, for every r, we have Nr(x) is not
contained in E. That is, there is some z ∈ Nr(x) such that z is not in E. Thus z ∈ Ec. So we have shown
that every neighborhood of x ∈ (E◦)c contains a point in Ec. This means (E◦)c ⊆ Ec.

9e) No. Take E = Q. Then E equals R. But then E◦ is empty while
(
E
)◦

= R.

9f) No. Take E = Q. Then E◦ is empty and has empty closure while the closure of Q is R.

10) Property 1 is clear. Symmetry is also clear. For the triangle inequality, we need to check

d(x, z) ≤ d(x, y) + d(y, z).

If x = z, this is clear as d(x, z) = 0. If x 6= z, then either y 6= x or y 6= z. In this case, the left hand side is 1
while the right hand side is at least 1.

11) d1 is not a metric as it fails the triangle inequality. Indeed, d1(0, 1/2) = 1/4 and d1(1/2, 1) = 1/4, but
d1(0, 1) = 1 ≥ 1/4 + 1/4.

d2 is a metric. The first property and symmetry are clear. For the triangle inequality, we argue as follows.
For any a, b ∈ R, we have

(
√
a +
√
b)2 = a + b + 2

√
ab ≥ a + b

and thus √
a + b ≤

√
a +
√
b.

Now, by the usual triangle inequality, we have

|x− z| ≤ |x− y|+ |y − z|



and thus √
|x− z| ≤

√
|x− y|+ |y − z| ≤

√
|x− y|+

√
|y − z|

where the last inequality is using
√
a + b ≤

√
a +
√
b.

d3 is not a metric. Indeed d3(1,−1) = 0 but 1 6= −1.
d4 is not a metric. Indeed d4(2, 1) = 0 but 2 6= 1.

Additional questions:

1. For x = (x1, x2) and y = (y1, y2) in R2, define

d(x, y) = |x1 − y1|+ |x2 − y2|.

Prove this function (the “taxi-cab” metric) is indeed a metric.

If d(x, y) = 0 then both |x1 − y1| = 0 and |x2 − y2| = 0. Thus, x1 = y1, x2 = y2 and hence x = y.
Symmetry is clear. Also, for z = (z1, z2),

d(x, z) = |x1 − z1|+ |x2 − z2| ≤ |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2| = d(x, y) + d(y, z)

which gives the triangle inequality.

2. Recall that if E is a subset of a metric space, then E denotes the closure of E and E◦ denotes the
interior of E. If E = Q thought of as a subset of R with the standard metric, determine E and E◦.
Justify your answers.

Solution: We have E = R. Indeed, for any x ∈ R, consider Nε(x) = (x − ε, x + ε). This interval
contains infinitely many rationals as proven in class. Thus x ∈ E.

We have E◦ is empty. Indeed, if x ∈ E◦, then there is some ε > 0 such that Nε(x) ⊆ Q. But any such
interval is uncountable while Q is countable.

3. Let A and B be subsets of a metric space. Prove that

A ∪B = A ∪B,

that is, the closure of A ∪B equals the closure of A union the closure of B.

Solution: We repeatedly use the fact that if X ⊆ F with F closed, then X ⊆ F (Theorem 2.27c).

Clearly, A ⊆ A ∪ B ⊆ A ∪B. Then since A ∪B is closed, by the above fact, A ⊆ A ∪B. Likewise,
B ⊆ A ∪B, and thus A ∪B ⊆ A ∪B.

Converse, since both A and B are closed, A ∪ B is closed. Then since A ∪ B ⊆ A ∪ B, we have
A ∪B ⊆ A ∪B.

Since we have proven both containments, equality follows.

4. Let A1, A2, . . . be subsets of a metric space. Is it true that

∞⋃
i=1

Ai =

∞⋃
i=1

Ai?

If so, prove it. If not, give a counter-example, and point out what part of your proof of #2 breaks
down.

Solution: This is false. Consider Ai = (−1 + 1/i, 1− 1/i). Then

∞⋃
i=1

Ai =

∞⋃
i=1

(−1 + 1/i, 1− 1/i) = (−1, 1) = [−1, 1],



while
∞⋃
i=1

Ai =

∞⋃
i=1

(−1 + 1/i, 1− 1/i) =

∞⋃
i=1

[−1 + 1/i, 1− 1/i] = (−1, 1).

The above proof uses the fact that the union of two closed sets is closed. However, the union of
infinitely many closed sets need not be closed.


